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ABSTRACT
In railway operations after a disruption has occurred, train dispatchers aim at adjusting the im-
pacted schedule and reducing negative consequences during disruptions. As one of the most im-
portant components of the railway system, railway signals are used to guarantee the safety of train
service. We study the train dispatching problem with consideration of railway signaling commands
under the fixed-block signaling system. In such a system, signaling commands dynamically depend
on the movement of the preceding trains in the network. We clarify the impact of the signaling
commands on train schedules, which has been so far neglected in the railway train dispatching
literature, and we innovatively propose a set of signaling constraints to describe the impact. The
determination of the signal indicators is presented using “if-then” constraints, which are further
transformed into linear inequalities by applying two transformation properties. Activation of the
train speed limits that result from the signaling commands are the core purpose of the signaling
constraints, and this is implemented by using the signal indicators. Moreover, we formulate the
Greenwave (GW) policy, which requires that trains always proceed under green signals, and we
further investigate the impact of the GW policy on the delays. In numerical experiments, the pro-
posed signaling constraints are employed within a time-instant optimization problem, which is a
mixed-integer linear programming (MILP) problem. The experimental results demonstrate the ef-
fectiveness of the proposed signaling constraints and show the impact of the signaling commands
and GW policy on the train dispatching solution.

Keywords: Train dispatching, Signaling commands, Train speed limit, Mixed-integer linear pro-
gramming (MILP)
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INTRODUCTION
Railways are crucial to address the ever-growing mobility of population and goods, due to their
positive characteristics of high capacity, high speeds, and eco-friendliness. A still negative char-
acteristic of railway services is their limited reliability and punctuality, which hinders reaching the
modal share sought by policy makers and researchers. Train movements on a railway network are
regulated by timetables. In daily operations, perturbations (caused by bad weather, infrastructure
failures, extra passenger flows, etc.) unavoidably happen, which may affect the normal operations
and cause a deviation from the planned timetable. In such cases, the task of a train dispatcher (con-
troller) is to take proper measures to adjust the impacted schedules, so as to reduce the negative
consequences (delays). This is the train dispatching problem. Due to the high interdependency
between trains for the available capacity, the train dispatching work is usually complex, especially
when the railway network is operated close to saturation, in densely urbanized zones, or during
peak hours. An ineffective train dispatching decision could result in a snowball influence with
consecutive delays, downgrading the reliability and punctuality of train services. Fast and effec-
tive decisions for the train dispatching problem are always desired.

Railway signals are one of the most important parts of the railway system. There is a
wide variety of railway signals and many signaling systems with different principles all over the
world, e.g., the moving-block signaling systems commonly used in high-speed railway networks
and the fixed-block signaling systems commonly used by conventional railways. However, the core
function of the signaling systems is same, i.e., indicating the state of the block section(s) ahead for
the train drivers in order to guarantee the safety of train services. A signaling command can be
indicated by a single aspect or by multiple aspects. In the United States and in many European
countries, the signaling command provides an additional requirement for train operations, namely
indicating the maximum allowed speed to the driver, and the driver has to control the train to not
exceed this speed for ensuring safety (otherwise, a worse situation may happen where the available
distance is not enough to stop the train).

An extensive body of studies is available in the literature that addresses the train dispatch-
ing problem, having different focuses, e.g., considering multiple classes of running traffic (1),
passenger connections (2), speed management (3), and maintenance plans (4), by using different
approaches (e.g., linear/nonlinear optimization and heuristics). However, a gap still exists with
regards to the signaling commands. Train speed limits that result from the signaling commands
have been neglected in the literature (5), although they are indeed required in real train operations.
To the best of our knowledge, no study is available now for generating optimal train dispatching
solutions that integrate precisely the actual signal aspect shown to train drivers, and that guarantee
no violation of the signaling commands, based on the fixed-block signaling system. The reality of
train operations and the gap in the scientific literature have motivated us to include the signaling
commands while addressing the train dispatching problem.

We therefore study the train dispatching problem with consideration of railway signaling
commands, focusing on railway networks with a fixed-block signaling system, as they are common
in the United States and in many European countries. As the signaling commands dynamically de-
pend on the movement of the preceding trains in the network, we use binary variables (namely
signal indicators) to indicate the signaling commands. These signal indicators are determined by
a set of “if-then” constraints, which could be and further transformed into linear inequalities by
applying two transformation properties. These constraints could be generalized to other signaling
systems. Train speed limits that result from the signaling commands are restricted in the signaling
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constraints by employing the signal indicators. In addition, we formulate the Greenwave (GW)
policy and explore its impact on the train dispatching solution (i.e., the train delays). Basically,
the aim of the GW policy is to impose trains to exactly follow their scheduled speed profile, thus
avoiding the need for speed profile adjustments. In the numerical experiments, a time-instant opti-
mization approach (mixed-integer linear programming, MILP) proposed in our previous work (6)
is used to apply the proposed signaling constraints, aiming at delivering a train dispatching solution
with minimization of train delays. The experimental results demonstrate the effectiveness of the
proposed model, including signaling constraints, and show the impact of the signaling commands
and GW policy on the train dispatching solution.

LITERATURE REVIEW
An extensive body of literature is available for the railway train dispatching problem; interested
readers might refer to the surveys (5, 7, 8). This section briefly reviews the state of the art for the
train dispatching problem, especially focusing on the studies that use operations research based
techniques and on how signaling issues are treated.

Advances in scheduling theory made it possible to solve real-life train dispatching instances
in which not only departure/arrival times (9), but also train orders, routes, speeds, and further
operational freedom were considered as variables (10, 11, 12, 13, 14).

Several operations research based techniques are available now for addressing the train
dispatching problem. A particularly popular model is the alternative-graph based model, which
uses a combination of job shop and alternative graph techniques (9). This alternative-graph based
formulation method considers microscopic details and is further employed in many studies, e.g.,
dealing with the train rerouting problem by developing meta-heuristics, including a tabu search al-
gorithm in (11) and a variable neighborhood search algorithm in (15), and investigating the impact
of the details and the number of operational constraints on the applicability of models, in terms of
solution quality and computational efficiency (16).

Another stream of studies addresses the train dispatching problem at a macroscopic level,
which allows for faster resolution and a larger geographical scope. Schöbel (17) proposed an event-
activity based integer programming model to solve the delay management problem. The model was
further extended to address a discrete time/cost trade-off problem of maintaining service quality
and reducing passengers’ inconvenience (18), and by including headways and capacity constraints
and testing multiple pre-processing heuristics in order to fix integer variables and to speed up the
computation (19). In the proposed problems, connections are decided to be maintained or dropped
by minimizing the number of missed connections, while minimizing the delays of all events.

Other approaches have also been proposed to solve this problem. Luan et al. (4) employed
the flag variables-based formulation method to address the integration of train scheduling and
preventive maintenance planning. In (20), a heuristic algorithm, named RECIFE-MILP, was de-
veloped based on an extended version of the MILP formulation proposed in (21). Samà et al. (22)
further investigated how to select the most promising train routes among all possible alternatives,
through developing an ant colony optimization meta-heuristic.

Some dispatching decision support systems have been developed by researchers, and a few
of them have been used in practice. The authors of (23) developed a traffic management support
system that is able to optimize traffic flow in large railway networks equipped with either fixed
or moving block signaling system. D’Ariano et al. (24) developed an advanced decision support
system, known as ROMA (railway traffic optimization by means of alternative graphs), for dis-
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patching trains based on microscopic details. Decomposition technologies were used for handling
large areas in this system. It is verified that the system is able to find feasible and efficient schedules
quickly. An exact approach and a master-slave solution algorithm (based on decomposition) were
presented in (25), based on which a dispatching decision support system was developed. This sys-
tem has been in operation in Norway since February 2014 and represents one of the first operative
applications of mathematical optimization to train dispatching.

Most approaches in the literature neglect the impact of signaling issues while rescheduling
the traffic. A recent study (3) takes the signaling impact into account, focusing on the high-speed
traffic based on a quasi-moving block system. The authors proposed an alternative-graph based
optimization problem to reschedule the high-speed traffic, which integrates the modeling of traffic
management measures and the supervision of speeds, braking, and headways.

The current paper fills the knowledge gap regarding the signaling issues in the train dis-
patching problem, which are mostly neglected in the literature. The main contribution is thus the
consideration of different signaling commands, not only “Clear” and “Stop” (commonly satisfied
by a track capacity constraint), but also“Approach (Limited)” (mostly neglected in the literature),
depending dynamically on the traffic state. The proposed approach is suitable for inclusion in
optimization schemes, in time-instant (namely time-continuous in the terminology of (5)) formu-
lations, and can be extended to virtually any other fixed-block signaling system.

PROBLEM DESCRIPTION
This section introduces fixed-block signaling systems, followed by the relevant signaling com-
mands that should be respected during train operations. We then describe the formulation method
of the time-instant optimization approach used in our previous study (6) for addressing the train
dispatching problem. This formulation method will be used to construct the signaling constraints
later on.

Railway signaling systems
A railway signaling system is used to direct railway traffic and to keep trains clear of each other
at all times (26, 27). A railway signal shows whether the track is clear ahead and also indicates
to train drivers how far ahead the track is clear. Figure 1 illustrates three fixed-block signaling
systems that are basic and widespread all over the world. In such fixed-block signaling systems,
each track is divided into a sequence of block sections, and each block section is protected by a
fixed signal placed at its entrance and displayed to the driver for an approaching train.

Figure 1(a) illustrates a two-aspect signaling system, which has a basic signal with a red
and a green aspect. A green aspect indicates that the block section is accessible for trains, and a
red aspect rejects the access of trains. As stated in (28), this two-aspect signaling system works
well for trains with speeds less than 50 km/h; however, for a train having a higher speed (like over
50 km/h), the train driver needs a warning of a red aspect ahead to give him/her room to stop.
Therefore, multi-aspect signals have appeared, as shown in Figure 1(b)-Figure 1(c) for a three-
aspect signal and a four-aspect signal respectively. The three-aspect signal has a red, a yellow,
and a green aspect. If a block section is occupied by a train, the signal placed at its entrance will
display a red aspect, and the two signals behind will show a yellow aspect and a green aspect
respectively. The yellow aspect provides an advance warning of the red aspect ahead, and the
driver then knows that there is only one clear block section ahead. The green aspect indicates
that there are at least two clear block sections ahead, and the driver can maintain the design speed
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until facing a yellow aspect. The four-aspect signaling system in Figure 1(c) works similarly as
the three-aspect signaling system, except that two advance warnings are provided before a red
aspect, i.e., a single-yellow and a double-yellow aspect. One purpose of doing this is to provide an
earlier warning for higher-speed trains, and another purpose is to allow better track occupancy by
shortening the length of the block sections.

In the United States and in most European countries, the signal indicates the maximum
allowed speed to the driver, and the driver has to control the train to not exceed this speed for
ensuring safety (otherwise, the driver will be penalized). The blue curves in Figure 1 indicate the
maximum speed profiles of train f1 at the current moment, in the case of different signal aspects at
the sight distance.

Let us consider the three-aspect signaling system as an example to explain the impact of
signal aspects on train speeds. Figure 2 presents the time-space-speed graphs for a train f1 on
five consecutive block sections. Different scenarios are illustrated, depending on the movement
of the preceding train f2. The orange horizontal line marked for each train on each block section
directs the signal aspect faced by the train at the corresponding sight distance. In the case of always
facing a green aspect, the drives can proceed with the design speed (V max_green), as illustrated in the
planned scenario of Figure 2(a). The pre-planned train paths are further indicated by the dashed
black lines in the cases of disruptions, illustrated in Figure 2(b)-Figure 2(f), and the train paths
after adjusting are indicated by the solid black lines. In the upper portion of each subfigure, we
sketch the train paths and the signal aspects (in colors) displayed as a function of the time; in the
lower portion, we present the maximum allowed speed for train f1. In the case of facing a yellow
aspect at the sight distance of block section s2, the driver of train f1 has to decrease the train speed
from the design speed (V max_green) to the approach speed (V max_yellow), which is maintained until
the following signal becomes visible. When the train reaches the next sight point, there are five
possible scenarios, as shown in Figure 2(b)-Figure 2(f), which are labeled as scenario C1, ..., C5
respectively:

• In scenario C1, the signal placed at the sight distance of block section s3 shows a green
aspect, and the driver is allowed to accelerate the train from the approach speed to the design
speed.

• In scenario C2, the signal stays yellow, and the train is controlled to enter the next block
section at the approach speed.

• In scenario C3, the signal stays red until the train completely stops, and the signal becomes
green only after a certain waiting time.

• In scenario C4, the signal is yellow and then switches to green in the sight time (i.e., the
running time of a train over the sight distance on a block section). The driver possibly accelerates
the train to the design speed after a small reaction time.

• In scenario C5, the signal is red and then switches to yellow (or green directly) during the
braking phase. In this scenario, the driver stops braking and possibly accelerates the train to the
approach speed (or the design speed) after a small reaction time.

We can conclude that the maximum allowed speed of a train on a block section depends on
the signaling command (i.e., the signal aspect displayed), and the signaling command dynamically
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depends on the movement of the preceding train in the railway network. Note that hereafter we
make an assumption of considering the most conservative case in terms of safety: the movement
of each train on each block section respects the signaling command shown at the moment that the
train is reaching the sight distance, i.e., the possibilities of scenarios C4 and C5 in Figure 2 are
neglected.

The time-instant formulation method for the train dispatching problem
In a time-instant (or time-continuous in the terminology of (5)) optimization approach for address-
ing the train dispatching problem, we use arrival time variables a and departure time variables d
to describe train movements on block sections. More specifically, a f ,s indicates the arrival time
of train f at block section s, and d f ,s indicates the departure time of train f from block section s.
The arrival and departure safety headway time intervals g f ,s and h f ,s can be either pre-determined
as parameters (6) or considered as variables (10). For determining the section blocking time, the
occupancy time of block section s for the arrival of train f is formulated as

σ f ,s = a f ,s −g f ,s, ∀ f ∈ F,s ∈ E f , (1)

and the release time of block section s for the departure of train f is formulated as

δ f ,s = d f ,s +h f ,s, ∀ f ∈ F,s ∈ E f , (2)

where F is the set of trains, E f is the set of block sections that train f may use, and σ f ,s and δ f ,s
indicate the starting and ending time of blocking section s for train f .

Figure 3 illustrates the movement of train f on block section s by using arrival and departure
time variables. More specifically, train f arrives at time a f ,s = 4 and departs at time d f ,s = 7. As
we have the safety headway times g f ,s = 2 and h f ,s = 1, block section s is blocked for train f from
time σ f ,s = 2 to time δ f ,s = 8.

For generating a conflict-free train dispatching solution, the block section capacity con-
straint is proposed by avoiding the overlap between any pair of trains on the same block section,
formulated as follows:

σ f2,s +
(
1−θ f1, f2,s

)
·M ≥ δ f1,s, ∀ f1 ∈ F, f2 ∈ F,s ∈ E f1 ∩E f2 (3)

σ f2,s̄ +
(
1−θ f1, f2,s

)
·M ≥ δ f1,s, ∀ f1 ∈ F, f2 ∈ F,s ∈ E f1, s̄ ∈ E f2. (4)

where θ f1, f2,s is a binary train order variable, with θ f1, f2,s = 1 if train f2 arrives at block section s
or block section s̄ after train f1, and otherwise θ f1, f2,s = 0, and M is a sufficiently large positive
number. Note that we indicate bi-directional block section on a single-track segment as s and s̄,
which refer to one physical block section in opposite direction. Thus, the model can be applied
to single-track, double-track, or N-track networks. Interested readers may refer to (6, 10, 14) for
more details.

MATHEMATICAL FORMULATION OF THE SIGNALING COMMANDS
This section formulates the signaling constraints to implement the signaling commands, which
are innovative in comparison with previous studies. We first clarify the impact of the signaling
commands on the train schedules, revealed by the train travel times. Then, we formulate signaling
constraints by applying signal indicators to represent signaling commands, which dynamically
depend on the condition of the block sections ahead, i.e., the relative position of the preceding train
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in the network. The time-instant formulation method is considered for constructing the signaling
constraints. Moreover, we consider the three-aspect signaling system in Figure 1(b) as an example
to formulate the signaling constraints. For the four-aspect signaling system and other signaling
systems that are not detailed in this paper, a similar approach can be followed.

Impact of signaling commands on train schedules: additional train travel time
A non-green signal requires a train speed reduction. To implement the train speed reduction, a
direct way is to restrict train speeds. However, few train dispatching models consider the train
speeds as variables; as a result, we cannot add restrictions to the train speeds. As the train speed
reduction can be reflected by an increased travel time of a train on a block section, we can formulate
the train speed reduction by requiring additional train travel time. Therefore, this section interprets
the impact of the signaling commands on train schedules, revealed by train travel time.

Figure 4 is a three-layer figure that illustrates the possible scenarios of a case that train
f traverses two adjacent block sections s1 and s2. The sight point and the end point of block
sections s1 and s2 are labeled as P1, ..., P4 respectively, as shown in Layer (a) of Figure 4. We
use a speed-time graph to show the relation between the speed reduction and the additional travel
time. In Layer (b), seven speed-time graphs for train f from the position P1 to P4 are sketched.
A single or double capital letter(s) is used to indicate the signal aspects shown at position P2 and
P4 respectively, e.g., “GG” means two green aspects. The X-axis indicates the time at which train
f arrives at the positions P1, ..., P4. An integrated graph of these separate speed-time graphs is
provided in Layer (c), in which the effects of the signaling commands (speed reduction) on the
train travel times are graphically interpreted. In this layer, the X-axis indicates the time at which
train f arrives at a position under a given scenario, e.g., the time point labeled “P4_YG” is the
arrival time of train f at position P4, if the two signals at positions P2 and P4 show the yellow and
green aspects respectively.

In Layer (b), the colored area of the graphs (1)-(6) indicates the distance from position P1
to P4, i.e., the distance traveled by a train equals its speed multiplied by the elapsed time; thus
these areas should be equal to each other. As sketched in the graphs (3) and (7), train f faces the
red aspect directly after the green aspect, which should be prevented in the three-aspect signaling
system for safety purposes; therefore, these two scenarios will not occur. The other five graphs
correspond to the scenarios C1, ..., C3 presented in Figure 2. Recall that we make an assumption
of considering the worst case; so the possibilities of scenarios C4 and C5 in Figure 2 are neglected.
Moreover, we use two binary variables (speed indicators) λ red

f , f2,s and λ
yellow
f , f2,s

to indicate whether
train f2 results in a red aspect and a yellow aspect for train f on block section s. More specifically,
λ red

f , f2,s = 1 if train f2 is occupying the block section one ahead block section s, which makes train
f face the red aspect on block section s, otherwise, λ red

f , f2,s = 0. Thus, the scenarios presented in
Layer (b) of Figure 4 can be represented by using these speed indicators, as marked.

Let us focus on Layer (c) of Figure 4. Note that τ f ,s indicates the free-flow travel time of
train f on block section s under the normal condition (i.e., a green aspect), and ∆Y

f ,s, ∆YG
f ,s , and

∆YR
f ,s indicate the additional/decreased travel time caused by the train speed reduction (i.e., by the

“Approach” and “Stop” signaling commands). If the signal placed at position P2 is green, as in
graphs (1)-(2) in Layer (b), no train speed reduction is required. If the signal placed at position P2
is yellow, as in graphs (4)-(6) in Layer (b), then train f reduces its speed by following the yellow
curve, and its travel time on block section s2 increases. The amount of the increased travel time
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further depends on the display of the signal placed at position P4:

• If the signal at position P4 is green, i.e., graph (4) in Layer (b), then train f is allowed to
accelerate by following the green curve, and the additional travel time (compare with the free-flow
travel time) in this case is shorter than that in the case of facing a yellow aspect, which is calculated
by ∆Y

f ,s2
−∆YG

f ,s2
.

• If the signal at position P4 is yellow, i.e., graph (5) in Layer (b), then train f maintains its
speed by following the yellow line, and the additional travel time on block section s2 is denoted as
∆Y

f ,s2
, compared with the free-flow travel time in the normal scenario of facing green aspects. We

consider that a second yellow aspect allows train to pass at the approaching speed.

• In the remaining case that train f faces a red aspect at position P4, corresponding to graph
(6) in Layer (b), train f has to decelerate by following the red curve until it stops completely, and
the additional travel time is measured by ∆Y

f ,s2
+∆YR

f ,s2
.

Formulations of the signaling constraints
This section formulates the signaling constraints, dynamically determining the signal indicators
and implementing the train speed reduction by requiring additional travel time. As discussed, for
each train on each block section, the signaling command received by the driver depends on the
movement of the preceding train in the network. Therefore, we need to identify the signaling
commands by determining the condition (i.e., being occupied or released) of the block section(s)
ahead.

Figure 5 illustrates how can we identify the “Stop” signaling command; for the “Approach”
command, we can follow a similar approach. In Figure 5(a), train f1 meets a red aspect in block
section s1 at the sight distance, because train f2 is occupying block section s2 at that moment.
In such cases, the blocking time of train f1 on block section s1 and the blocking time of train f2
on block section s2 are “overlapping” in the sight time as shown in the timetable; we then have
λ red

f1, f2,s1
= 1. For other cases shown in Figure 5(b), train f1 faces a non-red aspect in block section

s1, and no “overlap” happens in the sight time between the blocking time of train f1 and train f2.
As a result, we have λ red

f1, f2,s1
= 0.

To determine the red signal indicator λ red
f1, f2,s, let us consider the binary variables γ r1

f1, f2,s and
γ r2

f1, f2,s to satisfy the conditions[
d f1,s1

≤ σ f2,s2

]
⇔

[
γ

r1
f1, f2,s1

= 1
]
, ∀ f1 ∈ F, f2 ∈ F, f1 ̸= f2,s1 ∈ E f1,s2 ∈ E f2 ∩Eadj2

s1
, (5)[

δ f2,s2
≤ d f1,s1

− ι
sight
f1,s1

]
⇔

[
γ r2

f1, f2,s1
= 1

]
, ∀ f1 ∈ F, f2 ∈ F, f1 ̸= f2,s1 ∈ E f1,s2 ∈ E f2 ∩Eadj2

s1 (6)

if train f1 and train f2 run in the same direction, or[
d f1,s1

≤ σ f2,s̄2

]
⇔

[
γ

r1
f1, f2,s1

= 1
]
, ∀ f1 ∈ F, f2 ∈ F, f1 ̸= f2,s1 ∈ E f1, s̄2 ∈ E f2 ∩Eadj2

s1
, (7)[

δ f2,s̄2
≤ d f1,s1 − ι

sight
f1,s1

]
⇔

[
γ r2

f1, f2,s1
= 1

]
, ∀ f1 ∈ F, f2 ∈ F, f1 ̸= f2,s1 ∈ E f1, s̄2 ∈ E f2 ∩Eadj2

s1 (8)

if train f1 and train f2 run in the opposite direction. Note that ι
sight
f1,s1

indicates the running time

of train f1 over the sight distance on block section s1, and Eadj2
s1 indicates the set of the adjacent

block sections of block section s1. As a result, we have γ r1
f1, f2,s1

= 0 and γ r2
f1, f2,s1

= 0 for the case in
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Figure 5(a), and we have either γ r1
f1, f2,s1

= 1 or γ r2
f1, f2,s1

= 1 for the case in Figure 5(b). Then, the
red signal indicator λ red

f1, f2,s can be formulated as

λ
red
f1, f2,s = (1− γ

r1
f1, f2,s) · (1− γ

r2
f1, f2,s), ∀ f1 ∈ F, f2 ∈ F, f1 ̸= f2,s ∈ E f1. (9)

By applying the transformation properties proposed in (29), the if-then constraints (5)-(8)
and the nonlinear constraint (9) can be reformulated as linear inequalities. Moreover, formulations
similar to (5)-(9) can also be constructed for the yellow signal indicator λ

yellow
f1, f2,s

. For the sake of
compactness, we do not provide those details here.

According to the analysis of the additional train travel time in Section 4.1, which reflects
the train speed reduction required by the signaling commands, the travel time constraint is given
as follows:

d f ,s2 −a f ,s2 ≥ wmin
f ,s2

+ τ f ,s2 +∆Y
f ,s2

· ∑
f2∈F

λ
yellow
f , f2,s1

+∆YR
f ,s2

· ∑
f2∈F

λ red
f , f2,s2

−

∆YG
f ,s2

· (1− ∑
f2∈F

λ red
f , f2,s2

) · (1− ∑
f2∈F

λ
yellow
f , f2,s2

), ∀ f ∈ F,s1 ∈ E f ,s2 ∈ E f ∩Eadj2
s1 ,

(10)

where wmin
f ,s2

indicates the minimum dwell time of train f on block section s2. Constraint (10)
ensures that the actual travel time of train f on block section s is not less than the sum of the
minimum dwell time, the free-flow travel time, and the additional travel time caused by the non-
“Clear” signaling commands.

Moreover, the GW result would not violate the speed limits that result from the signaling
commands, and the GW policy is proven to be effective to saving energy consumption and dealing
with delays in (30). We can employ the GW policy by setting all signal indicators to be zero, as
follows:

∑
f∈F

∑
s∈E f

∑
f2∈F : f2 ̸= f

(
λ

yellow
f , f2,s

+λ
red
f , f2,s

)
= 0. (11)

As a result, all trains will always only encounter green aspects when traversing the network.
As the signaling constraints proposed here can be transformed into linear inequalities, we

can still use the solution approach of the original models to solve the dispatching problem that
integrates the signaling commands. If we consider the train dispatching model proposed in (6),
which is an MILP model, a standard MILP solver can be used. For more details, interested readers
may refer to the description in (6).

NUMERICAL EXPERIMENTS
We conduct the experiments on a rail network with two main tracks, composed of 48 nodes and
53 block sections, as depicted in Figure 6. The two tracks in different directions are independent,
so only one direction is considered. We consider 1.5 hours of traffic with 20 trains in 3 train
categories, i.e., 8 intercity, 8 sprinter, and 4 freight trains. Sprinter trains stop at all stations;
intercity and freight trains stop only at the origin and destination stations. We consider 20 delay
cases of the primary delays following a 3-parameter Weibull distribution, as investigated in (31).
We adopt the CPLEX optimization studio 12.6.3 with default settings to solve the MILP problems.
The following experiments are performed on a computer with an Intel® CoreTM i7 @ 2.00 GHz
processor and 16GB RAM.
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In Figure 7(a)-(b), the average results of the 10 delay cases are given, in terms of the train
delay times, the train travel times, and the number of the red and yellow signals faced by the
trains. The results in Figure 7(a) are normalized in the range [0,1]. As shown, when integrating
the signaling constraints, the total delay time and the total travel time increase by 16% and 2%
respectively, and the number of yellow aspects that the trains meet decreases by 47%. As the speed
limits required by the signaling commands are activated, the model optimizes the train departure
and arrival times by avoiding trains to face the non-green aspects (as much as possible). However,
some trains still face the yellow aspects on some block sections, i.e., 11 times on average. In such
cases, the speed reduction (i.e., the additional travel time) is enforced in our model; therefore, the
train travel time becomes larger, which further results in the increased total delay time and travel
time. Considering the signaling constraints enables us to avoid the full stop that caused by the red
signal, as the times that the trains confront the red signal are reduced to zero. By applying the
GW policy, where the trains can always proceed under green signals, the total delay time further
increases by 13%, compared to the results with the signaling constraints; however, the total travel
time decreases to become similar as the results without the signaling constraints. The computation
time for obtaining the results with consideration of the signaling constraints is longer, but still
within 300 seconds.

We further explore more details regarding the signals. In Figure 7(c)-(d), we present the
results of all the 10 delay cases by summing up the number of the red/yellow signals that are faced
by the trains. Figure 7(c) illustrates the distribution of the red and yellow signals on the network, of
which the layout origins from Figure 6. A darker color implies that a larger number of red/yellow
signals occurred at the position. As shown, the red and yellow signals are mostly faced by the trains
before entering the merging area of the two lines and also in the merging area. This results from the
increased train interactions in these areas. Figure 7(d) presents the probability of the yellow signals
to become green and the risk to be red, which is obtained by analyzing the overlapping time of the
two blocking times, as interpreted in Figure 5. The bars indicate the numbers of the green, yellow,
and red signals, and the exact values are labeled. The Y-axis of the yellow line (within the yellow
bar) indicates the number of the yellow signals, and the X-axis is the probability of becoming green
or red. The black dashed line is a benchmark line, indicating that the probability to become green
equals the risk to be red. When neglecting the signaling constraints, lots yellow signals occurred
have big chance to become green. By considering the signaling constraints, the total number of the
yellow signals decreases from 212 to 111, and the number of the yellow signals that have larger
probability to become green is reduced. Considering the signaling constraints enables us to reduce
the number of the yellow signals faced by the trains, i.e., taking the chance of letting the yellow
signals become green as much as possible.

We can conclude that the consideration of the signaling commands leads to larger delay
times and larger travel times, but increases the realism of the dispatching solution obtained and
the safety of the train services. The GW policy hardly affects the train travel time, but results in a
significant increase of train delays.

CONCLUSIONS
This paper integrates the dynamic signaling commands under the fixed-block signaling system
into train dispatching optimization problems. We have investigated the impact of the signaling
commands on train schedules, and we have implemented this impact in our model by presenting
the signaling constraints. In these constraints, the signaling commands (represented by the signal
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indicators) are dynamically determined by the train movements, and the train speed limits are
activated according to the signal indicators. In our experimental results, the consideration of the
signaling commands results in larger delay times (16%) and larger travel times, but reduces the
number of the non-green signals that are met and increases the realism of the train dispatching
solution and the safety of the train services, as the real operational requirements (speed limits)
caused by the signaling commands are included. In fact, the 16% gap can be thought of as an
approximation error of currently available fixed speed dispatching models neglecting signaling
aspects. Moreover, we consider the Greenwave (GW) policy to dispatch trains, which results in
larger train delay times; however, the total train travel time does not change much, and it is similar
to the result that neglects the signaling impact.

Our future research will focus on the following main extensions. First, as the proposed
approach for constructing the signaling constraints can be extended to other signaling systems, we
will study different signaling systems and compare their performance, in terms of delay, energy,
capacity, robustness, etc., from the planning and operational perspectives. Second, when applying
the GW policy, the energy consumption is expected to be reduced. We will evaluate the energy con-
sumption by applying the model proposed in (10), instead of the model in (6). Finally, in order to
extend the applicability of the model to large-scale networks, we will focus on developing heuristic
algorithms and distributed optimization methods for improving the computational efficiency of the
model.

ACKNOWLEDGMENTS
This work is supported by China Scholarship Council under Grant 201507090058.

REFERENCES
1. Corman, F., A. D’Ariano, I. A. Hansen, and D. Pacciarelli. Optimal multi-class rescheduling

of railway traffic. Journal of Rail Transport Planning & Management. Vol. 1, No. 1, 2011. pp.
14–24.

2. Dollevoet, T., F. Corman, A. D’Ariano, and D. Huisman. An iterative optimization framework
for delay management and train scheduling. Flexible Services and Manufacturing Journal.
Vol. 26, No. 4, 2014. pp. 490–515.

3. Xu, P., F. Corman, Q. Peng, and X. Luan. A train rescheduling model integrating speed man-
agement during disruptions of high-speed traffic under a quasi-moving block system. Trans-
portation Research Part B: Methodological, 2017. in press.

4. Luan, X., J. Miao, L. Meng, F. Corman, and G. Lodewijks. Integrated optimization on train
scheduling and preventive maintenance time slots planning. Transportation Research Part C:
Emerging Technologies. Vol. 80, 2017. pp. 329–359.

5. Cacchiani, V., D. Huisman, M. Kidd, L. Kroon, P. Toth, L. Veelenturf, and J. Wagenaar. An
overview of recovery models and algorithms for real-time railway rescheduling. Transporta-
tion Research Part B: Methodological. Vol. 63, 2014. pp. 15–37.

6. Luan, X., F. Corman, and L. Meng. Non-discriminatory train dispatching in a rail transport
market with multiple competing and collaborative train operating companies. Transportation
Research Part C: Emerging Technologies. Vol. 80, 2017. pp. 148–174.

7. Corman, F. and L. Meng. A review of online dynamic models and algorithms for railway traffic
management. IEEE Transactions on Intelligent Transportation Systems. Vol. 16, No. 3, 2015.
pp. 1274–1284.



Luan, De Schutter, Corman, and Lodewijks 12

8. Fang, W., S. Yang, and X. Yao. A survey on problem models and solution approaches to
rescheduling in railway networks. IEEE Transactions on Intelligent Transportation Systems.
Vol. 16, No. 6, 2015. pp. 2997–3016.

9. D’Ariano, A., D. Pacciarelli, and M. Pranzo. A branch and bound algorithm for scheduling
trains in a railway network. European Journal of Operational Research. Vol. 183, No. 2, 2007.
pp. 643–657.

10. Luan, X., F. Corman, Y. Wang, L. Meng, and G. Lodewijks. Integrated optimization of traffic
management and train control for rail networks. In Proceedings of the 7th International Con-
ference on Railway Operations Modelling and Analysis. RailLille2017, Lille, France, 2017.
pp. 1413–1432.

11. Corman, F., A. D’Ariano, D. Pacciarelli, and M. Pranzo. A tabu search algorithm for rerouting
trains during rail operations. Transportation Research Part B: Methodological. Vol. 44, No. 1,
2010. pp. 175–192.

12. Corman, F., A. D’Ariano, D. Pacciarelli, and M. Pranzo. Bi-objective conflict detection and
resolution in railway traffic management. Transportation Research Part C: Emerging Tech-
nologies. Vol. 20, No. 1, 2012. pp. 79–94.

13. Törnquist, K. J.. Design of an effective algorithm for fast response to the re-scheduling of
railway traffic during disturbances. Transportation research. Part C, Emerging technologies.
Vol. 20, No. 1, 2012. pp. 62–78.

14. Meng, L. and X. Zhou. Simultaneous train rerouting and rescheduling on an N-track net-
work: A model reformulation with network-based cumulative flow variables. Transportation
Research Part B: Methodological. Vol. 67, 2014. pp. 208–234.

15. Samà, M., A. D’Ariano, F. Corman, and D. Pacciarelli. A variable neighbourhood search
for fast train scheduling and routing during disturbed railway traffic situations. Computers &
Operations Research. Vol. 78, 2017. pp. 480–499.

16. Kecman, P., F. Corman, A. D’Ariano, and R. M. Goverde. Rescheduling models for railway
traffic management in large-scale networks. Public Transport. Vol. 5, No. 1-2, 2013. pp. 95–
123.

17. Schöbel, A.. Integer Programming Approaches for Solving the Delay Management Problem.
Springer, 2007.

18. Ginkel, A. and A. Schöbel. To wait or not to wait? The bicriteria delay management problem
in public transportation. Transportation Science. Vol. 41, No. 4, 2007. pp. 527–538.

19. Schachtebeck, M. and A. Schöbel. To wait or not to wait-and who goes first? Delay manage-
ment with priority decisions. Transportation Science. Vol. 44, No. 3, 2010. pp. 307–321.

20. Pellegrini, P., G. Marlière, R. Pesenti, and J. Rodriguez. RECIFE-MILP: An effective MILP-
based heuristic for the real-time railway traffic management problem. IEEE Transactions on
Intelligent Transportation Systems. Vol. 16, No. 5, 2015. pp. 2609–2619.

21. Pellegrini, P., G. Marlière, and J. Rodriguez. Optimal train routing and scheduling for manag-
ing traffic perturbations in complex junctions. Transportation Research Part B: Methodologi-
cal. Vol. 59, 2014. pp. 58–80.

22. Samà, M., P. Pellegrini, A. D’Ariano, J. Rodriguez, and D. Pacciarelli. Ant colony optimiza-
tion for the real-time train routing selection problem. Transportation Research Part B: Method-
ological. Vol. 85, 2016. pp. 89–108.



Luan, De Schutter, Corman, and Lodewijks 13

23. Mazzarello, M. and E. Ottaviani. A traffic management system for real-time traffic optimisa-
tion in railways. Transportation Research Part B: Methodological. Vol. 41, No. 2, 2007. pp.
246–274.

24. D’Ariano, A., F. Corman, D. Pacciarelli, and M. Pranzo. Reordering and local rerouting strate-
gies to manage train traffic in real time. Transportation Science. Vol. 42, No. 4, 2008. pp.
405–419.

25. Lamorgese, L. and C. Mannino. An exact decomposition approach for the real-time train dis-
patching problem. Operations Research. Vol. 63, No. 1, 2015. pp. 48–64.

26. Theeg, G.. Railway Signalling & Interlocking: International Compendium. Eurailpress, Ham-
burg, Germany, 2009.

27. Hansen, I. A. and J. Pachl. Railway Timetabling & Operations: Analysis, Modelling, Optimi-
sation, Simulation, Performance Evaluation. Eurailpress, Hamburg, Germany, 2014.

28. The Railway Technical Website. http://www.railway-technical.com/, 2017.
29. Williams, H. P.. Model Building in Mathematical Programming. John Wiley & Sons, 2013.
30. Corman, F., A. D’Ariano, D. Pacciarelli, and M. Pranzo. Evaluation of green wave policy in

real-time railway traffic management. Transportation Research Part C: Emerging Technolo-
gies. Vol. 17, No. 6, 2009. pp. 607–616.

31. Corman, F., A. D’Ariano, M. Pranzo, and I. A. Hansen. Effectiveness of dynamic reordering
and rerouting of trains in a complicated and densely occupied station area. Transportation
Planning and Technology. Vol. 34, No. 4, 2011. pp. 341–362.

http://www.railway-technical.com/


Luan, De Schutter, Corman, and Lodewijks 14

train f
1

train f
2

Vmax_green 

speed of train f
1

block section s
1

block section s
2

block section s

Green Red

sight
distance

Vmax_green design speed

Vmax_yellow approach speed

Vmax_double_yellow approach limit speed

(a) Two-aspect signaling system

block section s
2

block section s
3

block section sblock section s
1

train f
1

train f
2

speed of train f
1

Vmax_green 

Vmax_yellow 

Green RedYellow

sight
distance

sight
distance

(b) Three-aspect signaling system

sight 
distance

sight 
distance

sight 
distance

block section s
1

block section s
2

block section s
3

block section s
4

block section s

train f
1

train f
2

speed of train f
1

Vmax_green 

Vmax_double_yellow 

Vmax_yellow 

Green Reddouble-Yellow single-Yellow

(c) Four-aspect signaling system

FIGURE 1 : Three fixed-block signaling systems



Luan, De Schutter, Corman, and Lodewijks 15

Vmax_yellow 

block section s
2

block section s
3

block section s
4

block section s
1

train f
1

speed of train f
1

Vmax_green C5

C2

C4f
1
fff

sight
distance

sight
distance

sight
distance

space
block section s

5

sight
distance

sight
distance

(a
) 

P
la

n
n

e
d

(b
) 

S
ce

n
a

ri
o

  C
1

speed of train f
1

time

Vmax_green 

train f
1

train f
2

train f
1

train f
2

space

space

speed of train f
1 Vmax_green 

Vmax_yellow 

space

time

(e
) 

S
ce

n
a

ri
o

  C
5

train f
1

train f
2

space

speed of train f
1 Vmax_green 

Vmax_yellow 

space

time

(d
) 

S
ce

n
a

ri
o

  C
4

train f
1

train f
2

space

speed of train f
1 Vmax_green 

Vmax_yellow 

space

time

(d
) 

S
ce

n
a

ri
o

  C
3

train f
1

train f
2

space

speed of train f
1 Vmax_green 

Vmax_yellow 

space

time

(c
) 

S
ce

n
a

ri
o

  C
2

train f
1

train f
2

space

speed of train f
1 Vmax_green 

Vmax_yellow 

space

time

C1

C3

Y

Y

Y

Y

Y

G

Y

R

Y-G

R-Y

G
G

Vmax_green design speed

Vmax_yellow approach speed

FIGURE 2 : Time-space-speed graphs of the possible scenarios for train operations



Luan, De Schutter, Corman, and Lodewijks 16

time

sp
a

ce

0 2 4 6 8 101 3 5 7 9

4f,sa =

7f,sd =

2f,sg =

1f,sh =

2f,sσ =

8f,sδ =

train f 

b
lo

ck
 s

e
ct

io
n

s s

FIGURE 3 : The time-instant optimization method



Luan, De Schutter, Corman, and Lodewijks 17

time
P1

speed

Vmax_green 

P2 P3_G P4_GG P3_Y

Vmax_yellow 

P4_YY

P4_YG

P4_YR

τf,s2 Δ f,s2

YR

Δ f,s2

YG

block section s
2

block section s
1

sight
distance

P1 P2 P3 P4
direction 

of train f

sight
distance

L
a

ye
r 

(a
)

train f

L
a

ye
r 

(b
) time

sp
e

e
d

P1 P2 P3 P4

(1) GG

(2) GY

(4) YG

(5) YY

(6) YR

time
sp

e
e

d
P1 P2 P3 P4

time

sp
e

e
d

P1 P2 P3 P4

(3) GR

time

sp
e

e
d

P1 P2 P3 P4 time

sp
e

e
d

P1 P2 P3 P4

L
a

ye
r 

(c
)

time

sp
e

e
d

P1 P2 P3 P4

time

sp
e

e
d

P1 P2 P3 P4

scenario C1

scenario C2

scenario C3

normal

normal

avoid

avoid

G - green

Y - yellow

R - red

(7) Y
λ∑

f2
f2f, s2,

red = 0

= 0λ∑
f2

f2f, s2,
yellow

= 0λ∑
f2

f2f, s1,
yellow

λ∑
f2

f2f, s1,
red

= 0 = 1λ∑
f2

f2f, s1,
yellow

λ∑
f2

f2f, s1,
red

= 0G at P2: Y at P2:

λ∑
f2

f2f, s2,
red = 0

= 1λ∑
f2

f2f, s2,
yellow

λ∑
f2

f2f, s2,
red = 1

λ∑
f2

f2f, s2,
red = 0

= 0λ∑
f2

f2f, s2,
yellow

λ∑
f2

f2f, s2,
red = 0

= 1λ∑
f2

f2f, s2,
yellow

λ∑
f2

f2f, s2,
red = 1

λ∑
f2

f2f, s1,
red

= 1R at P2:

Δ f,s2

Y

FIGURE 4 : Speed-time graphs to illustrate the relation between the speed reduction and the
additional travel time



Luan, De Schutter, Corman, and Lodewijks 18

time

sp
a

c
e

b
lo

ck
 s

e
ct

io
n

s 1
s 2

train f
1

train f
2

train f
2

(b)

train f
1

Red not Red unknown

block section s
1

block section s
2

sight time

no overlaptrain f
1

unknown

train f
2

(a)

train f
1

Red Red

block section s
1

block section s
2

train f
2

sight time

overlapping

FIGURE 5 : Identifying the “Stop” signaling command



Luan, De Schutter, Corman, and Lodewijks 19

1 2 3 4 35 36 37 385 8

6 7

9 10

11 12 13 14 15 18 19 20

16 17

21 22

23 24

25 26

27 28

29 30 31 34

32 33

45 46 47 4839 40 41 44

42 43

FIGURE 6 : A rail network



Luan, De Schutter, Corman, and Lodewijks 20

2329

111

0

Green RedYellow

more risk to be redhigher probability

 to be green

9.1

2.4
4.5

0 0 0

7.1

2.1

5.1

0 0 0

5.0

1.8

1.5

0 0 0
0

3

6

9

12

15

18

21

yellow red yellow red yellow red

Without signal 
constraints

With signal Greenwave policy

sprinter intercity freight

constraints

(b) Number of yellow and red signals

100%

0.62

1.00

0.35

0.98

1.00

0.9800

0.76

0.88

1.00
110%

30%

40%

50%

60%

70%

80%

90%

Without signal 
constraints

With signal 
constraints

Greenwave policy

Computation time Delay timeTravel time

(a) Overall results

(c) Distribution of yellow and red signals on the network

yellow signal

red signal

c.1 Without signal constraints

yellow signal

red signal

c.2 With signal constraints

c.3 Greenwave policy

yellow signal

red signal

(d) Probability of yellow signal to be green and risk to be red

d.1 Without signal constraints

d.2 With signal constraints

d.3 Greenwave policy

2165
212

63

Green RedYellow

more risk to be redhigher probability

 to be green

2440

0 0

Green RedYellow

FIGURE 7 : Illustration of the experimental results


	Introduction
	Literature review
	Problem description
	Railway signaling systems
	The time-instant formulation method for the train dispatching problem

	Mathematical formulation of the signaling commands
	Impact of signaling commands on train schedules: additional train travel time
	Formulations of the signaling constraints

	Numerical experiments
	Conclusions

