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Efficient freeway MPC by parameterization of

ALINEA and a speed-limited area
Goof Sterk van de Weg, Andreas Hegyi, Serge Paul Hoogendoorn, Bart De Schutter

Abstract—Freeway congestion can reduce the freeway through-
put due to the capacity drop or due to blocking caused by
spillback to upstream ramps. Research has shown that congestion
can be reduced by the application of ramp metering and variable
speed limits. Model predictive control is a promising strategy
for the optimization of the ramp metering rates and variable
speed limits to improve the freeway throughput. However, several
challenges have to be addressed before it can be applied for the
control of freeway traffic. This paper focuses on the challenge
of reducing the computation time of MPC strategies for the
integration of variable speed limits and ramp metering. This is
realized via a parameterized control strategy that optimizes the
upstream and downstream boundaries of a speed-limited area
and the parameters of the ALINEA ramp metering strategy. Due
to the parameterization, the solution space reduces substantially,
leading to an improved computation time. More specifically,
the number of optimization variables for the variable speed
limit strategy becomes independent of the number of variable
message signs, and the number of optimization variables for the
ramp metering strategy becomes independent of the prediction
horizon. The control strategy is evaluated with a macroscopic
model of a two-lane freeway with two on-ramps and off-ramps.
It is shown that parameterization realizes improved throughput
when compared to a non-parameterized strategy when using the
same amount of computation time.

Index Terms—Variable speed limits, ramp metering, freeway
management, throughput improvement, model predictive control.

I. INTRODUCTION

FREEWAY congestion can reduce the freeway throughput

causing societal, economical, and environmental costs.

Two main reasons exists why congestion reduces throughput.

First of all, congestion causes a capacity drop, i.e. the flow

downstream of congestion is lower than the capacity flow that

can be achieved under free-flow conditions [1], [2]. Secondly,

congestion can spill back in the upstream direction and cause

blocking of traffic bound for off-ramps.

Congestion can be mitigated by dynamic traffic management

measures. Two popular dynamic traffic management measures

on which this paper focuses are ramp metering (RM) and

variable speed limits (VSLs). RM is typically used to limit

the number of vehicles that want to enter the freeway from

an on-ramp using a traffic light. In this way, the flow into

a downstream bottleneck can be reduced so that congestion

can be prevented, postponed, or resolved. VSLs are speed

limits that can be varied over time and are displayed using
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variable message signs. VSLs can be used to reduce the speed

of freeway traffic and they are typically applied for safety

reasons. However, several approaches have been designed to

reduce freeway congestion using VSLs. In this paper we

study the application of RM and VSLs to improve freeway

throughput by reducing congestion with the aim of developing

an optimization-based control strategy for the integration of

VSLs and RM.

A. Review of RM and VSL strategies

The development of RM and VSL strategies – i.e. control

algorithms – is an active research area. In this brief overview

we discuss several VSL and RM strategies that aim at freeway

throughput improvement. We focus here on discussing the

mechanisms in traffic flow exploited by the controllers, the

controller properties, and investigate challenges and opportu-

nities for further controller development. After concluding this

section, we review the literature on model predictive control

strategies for the integration of RM and VSLs in the next

section.

1) VSL: According to Hegyi et al. [3], two main categories

of VSL strategies for the improvement of freeway throughput

exist, namely, the homogenizing types and the flow-limiting

types. The idea behind the homogenizing types is that by

displaying VSLs that are similar to the average speed of the

traffic, speed differences between vehicles will be reduced but

no significant reduction of the average speed will result [4],

[5], [6]. In this way, the traffic flow is homogenized, resulting

in a reduction of the probability of a traffic breakdown, and

thus, leading to an improved freeway throughput. However,

while field tests did show a reduction in speed differences,

implying a more homogeneous traffic flow, no evidence was

found for a improved freeway throughput [5].

The main idea behind VSL strategies of the flow-limiting

type is that by imposing VSLs the flow on the freeway

can be controlled. Several approaches can be found in the

literature that are of the flow-limiting type. Carlson et al. [7]

proposed a VSL strategy called mainstream traffic flow control

(MTFC) for controlling freeway traffic entering a bottleneck.

This strategy adjusts the VSL value at a location upstream of a

bottleneck in order to create a controlled congestion upstream

of the bottleneck so that the bottleneck inflow matches the

bottleneck capacity. Several simulation studies were performed

showing improved freeway throughput. Challenges of this

approach are that very low VSL values may have to be

displayed and that the application of the strategy is limited

to specific locations in a road network.
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Hegyi et al. [3] proposed a VSL strategy called SPECIAL-

IST based on shock wave theory against jam waves – i.e.

congestion with a length of roughly 1 to 2 km that propagates

in the upstream direction of the freeway. The SPECIALIST

algorithm detects a jam wave and when it assesses this jam

wave as resolvable it first applies a pre-defined VSL value

instantaneously over a freeway stretch directly upstream of

the jam wave. Next, VSLs are imposed upstream of the speed-

limited area to stabilize the traffic flow – by creating a stable

combination of speed and density – that is approaching the

speed-limited area. This causes a reduction of the flow into the

jam wave so that it can resolve without triggering an upstream

congestion. After the jam wave is resolved, the traffic in the

speed-limited area can be released and a higher freeway flow

can be achieved since the capacity drop is no longer present.

The density and flow in (and downstream of) the speed-

limited area can be controlled by adjusting the speed with

which the upstream (and downstream) boundary of the speed-

limited area propagates. SPECIALIST was tested on the A12

freeway in the Netherlands and it was found that it is capable

of resolving jam waves and stabilizing traffic, resulting in

improved freeway throughput [3]. Recently, Mahajan et al. [8]

proposed a reformulation of SPECIALIST called COSCAL v2.

In contrast to the SPECIALIST algorithm which has a feed-

forward structure, the COSCAL v2 algorithm has a feedback

structure so that it can better adjust its control action to

disturbances.

Chen et al. [9] proposed an alternative approach to resolve

congestion at a bottleneck location. In their approach, VSLs

are imposed upstream of the bottleneck first so that the conges-

tion head moves away from the bottleneck and the impact of

the capacity drop is decreased. After that, by adjusting the VSL

values, the outflow of the speed-limited area is adjusted so that

it matches the bottleneck capacity. To the best knowledge of

the authors, no simulation studies have been carried out yet

with this algorithm.

Recently, Zhang et al. [10] proposed a VSL control strategy

integrated with a lane change control strategy to reduce

bottleneck congestion caused by incidents. In their approach,

lane change control is used to remove the capacity drop and

VSL control is used upstream of the incident location to realize

target densities that maximize the bottleneck flow.

2) RM: Similar to VSL strategies of the flow-limiting type,

RM is primarily used to limit the freeway flow. The most well-

known RM algorithm is ALINEA [11]. This feedback control

strategy for a single on-ramp uses measurements downstream

of the on-ramp and regulates the on-ramp flow with the

objective of keeping the freeway flow near its critical density.

In this way, congestion caused by excessive on-ramp flows

can be prevented or postponed and in this way, the impact

of the capacity drop is reduced, resulting in improved freeway

throughput. Several other control strategies for single on-ramps

exist. Middelham et al. [12] discusses a demand-capacity RM

strategy that uses upstream freeway flow measurements in

order to maximize the freeway flow. Due to its feed-forward

nature its performance may deteriorate due to disturbances in

the traffic flow. A major challenge of these local RM strategies

is that the on-ramp queue may spill back to the upstream urban

network. Queue management may help to limit the on-ramp

queue but also reduces the time that RM can be effective [13],

[14].

Coordination of RM at multiple on-ramps can help to

extend the RM time. HERO is an algorithm that coordinates

the ALINEA-based RM actions of different on-ramps [13].

Whenever the queue caused by RM at a downstream on-ramp

exceeds a threshold, the upstream RM installation starts an RM

algorithm that aims at controlling the upstream queue towards

a set-point determined by the downstream on-ramp. This

prevents the queue at the downstream on-ramp from exceeding

the maximum length and allows a longer RM time. Difficulties

of coordination are that there exist time delays between the

interactions of on-ramps and that not all traffic of upstream

on-ramps might be headed to the bottleneck. Not including

these effects may cause unnecessary delays for traffic that is

not headed to the bottleneck, which may not be fair [15].

One way to include these effects is by predicting the (near)

future impact of the control signal on the system performance.

Model-based optimal control approaches are typically suited to

include such effects and will be discussed in the next section.

3) Integrated approaches to RM and VSL: Integrating RM

and VSL strategies is expected to lead to further freeway

performance improvements. From a control engineering point

of view this can be explained by the fact that the control

freedom is increased. From a traffic-flow-theoretical point of

view this can be explained by the possibility to distribute the

flow-limiting task over freeway traffic and on-ramp traffic.

Schelling et al. [16] proposed an extension of SPECIALIST so

that it can cope with a metered on-ramp. Van de Weg et al. [17]

extended the in-car algorithm COSCAL v1 – which is similar

to SPECIALIST – with RM. Mahajan et al. [8] extended a

macroscopic version of COSCAL v1, named COSCAL v2

with RM. In these approaches, it is computed at what time

RM is switched on in order to assist the VSL system that

resolves jam waves. These studies show that is it possible to

integrate the VSL and RM task to resolve jam wave using

limited computation time when considering only a single on-

ramp. However, a challenge may be the extension to multiple

on-ramps, which may lead to a complex control problem due

to the time delays between the effects of different actuators.

Carlson et al. [14] integrated the MTFC approach with

RM. They apply ALINEA RM in order to prevent congestion

from forming at the bottleneck location. When the on-ramp is

full or when the RM rate is near its minimum allowed rate,

MTFC control is switched on in order to prolong the RM

time. The authors showed that the approach outperforms non-

integrated algorithms and realizes a performance that is near

the performance realized with optimal control for a bottleneck

scenario simulated using a macroscopic traffic flow model. An

advantage of this approach is that it is based on a simple

feedback control structure. Iordanidou et al. [18] extended

this approach to coordinate RM and VSL actions at different

locations by balancing the travel delays caused by the different

actuators.

4) Conclusions from the literature: In conclusion, RM and

VSLs can both limit the freeway flow. These flow reductions

can be used to prevent, postpone, or resolve congestion,
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resulting in improved freeway throughput, since the impact

of the capacity drop is reduced. Various algorithms have

been developed for RM and VSLs. These algorithms differ

in the traffic-flow-theoretical mechanisms that they exploit

and their control-theoretical structure. Studies have shown that

integrating RM and VSLs can lead to a better performance

when compared to isolated systems. However, the control of

multiple RM and VSL gantries is a complex problem due to

the time delay in the impact of elements on each other.

B. Review of model-based optimization strategies for freeway

traffic control

A promising approach to account for the time delays of

control actions on the network-wide performance is model

predictive control (MPC) [19]. MPC uses a prediction model

to predict the state of a process over a period of time –

called the prediction window – given the current state, a

prediction of the disturbances – i.e. inputs that cannot be

controlled –, and a candidate control signal. Based on this

prediction the performance of the process is expressed using an

objective function. Using an optimization technique the control

signal is found that leads to the minimum (or maximum) of

the objective function. The first step of the control signal is

applied to the process, and at the next time step, when new

measurements are available, the control signal is optimized

again. This is called the receding horizon principle.

Despite the advantages of MPC there also exist several

open problems when it is applied to freeway traffic control

as discussed in detail in [20]. Some key problems are that an

accurate prediction of the traffic demand should be available,

that the controller should be able to deal with uncertainties,

and that the computation time used by the controller should be

short enough for real-time application. In this paper we will

focus on reducing the computation time of an MPC strategy.

Several authors have applied MPC to the freeway traffic

control problem. Kotsialos et al. [21] and Hegyi et al. [22]

used the second-order METANET model as a prediction

model to optimize RM and integrated RM and VSL settings

respectively. An advantage of using second-order models is

that they can model more complex traffic dynamics. However,

a major challenge is that the nonlinear optimization problem

is computationally hard so that real-time application to large

freeway networks is not feasible.

Roughly three main approaches exist to limit the com-

putation time required by an MPC strategy. The first is to

use computationally efficient traffic flow models. To this end,

Gomes et al. [23] and Hajiahmadi et al. [24] use first-order

traffic flow models to formulate linear and mixed integer linear

optimization problems respectively. The disadvantage of using

first-order traffic flow models is that some characteristics of the

traffic dynamics may be lost. This may cause a performance

loss when applied to a more complex traffic process.

The second strategy is to divide the optimization problem

in multiple, possibly overlapping, sub-problems. One such

strategy is distributed MPC as in [25]. In such approaches,

the freeway network is divided into smaller sub-networks.

The sub-problems that need to be solved involve optimization

of the sub-network performance and the impact on the total

network performance. In some cases this might lead to reduced

computation times and similar performance as centralized

MPC.

The third strategy is to reduce the number of control pa-

rameters that need to be optimized by parameterizing existing

control strategies. For instance, Zegeye et al. [26] integrated

the ALINEA algorithm and a feedback algorithm for VSLs

so that only the gains of the feedback strategies had to be

optimized. The approach was only applied to cases where the

same strategy was used for every actuator type – i.e. VSL

or RM – in the network at every time step. Lu et al. [27]

first designed the VSL signal after which the RM rates could

be computed using a linear optimization problem. Recently,

Van de Weg et al. [28] proposed a parameterization based on

SPECIALIST to resolve jam waves using VSLs so that the

size of the optimization problem becomes independent of the

number of VSL gantries. It is shown using simulations that

this approach is able to realize similar performance as the

MPC proposed by Hegyi et al. [22] in significantly less CPU

time while outperforming the approach of Zegeye et al. [26].

A limitation of the approach of [28] is that it is not yet suited

to account for RM and that the performance is only tested in

a scenario where throughput is improved by resolving a jam

wave.

C. Research approach and contributions

This paper presents a parameterized MPC strategy for

integrated RM and VSLs to improve the freeway throughput.

In this way, a better trade-off between the realized throughput

improvement and the utilized computation time for integrated

optimization of RM and VSL is obtained. The method gener-

alizes the previous work of Van de Weg et al. [28]. Compared

to that work, two main contributions are made. First of all, the

parameterized VSL approach is extended with a parameterized

RM control strategy. Secondly, an extensive qualitative anal-

ysis into the controller behavior is carried out when applying

the strategy to a jam wave and a bottleneck scenario. Also,

the qualitative behavior of the different combinations of RM

and VSL is studied. In contrast to the work of Zegeye et

al. [26], per RM installation the RM gain and set-point, and

switching times are added to the optimization problem. The

switching times are used to change the feedback policy when

the traffic situation changes. The parameterization of VSLs

and RM rates in METANET is formulated in such a way that

the optimization problem can be solved using gradient-based

solvers, which are generally faster compared to gradient-free

solvers when the problem size is not too large. The third

contribution of this paper is to provide insight into the impact

of the available computation time budget on the controller

performance.

II. CONTROLLER DESIGN

The parameterized MPC strategy proposed in this paper is

able to optimize both RM rates and VSL values with the

aim of improving the freeway throughput. In the approach

proposed in this paper the head and tail of a speed-limited
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A. Example of a speed-limited area

B. Example of preventing congestion at a bottleneck

Speed-limited area
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Fig. 1. A: Example of a speed-limited area that can be used to influence the
traffic flow. The red-dashed lines indicate examples of vehicle trajectories.
The second vehicle trajectory illustrates a vehicle experiencing a speed limit
drop twice – as indicated with the red circle –, which should not occur. B: Top
figure: example of a speed-limited area that can be used to prevent congestion
at the bottleneck location x

b. Bottom figure: the demand entering the freeway
at location x

0 [28].

area are parameterized. In this way the number of optimization

parameters becomes independent of the freeway length, which

would be the case when using non-parameterized optimization

approaches. Additionally, we optimize the parameters of the

ALINEA strategy and we optimize the switching times when

the controllers should change the parameters of the ALINEA

strategy or when they should switch RM off. In this way, the

number of optimization parameters for every RM installation

becomes independent of the prediction horizon.

A. Design considerations

Several design considerations are taken into account when

developing the parameterized MPC strategy. Special attention

is payed to satisfy the requirements for applying RM or VSLs

for freeway traffic control. While the primary objective of this

paper is to design a control strategy of which the computation

time required by the controller is lower than the controller

sampling time, (which is in the range of (several) minutes),

some design requirements are taken into account as well,

which are also important for the practical applicability of this

method, namely:

1) Only a limited number of VSL values can be displayed.

For instance, in the Netherlands it is only possible to

show 50, 60, 70, 80, 90, and 100 km/h.

2) A VSL or RM system should not cause unsafe situations.

3) An RM system typically causes a queue on the on-ramp.

The queue length should be bounded by a maximum

value to avoid spillback to the upstream road network.

4) The RM rate is typically bounded by a minimum and

maximum value.

Below, first the design considerations of the VSLs are intro-

duced, followed by the considerations for implementing RM.
1) VSL control design considerations: As indicated by Van

de Weg et al. [29], a speed-limited area – as shown in

Figure 1 A – can be created by imposing VSLs. It follows from

shock-wave theory that there is a relation between the slope of

the boundaries of the speed-limited area and the resulting flow

and density downstream of that slope [3], [30]. If the slope

is steeper (more negative) then the resulting density and flow

are higher. By adjusting the speed with which the upstream

boundary – i.e. the tail – propagates over time, a stable

combination of density and flow can be realized in the speed-

limited area. Similarly, by adjusting the speed with which the

downstream boundary – i.e. the head – propagates over time,

the outflow of the speed-limited area can be controlled so that

it is just below or at the freeway capacity. SPECIALIST is

an example of an algorithm that uses a speed-limited area to

resolve a jam wave [3].

Figure 1 B presents an example of using a speed-limited

area in order to prevent congestion at a bottleneck. At time t1
(h) an excess demand – as illustrated in the bottom figure –

enters the freeway at location x0 (km). The time-space plot in

the top figure shows that this demand reaches the bottleneck

location xb (km) at time t2 (h). At this time, congestion would

appear in a no control situation. However, by imposing a

speed-limited area as illustrated in the top figure, congestion

may be prevented.

Note that the effectiveness of this control method is limited

by the length of the stretch over which speed limits are avail-

able. If the necessary queue storage space exceeds this length

then the approach becomes ineffective. An analysis method

to evaluate the expected effectiveness based on measurement

data is presented in [29].

Several design considerations are taken into account when

implementing a speed-limited area. First of all, it is assumed

that the value of the speed-limits in the speed-limited area is

constant over time. This implies that a segment between two

variable message signs is either speed-limited or not. Addi-

tionally, it is assumed that only one speed-limited area can be

active at a time. Apart from that, the dynamics of the head and

tail of the speed-limited area should be such that the individual

vehicles can only enter and exit the speed-limited area once.

If an individual vehicle observes multiple fluctuations of the

speed limits, this can lead to unsafe situations, annoyance,

or poor compliance. As an example, the second vehicle in

Figure 1 A experiences such fluctuations. In order to prevent

such behavior, the positions xH,sl (km) and xT,sl (km) of
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Time step

k − 1, kc = (k − 1)/Cc + 1 = 1, ku = (k − 1)/Cu + 1 = 1
k = 30, kc = (k − 1)/Cc + 1 = 6, ku = (k − 1)/Cu + 1 = 2

Model sampling time T (h)Control sampling time T c (h)

Control signal update sampling time T u (h)

Control horizon N cT c (h)

Prediction horizon NpT c (h)

Fig. 2. Overview of the timing used in the paper for T is 10 s, T c is 60 s, Tu is 300 s.

respectively the head and the tail of the speed-limited area

are allowed to propagate in the downstream direction with a

speed that is lower or equal to the effective speed veff (km/h).

In the upstream direction they can propagate with any speed.

The speed in the speed-limited area is equal to the effective

speed veff corresponding to the imposed VSLs. The effective

speed is defined as the speed with which vehicles drive in the

speed-limited area which includes possible non-compliance.

This can be estimated e.g. from field tests as presented in [3].

The proposed parameterization reduces the number of opti-

mization variables for VSLs to two per control time step. Note

that the number of optimization variables at every control time

step used in a nominal MPC strategy is equal to the number of

VSL actuators. Hence, the advantage of this parameterization

is that the number of optimization variables is reduced, and

that the number of optimization variables is independent of

the number of VSL actuators.

2) RM control design considerations: A feedback RM

algorithm is used in this paper to control the on-ramp flow

that has to satisfy the following properties:

• The RM rate ro(k) (-) of an origin o should be between

the minimum allowed RM rate rmin ≥ 0 (-) and 1.

• The on-ramp queue length wo(k) (veh) should not exceed

its maximum value wmax
o (veh).

Different RM strategies could be applied depending on the

traffic situation. For instance, when preventing congestion at a

bottleneck location, the most sensible control strategy would

be to control the on-ramp flows in such a way that the flow

into a bottleneck is at or just below its capacity. The ALINEA

algorithm is specifically designed to realize this objective. The

ALINEA algorithm has the following form [31]:

ro(k + 1) = ro(k) +Ko
ρcritm − ρm,1(k)

ρcritm

, (1)

where ρcritm (veh/km/lane) is the critical density of the link

directly downstream of the on-ramp, ρm,1(k) (veh/km/lane)

is the current density in the most upstream segment of the

downstream link, and Ko (-) is the feedback gain.

When resolving a jam, the flow into the jam should be

reduced as much as possible. The standard ALINEA RM

algorithm is not suited to realize this, since it tries to fit as

much traffic onto the freeway without exceeding the critical

density. This can be solved by adapting the set-point ρseto, (k)
(veh/km/lane) of the ALINEA strategy [32], [26]:

ro(k + 1) = ro(k) +Ko

ρseto, (k)− ρm,1(k)

ρseto, (k)
. (2)

Another advantage of including such a set-point is that

coordination of on-ramps becomes possible. In the case of

a downstream bottleneck or congestion, the set-points of the

controllers of different on-ramps can be coordinated in order

to distribute the RM task over the RM installations.

Finally, it might be necessary to switch set-points a certain

number of times. For instance, when resolving a jam, the

preferred strategy might be to reduce the on-ramp inflow as

much as possible until the moment when the jam has been

resolved and afterwards the freeway flow can be increased to

capacity so that the on-ramp outflow can also be increased.

These two different tasks require different set-points. There-

fore, we propose the following feedback control algorithm:

• Initially, RM is off until switching time tswitch
o,1 (h).

• From switching time tswitch
o,1 until switching time tswitch

o,2

(h), the feedback law (2) with feedback gain Ks
o,1 (-) and

set-point ρseto,1 (veh/km/lane) is used.

• From switching time tswitch
o,2 until switching time tswitch

o,3

(h), the feedback law (2) with feedback gain Ks
o,2 (-) and

set-point ρseto,2 (veh/km/lane) is used.

• After time tswitch
o,3 the RM installation is switched off.

This parameterization requires 5 parameters per RM instal-

lation, namely, three switching times, and two set-points.

If needed, the approach can be extended by adding more

switching time instants or to optimize the feedback gains,

which are now manually tuned.

C. Traffic flow modeling: the extended METANET model

An extended version of the METANET model is adopted to

predict the evolution of the traffic in the MPC controller. The

METANET model presented in [33] along with the extensions

proposed in [22] is adopted since it provides a detailed descrip-

tion of the traffic dynamics and it can reproduce relevant traffic

characteristics such as jam waves and the capacity drop. Note

that in the description below only the elements relevant for

this paper are discussed. For a full description of the model

see [33] and [22].

In the METANET model, a freeway is divided into homo-

geneous – i.e. having a constant number of lanes, no on-ramps

and off-ramps, and constant characteristics – links m that are

connected by nodes [33]. Each link m consists of Nm (-)

segments of length Lm (km) with a number of λm (-) lanes.

The flow qm,i(k) (veh/h), density ρm,i(k) (veh/km/lane) and
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V
(

ρm,i(k)
)

= min
[

vfreem exp

(

−
1

am

(

ρm,i(k)

ρcritm (k)

)am
)

, vctrlm,i(k)
]

. (6)

qlimµ,1(k) =











λµv
lim
µ,1(k)ρ

crit
µ

[

− aµ ln

(

vlimµ,1(k)

vfreeµ (k)

)1/aµ
]

if vlimµ,1(k) < V
(

ρcritµ (k)
)

qcapµ if vlimµ,1(k) ≥ V
(

ρcritµ (k)
)

(9)

B. Timing

Before continuing, the timing of the approach is introduced and is illustrated in Figure 2. The discrete-time second-order traffic

model METANET is used to describe the evolution of the traffic [33]. The time step of the model is indicated with k (-) and

the corresponding sampling time with T (h). The time step k refers to the period
[

Tk, T (k+1)
)

. The control signal sampling

time is T c = CcT (h) with Cc ∈ N
+ (-), meaning that the value of the control signal can change at time instants kcT c (h).

The control signal is updated at time instant kuT u (h) for which it holds that the control signal update time T u = CuT (h)

with Cu ∈ N
+ (-). Note that it holds that t = Tk = T ckc = T uku (h). The controller predicts the evolution of the traffic

from control time step kc + 1 until control time step kc +Np where Np (-) is the prediction horizon. The control input from

control time step kc until control time step kc + N c is optimized by the controller where N c (-) is the control horizon and

N c ≤ Np. After the control horizon the control signal is taken to be constant.

... ...

Mainstream origin
Mainstream exit

Off-ramp On-ramp

Segment 1 Segment i Segment Nm

Fig. 3. Example of the METANET elements used in this paper. A freeway
consist of mainstream origins, links, segments, off-ramps, on-ramps, and
mainstream exits.

speed vm,i(k) (km/h) in a link are updated according to:

qm,i(k) = ρm,i(k)vm,i(k)λm , (3)

ρm,i(k + 1) = ρm,i(k) +
T

Lmλm

(

qm,i−1(k)− qm,i(k)
)

,

(4)

vm,i(k + 1) = vm,i(k) +
T

τ

(

V
(

ρm,i(k)
)

− vm,i(k)
)

+
T

Lm
vm,i(k)

(

vm,i−1(k)− vm,i(k)
)

−
ηT

τLm

ρm,i+1(k)− ρm,i(k)

ρm,i(k) + κ
, (5)

In the latter equation, τ and κ are model parameters. The

parameter η (-) is set to ηhigh when the downstream density is

higher than the density ρm,i+1(k) in segment i, and it is set to

ηlow when the downstream density is lower. This adjustment is

adopted from [22] to reproduce the capacity drop. The speed

V
(

ρm,i(k)
)

(km/h) is given in (6) where am (-) is a model

parameter, the speed vfreem (km/h) is the free-flow speed of link

m, and the density ρcritm (veh/km) is the critical density, and

where the speed vctrlm,i(k) (km/h) is the effective speed of the

imposed speed limits that is corrected for the compliance of

the road-users.

An origin is modeled using a simple queuing model describ-

ing the number of vehicles wo(k) (veh) in the origin queue as

a function of the demand do(k) (veh) and the outflow qo(k)
(veh/h):

wo(k + 1) = wo(k) + T
(

do(k)− qo(k)
)

. (7)

When an origin acts as the mainstream origin, the outflow is

given by:

qo(k) = min
[

do(k) +
wo(k)

T
, qlimµ,1(k)

]

, (8)

where the flow qlimµ,1(k), see (9), is determined by the traf-

fic condition in the first link and the speed vlimµ,1(k) =
min[vctrlµ,1 (k), vµ1(k)]. When an origin acts as a metered on-

ramp, the outflow is given by:

qo(k) = min
[

do(k) +
wo(k)

T
,Q0ro(k), Q0

ρmax
m − ρm,1(k)

ρmax
m − ρcritm

]

,

(10)

with Q0 (veh/h) the on-ramp capacity, and ro(k) ∈ [0, 1] the

RM rate.

In the case that there is an on-ramp upstream of link m,

then the term

−
δTqo(k)vm,1(k)

Lmλm(ρm,1(k) + κ)
, (11)

is added to (5) for the first segment of link m with δ (-) a

model parameter.

Finally, when a link m has no leaving link – i.e. it is the

most downstream link – the density ρm,ilast
m

+1 downstream of

the last segment ilastm is equal to:

ρm,ilast
m

+1 = max
[

ρDS(k),min[ρm,ilast
m

(k), ρcritm ]
]

, (12)

where the density ρDS(k) (veh/km/lane) is the destination

density, which can be used as a boundary condition to the

model.
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vctrlm,i(k) =

{

veff if xH,sl(k) > xm,i and xT,sl(k) < xm,i + Lm and xH,sl(k) > xT,sl(k)

vfree otherwise ,
(13)

γm,i(k) = max

[

Lm −max[xT,sl(k)− xm,i, 0]−max[xm,i + Lm,i − xH,sl(k), 0]

Lm
, 0

]

(14)

r̃o,ip(k) =











1 if ip = 1 or ip = npol

max

(

min

(

r̃o(k − 1) +Ks
o,ip

ρseto,ip − ρm,1(k − 1)

ρseto,ip
, 1

)

, 0

)

otherwise
(17)

fp
ip(k) =



























max[0, T +min[tswitch
o,ip − kT ]]

T
if ip = 1

max[0, T −max[tswitch
o,ip−1 − (k − 1)T, 0]

T
if ip = npol

max[0, T −max[tswitch
o,ip−1 − (k − 1)T, 0] + min[tswitch

o,ip − kT ]]

T
otherwise

(18)

D. Extensions for parameterized MPC

This section details extensions that are included in order to

use the model for parameterized MPC. These extensions do

not affect the dynamic equations of the traffic states but rather

the equations that relate the parameterized control signals to

the dynamic equations to the control signals. Although the

paper focuses on the use of METANET, the extensions may

also be used in combination with other macroscopic traffic

flow models.

1) Extension with a speed-limited area: In this paper, the

VSLs vctrlm,i(k) are determined by the head xH,sl(k) (km) and

tail xT,sl(k) (km) of the speed-limited area as defined in (13),

where xm,i (km) is the most upstream location of segment i
of link m.

In practice, the speed-limited area can either cover an entire

segment or not cover it at all. This implies that the gradient

of the objective function is not a continuous function of

the location of the speed-limited area. In order to realize a

gradient of the VSL signal that is differentiable everywhere,

a parameter γm,i(k) (-) is introduced. The parameter γm,i(k)
denotes the fraction of the segment that is covered by speed

limits as defined in (14).

In the optimization, the speed vctrlm,i(k) in (6) is replaced by

v̂ctrlm,i(k) by taking the weighted average of the effective speed

veff and the equilibrium speed vFD
(

ρm,i(k)
)

:

v̂ctrlm,i(k) = γm,i(k)v
eff + (1− γm,i(k))v

FD
(

ρm,i(k)
)

. (15)

2) Extension with feedback ramp metering: The feedback

RM control strategy results in a flow reduction factor r̃o(k)
(-) that limits the on-ramp flow [21]. The overall RM control

strategy is as follows: until time tswitch
o,1 RM is off and the RM

rate is equal to 1; this policy is indicated with policy index

ip = 1 (-). After that time until time tswitch
o,2 the ALINEA

algorithm is used to meter the on-ramp traffic with the gain

Ks
o,2 to reach the set point ρseto,2; this corresponds to policy

ip = 2. After time tswitch
o,2 until time tswitch

o,3 the maximum

queue length strategy is used with gain Ks
o,3 to reach the set-

point ρseto,3; this corresponds to policy ip = 3. After time tswitch
o,3

the RM rate is switched to 1; this corresponds to policy ip =

4. In total a number of npol = 4 (-) policies per ramp are

available.

The switching time instants tswitch
o,ip are real-valued while the

actual model timing is discrete. This leads to a discontinuous

gradient. In order to prevent this, the RM rates of the different

policies r̃o,ip(k) are linearly interpolated giving the potential

RM rate r̃o(k) when a switching time lies in a time interval:

r̃o(k) =
npol

∑

ip=1

fp
ip(k)r̃o,ip(k) , (16)

where the RM rates r̃o,ip(k) of the policies ip are given in

(17) and the fraction fp
ip(k) represents the fraction of the time

step that is covered by policy ip and which is computed using

(18).

The next step is translating the RM rate r̃o(k) to the actual

applied RM rate ro(k):

ro(k) =
(1− r̃o(k))q

R,min
o (k) + r̃o(k)q

R,max
o (k)

Q0
, (19)

with the minimum on-ramp flow qR,min
o (k) (veh/h) defined

by the minimum allowed RM rate and the minimum required

RM rate to prevent the on-ramp queue required to prevent the

on-ramp queue from exceeding its maximum:

qR,min
o (k) = max

[

rminQ0,
wo(k) + do(k)T − wmax

o

T

]

.

(20)

The maximum on-ramp flow qR,max
o (k) (veh/h) is defined

similarly as in (10):

qR,max
o (k) = min

[

do(k) +
wo(k)

T
,Q0, Q0

ρmax
m − ρm,1(k)

ρmax
m − ρcritm

]

(21)

E. Objective function and constraints

The objective of the controller is to minimize the Total Time

Spent (TTS) by all the vehicles on the freeway by changing

the VSLs and RM rates over the time steps kc = kuCt +
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1, . . . , kuCt + Np. The following objective function J(ku)
expresses the TTS:

J(ku) = T
kuCu+NpCc

∑

k̂=kuCu+1

{

∑

(m,i)∈Ilinks

ρm,i(k̂)Lmλm+
∑

o∈Iorig

wo(k̂)

}

.

(22)

Here, the set I links (-) is the set of indices of all pairs of

segments and links, the set Iorig (-) is the set of all origin

indices, and the set Iramps is the set of all on-ramp indices.

Using this objective function the MPC optimization problem

can be formulated:

min
ū(ku)

J(ku)

Subject to

Model: Eq. (3) – Eq. (21) ,

Initial states and disturbances:

ρm,i(k
uCu), vctrlm,i(k

uCu) , ρDS(k̂), do(k̂) ,

Constraints:

BL ≤ Aū(ku) ≤ BU . (23)

The matrix A and vectors BL and BU represent the linear

inequality constraints on the VSL and RM control signal

respectively as detailed in the next subsections. The control

signal ū(ku) is a vector consisting of the parameters of the

head and tail of the speed-limited area – i.e. the initial location

of the head xH,sl(kuCu+Cc) (km) and tail xT,sl(kuCu+Cc)
(km), and the speed vH,sl(kc) (km/h) and vT,sl(kc) (km/h)

of the head and tail over time – and the parameters of the

feedback control laws of the different on-ramps – i.e. the

switching times tswitch
o,1 (ku), tswitch

o,2 (ku), and tswitch
o,3 (ku), and

the set-points ρseto,1(k
u) and ρseto,2(k

u).
1) VSL signal and constraints: The evolution of the head

and tail of the speed-limited area is described by the initial

location of the head xH,sl(kuCu +Cc) and tail xT,sl(kuCu +
Cc), and the speed vH,sl(kc) and vT,sl(kc) of the head and tail

over time respectively. After the control horizon N c, until the

prediction horizon Np, the speed of the head and tail locations

are assumed to remain constant:

vH,sl(kc) = vH,sl(kuCt +N c) if kc > kuCt +N c , (24)

vT,sl(kc) = vT,sl(kuCt +N c) if kc > kuCt +N c . (25)

Based on the control vector, the location of the head and

the tail of the control scheme at every time step k can be

computed:

xH,sl(k) = xH,sl(kuCu + Cc) +

kc

∑

j=kuCu+Cc+1

vH,sl(⌊(j − 1)/Cc⌋)T ,

(26)

xT,sl(k) = xT,sl(kuCu + Cc) +

kc

∑

j=kuCu+Cc+1

vT,sl(⌊(j − 1)/Cc⌋)T .

(27)

Several constraints have to be respected when optimizing

the VSLs. First of all, the position of the head and tail have

to lie within the upstream bounds xH,0 (km) and xT,0 (km)

and downstream bounds xH,end (km) and xT,end (km):

xH,0 ≤ xH,sl(kuCu + Cc) ≤ xH,end , (28)

xT,0 ≤ xT,sl(kuCu + Cc) ≤ xT,end . (29)

If at time step kuCu + Cc the speed limits are not active or

cover only 1 segment, i.e. when xH,sl(kuCu+Cc|ku−1)−1 ≤
xT,sl(kuCu +Cc|ku − 1), then these bounds are equal to the

upstream x0 (km) and downstream end of the freeway xend

(km). The notation (. . . |ku − 1) indicates the control signal

that is computed at time step ku−1. However, when the speed

limits are active at control step kuCu +Cc, then the location

of the head xH,sl(kuCu+Cc|ku) and tail xT,sl(kuCu+Cc|ku)
at control step kuCu + Cc should be equal to the previously

computed values xH,sl(kuCu +Cc|ku − 1) and xT,sl(kuCu +
Cc|ku−1). In that case, the constraints are set to the following:

xH,0 = xH,sl(kuCu + Cc|ku − 1) , (30)

xH,end = xH,sl(kuCu + Cc|ku − 1) , (31)

xT,0 = xT,sl(kuCu + Cc|ku − 1) , (32)

xT,end = xT,sl(kuCu + Cc|ku − 1) . (33)

Secondly, the head and tail are allowed to propagate down-

stream with at most veff (km/h) or to propagate upstream

with any speed so that they cannot ‘overtake’ a speed-limited

vehicle:

vH,sl(kc) ≤ veff , (34)

vT,sl(kc) ≤ veff . (35)

Thirdly, the position of the head should be at or more

downstream than the initial position of the tail:

xH,sl(k) ≥ xT,sl(k) . (36)

2) RM constraints: The RM control signal of an indi-

vidual on-ramp consists of the switching times tswitch
o,1 (ku),

tswitch
o,2 (ku), and tswitch

o,3 (ku), and the set-points ρseto,1(k
u) and

ρseto,2(k
u). By varying these parameters, the RM rate is affected.

Several constraints on these parameters are included. First, it

has to hold that the set-points ρseto,ip(k
u) should be between 0

and the maximum set-point ρset,max
o,ip (veh/km/lane):

0 < ρseto,1(k
u) ≤ ρset,max

o,1 (37)

0 < ρseto,2(k
u) ≤ ρset,max

o,2 . (38)

Secondly, the switching time instants need to be constrained.

Two cases are possible. The first case is that no RM is active

at time step kc. Then, it should hold that:

kuT u + T c ≤ tswitch
o,1 (ku) ≤ kuT u +NpT c (39)

tswitch
o,1 + T c ≤ tswitch

o,2 (ku) ≤ kuT u +NpT c (40)

tswitch
o,2 + T c ≤ tswitch

o,3 (ku) ≤ kuT u +NpT c (41)

The second case is that RM is active at time step ku. This

is the case when tini(ku) = max(tswitch
o,1 (ku − 1), kuT u) <

kuT u + T c and tswitch
o,3 (ku − 1) ≥ kuT u + T c. In this case

the MPC should not be able to change tswitch
o,1 (ku) because it
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Sampling time T (s)
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RM rates
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Fig. 4. Simulation set-up

lies within the current time step kuCt that cannot be affected.

This is realized by the following constraints:

tini(ku) ≤ tswitch
o,1 (ku) + T c ≤ tini(ku) (42)

kuT u + T c ≤ tswitch
o,2 (ku) ≤ kuT u +NpT c (43)

tswitch
o,2 + T c ≤ tswitch

o,3 (ku) ≤ kuT u +NpT c (44)

III. SIMULATION EXPERIMENTS

Simulations are carried out in order to investigate the

controller behavior and performance in terms of CPU time

used and TTS improvement of the controller. To this end,

several simulations are performed in which the traffic situation

and controller set-up is varied.

The main topic for investigation is the trade-off between the

computation time and the realized throughput improvement. To

this end, the parameterized MPC (PMPC) strategy is compared

with a nominal MPC (NMPC) strategy that directly optimizes

the individual VSL values and RM rates. The NMPC strategy

is expected to realize a similar or higher TTS when given

sufficient CPU time. In order to obtain a fair comparison, both

the control strategies are given the same CPU time budgets.

It is expected that the PMPC strategy is able to obtain similar

throughput improvement in less CPU time budget.

Additionally, the performance is compared when consider-

ing different controller set-ups, namely RM-only, VSL-only,

and integrated RM and VSL, and when applied to different

traffic situations, i.e. when resolving a jam wave – as done

by the SPECIALIST algorithm – or by preventing congestion

due to a high on-ramp flow. This allows to evaluate the added

value of integrating the control measures in different scenarios.

It is expected that integrated RM and VSL can realize the

best throughput improvement because it has a larger control

freedom, but that it does not necessarily lead to the best trade-

off between computation time and realized throughput.

O0

O1 O2

5 km 1 km1 km 5 km 8 km

Fig. 5. Simulation network

A. Simulation set-up

Figure 4 provides an overview of the simulation set-up. The

extended METANET model as detailed in this paper is used

as the process model – i.e. the real-world – and the prediction

model. When implemented as the process model 3 small

changes are made. First of all, the parameter γm,i(k) is set

to 1 in the process model if γm,i(k) > 0.1 such that the entire

segment is either speed-limited or not in order to reproduce

the discrete spacing of the variable message signs. Secondly,

the switching times are rounded to the nearest multiple of T
that is less then or equal to the switching time. Thirdly, a lead-

in procedure is introduced for the VSLs preventing too large

speed drops on the freeway. To this end, the VSL value of a

gantry is set to the minimum of the desired VSL and the VSL

value of the downstream gantry increased with 10 km/h which

is iteratively computed from downstream to upstream.

A 20 km long freeway with 2 on-ramps and 2 off-ramps

is considered as shown in Figure 5. The freeway consists of

three origins and 20 identical segments with a length of 1 km

and 2 lanes. Every segment has the same parameters, adopted

from [33], namely: T = 10 s, τ = 18 s, κ = 40 veh/km/lane,

ρcrit = 33.5 veh/km/lane, am = 1.867, vfree = 102 km/h,

ηhigh = 65 km/h2, ηlow = 30 km/h2. Using these parameters,

a capacity of 2000 veh/h/lane is realized and a capacity drop

can be observed. The freeway traffic is simulated for scenarios

of 3 hours. All the segments can be controlled by means of

VSLs. The value of the effective speed limit veff is set to

50 km/h. The two on-ramps are controlled by means of RM.

The minimum RM rate is set to 0.05, the feedback gains of

the PMPC strategy are set to Ks
o,ip = 0.5, and the maximum

density set-point is set to ρset,max
o,ip = 60 veh/km/lane.

The process and prediction model sampling time steps T
are set to 10 seconds. The control signal update time step T u

is set to 300 seconds, and the control time step T c is set to 60

seconds. This means that every 300 seconds the control signal

is optimized based on the current traffic state. The values of

the control signals are allowed to change every 60 seconds.

It is assumed that no measurement noise affects the traffic

state used by the MPC strategy. Also, it is assumed that a

prediction of the demand and turn-fractions is available for

the MPC strategy.

The evaluation is carried out using Matlab R2015a on a

computer with a 3.6 GHz processor, 8 cores, and 16 Gb RAM.

For the optimization the Sequential Quadratic Programming

algorithm of the fmincon solver of the MATLAB optimization

toolbox is used, the function tolerance is set to 5 · 10−3 and

the step tolerance is set to 1 · 10−7. Parallel computing on

8 cores is used to determine the numerical derivative of the

objective function. In order to realize a fair comparison, both

approaches are given the same amount of CPU time in which

they can find the optimal solution. When this computation

time is not reached, the optimization is repeated from a new,
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Fig. 6. Results of the jam wave case using a CPU time budget of 3600 s. Every column represent a different control strategy. The first three rows show the
contour plots of the traffic dynamics, the fourth row shows the origin queues, and the bottom 2 rows show the control signals.

randomly selected starting point. When the computation time

is exceeded, the optimization is stopped. The best solution

out of the different starts is applied to the process. All the

simulations are repeated with three budgets, namely 300, 600,

1200, 1800, and 3600 seconds. To speed up the simulations,

parallel computing is used to compute the gradient. For a fair
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comparison, the CPU time budget reflects the total computa-

tion time used by all the cores. Because the computations are

carried out in parallel, the actual elapsed time is smaller than

the CPU time budget.

The NMPC approach is implemented as follows. Similar as

in [21], the RM rate r̃o(k) of an on-ramp is directly optimized.

It is bounded between 0 and 1 and constrained in such a

way that the RM can change with a maximum of 0.25 per

control step. The optimized RM rate r̃o(k) is translated to the

actual applied RM rate ro(k) using (19). The VSL strategy

proposed in [22] is implemented. The VSL values are bounded

so that they are larger than 50 km/h and smaller than the free

flow speed. Additionally, the following constraint is included

vctrlm,i(k
c) ≤ vctrlm,i+1(k

c)+10 preventing sudden speed drops in

the downstream direction.

B. Case I: jam wave

A scenario in which a jam wave is present on the freeway

is evaluated. Figure 6 (a)–(f) shows the no-control situation in

which a jam wave enters the freeway at the most downstream

end. This jam is created by increasing the density at the

downstream end of the freeway from time 380 s to 1080 s. The

demand at the origins are equal to 3800 veh/h, 455 veh/h, and

400 veh/h until time 5500 s for the mainstream origin (O0), on-

ramp 1 (O1) and on-ramp 2 (O2) respectively. The percentage

of traffic exiting at the off-ramps is 10% and 12% for off-

ramp 1 and 2 respectively. After time 5500 s the demands

decrease to 3500 veh/h, 240 veh/h, and 260 veh/h respectively.

The capacity drop due to this jam wave, determined using

simulation experiments, is approximately 5.6%. The total time

spent of the no-control scenario is 3325.1 veh·h.

Various control set-ups are tested in the control scenario. In

order to evaluate the performance and behavior of the MPC

strategy when resolving a fully formed jam wave, so that we

can interpret the solution, which is expected to be similar to the

solution of SPECIALIST, the controller is started after 1500

seconds. Note that this represents an artificial situation, since

in practice the MPC strategy is always active so that it will start

controlling before the jam wave is fully formed. The maximum

on-ramp queue length is set to 150 vehicles for both ramps.

The prediction horizon is set to 4800 seconds and the control

horizon is set to 2400 seconds. The control horizon is not

applicable to the parameterized RM strategy, because a specific

choice of the switching times fully determines the controller

behavior over any horizon. Note that the VSL control signal

is allowed to change every 60 seconds so that 40 steps are to

be optimized.

The control horizon is not relevant for the parameterized

RM strategy, since it optimizes the switching time instants

when the feedback RM strategy is changes instead of explicitly

optimizing the RM rates at the control sampling time steps.

Table I presents the quantitative results for the different

computation time budgets. It can be observed that a com-

putation time budget of 1200 seconds is sufficient for all

the parameterized strategies to realize the best throughput

improvement. The average elapsed times per controller update

for these budgets are all below 300 seconds. The RM-only
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Fig. 7. Network outflow in (a) the jam wave and (b) the bottleneck case using
different control strategies.

NMPC strategy achieves similar performance as the PMPC

strategy for a budget of 3600 seconds. However, even the

budget of 3600 seconds does not seem to be enough for VSL-

only or integrated VSL and RM using the NMPC strategy.

The qualitative results of the VSL-only case shown in

Figures 6 (g)–(l) show that the jam wave is resolved by

imposing a speed-limited area upstream of the jam wave,

similar as done by the SPECIALIST algorithm. Figures 6 (m)–

(r) show the results of resolving the jam wave using the RM-

only strategy. It can be seen that it takes longer for the RM-

only to resolve the jam wave explaining the lower TTS gain.

Figures 6 (s)–(x) show that the integration of VSLs and RM

reduces the application of VSLs upstream of on-ramp 1, as

well as the time over which VSLs are needed. Figure 7 (a)

shows the total network outflows for the different control

strategies. It can be seen that it takes longer for the RM-only

strategy to improve the total network outflow. Also, it can be

seen that the integration of VSL and RM reduces the initial

outflow reduction and a quicker outflow increase after the jam

has resolved when compared to the VSL-only case, explaining

the TTS improvement.

C. Case II: bottleneck

The second case consists of a traffic jam caused by a

too high on-ramp flow. The no control situation is shown in

Figure 8 (a)–(f). The origin demands were set to 3900 veh/h,

455 veh/h, and 390 veh/h for the mainstream origin (O0), on-

ramp 1 (O1), and on-ramp 2 (O2) respectively, and they were

taken to be constant until time 4500 s except for on-ramp 1 of

which the inflow from time 1500 s to 2000 s was increased to
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TABLE I
OVERVIEW OF QUANTITATIVE RESULTS FOR BOTH CASES. THE NO CONTROL TTS IS 3325.1 VEH·H FOR THE JAM WAVE CASE AND 2536.0 VEH·H FOR

THE BOTTLENECK CASE. THE PERCENTAGE GAIN IN TTS FOR THE CLOSED-LOOP SIMULATION COMPARED TO THE NO CONTROL SITUATION AND THE

AVERAGE ELAPSED TIME (ET) PER ITERATION ARE PRESENTED.

CPU budget: 300 s CPU budget: 600 s CPU budget: 1200 s CPU budget: 1800 s CPU budget: 3600 s
% gain ET (s) % gain ET (s) % gain ET (s) % gain ET (s) % gain ET (s)

Ja
m

w
av

e

P
M

P
C VSL 3.9 57.7 11.1 103.3 11.1 207.8 11.1 311.7 11.2 621.5

RM 7.2 74.6 7.3 148.8 7.3 297.9 7.3 446.6 7.3 890.4
VSL RM 10.8 57.6 11.2 110.1 11.6 209.5 11.7 316.7 11.9 624.6

N
M

P
C VSL 1.0 54.4 5.5 127.7 8.7 181.0 9.5 291.9 10.1 521.1

RM 4.1 48.0 4.5 94.7 5.2 179.7 5.2 267.3 7.3 528.3
VSL RM 0.8 73.4 8.1 173.1 8.1 173.0 9.8 294.5 11.2 554.8

B
o

tt
le

n
ec

k

P
M

P
C VSL 4.7 45.9 5.0 97.3 9.3 194.7 9.2 299.4 9.2 604.8

RM 9.7 74.2 9.7 147.9 9.7 295.5 9.7 443.2 9.7 883.0
VSL RM 9.1 46.3 9.6 88.6 9.8 195.1 10.0 293.3 10.0 605.5

N
M

P
C VSL -3.1 54.3 3.8 125.7 5.4 191.9 6.8 285.9 9.2 531.5

RM 9.9 48.6 9.9 91.2 9.9 171.3 9.9 260.2 9.9 508.2
VSL RM -3.6 73.6 2.7 172.3 2.7 180.9 5.3 316.6 6.8 550.3

1500 veh/h triggering a traffic jam. The percentage of traffic

exiting at the off-ramps is 10% and 12% for off-ramp 1 and 2

respectively. After time 4500 s the demands decreased to 3500

veh/h for the mainstream origin and to 260 veh/h for on-ramp

2. The resulting TTS is 2536.0 veh·h.

Several control set-ups are evaluated in the control situation.

The maximum on-ramp queue lengths were set to 75 and

20 vehicles for on-ramp 1 and 2 respectively. Due to this,

coordination between the two on-ramps is required, since the

capacity of on-ramp 2 is not sufficient to prevent congestion

on its own. The prediction horizon is set to 4800 seconds and

the control horizon is set to 2400 seconds.

Table I presents the quantitative results for the different

computation time budgets. It can be observed that for VSL-

only and integrated VSL and RM set-ups the PMPC realizes

higher TTS gains in shorter budgets. For the RM-only case,

both the NMPC and PMPC realize similar TTS improvements,

namely 9.9% and 9.7% respectively for short CPU time budget

of 300 seconds.

The qualitative results of the VSL-only strategy shown in

Figures 8 (g)–(l) indicate the ability to prevent bottleneck

congestion by imposing a speed-limited area upstream of

on-ramp 2. Figures 8 (m)–(r) show that in the RM-only

case on-ramp 1 starts metering immediately so that this flow

reduction arrives at on-ramp 2 when the demand increases.

The qualitative results of the integrated VSL and RM case in

Figures 8 (s)–(x) indicate that the integration of VSL and RM

reduces the extent to which VSLs are imposed upstream of on-

ramp 1. When comparing the outflow plots in Figure 7 (b) it

can be seen that the integrated VSL and RM strategy limits the

initial flow reduction when compared to the VSL-only strategy.

It also shows that integrated VSL and RM is able to quicker

restore the network outflow when compared to RM-only.

IV. CONCLUSIONS AND RECOMMENDATIONS

In this paper the computation time of an MPC strategy

for integrated RM and VSLs was improved considerably by

parameterizing a control scheme based on ALINEA ramp

metering and a SPECIALIST-like VSL control scheme. Due to

this, the dimension of the optimization problem has become

independent of the number of VSL signs. Additionally, the

number of parameters needed per on-ramp has become in-

dependent of the prediction horizon. Simulations have shown

that the control approach proposed in this paper can achieve

a better performance then a non-parameterized MPC strategy

when using the same budget of computation time for VSL-only

and integrated VSL and RM strategies. It was found that the

non-parameterized strategy realizes a slightly better throughput

improvement for the RM-only case.

In further research, the impact of noise and uncertainties on

controller performance can be studied. When needed, a robust

control design may have to be designed. Additionally, it can be

studied how the approach can be extended to include multiple

VSL areas when applying it to larger freeway networks. It

is also recommended to compare the proposed strategy to

simpler, uncoordinated or non-predictive strategies. Also, the

use of in-vehicle technologies may lead to improved detection

and actuation possibilities and potentially a reformulation of

the control strategy. Future research can also investigate ap-

proaches to further improve the computation time, for instance,

using a problem-tailored algorithm to solve the optimization

problem as discussed in [34].
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