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Abstract: We introduce a distributed optimization method for improving the computational
efficiency of real-time traffic management approaches for large-scale railway networks. We first
decompose the whole network into a pre-defined number of regions by using an integer linear
optimization approach. For each resulting region, a mixed-integer linear programming approach
is used to address the traffic management problem, with micro details of the network and
incorporated with the train control problem. For handling the interactions among regions,
an alternating direction method of multipliers (ADMM) algorithm based solution approach
is developed to solve the subproblem of each region through coordination with the other regions
in an iterative manner. A priority rule based solution approach is proposed to generate feasible
suboptimal solutions, in case of lack of convergence. Numerical experiments are conducted based
on the Dutch railway network to show the performance of the proposed solution approaches, in
terms of effectiveness and efficiency. We also show the trade-off between solution quality and
computational efficiency.

Keywords: Real-time railway traffic management, Distributed optimization, Decomposition and
clustering, Alternating direction method of multipliers (ADMM) algorithm, Mixed-integer linear
programming (MILP)

1. INTRODUCTION

Real-time railway traffic management is of great impor-
tance to limit negative consequences caused by distur-
bances and disruptions occurring in real-time operations.
Due to the real-time nature, a solution is required in a
very short computation time for dealing with delayed and
canceled train services and for evacuating delayed and
stranded passengers as quickly as possible. The real-time
traffic management problem has been studied extensively
in the literature (we refer to the recent review papers by
Corman and Meng (2015) and Fang et al. (2015)), and
many optimization approaches are available, which often
tend to be large and rather complex. These approaches
mostly have excellent performance on small-scale cases,
where optimality can be achieved in a short computation
time. However, when enlarging the scale of the case, the
computation time for finding a solution or for proving the
optimality of a solution increases exponentially.

Distributed optimization gained lots of attention in recent
years to face the need of fast and efficient solutions for
problems arising in the context of large-scale networks,
e.g., utility maximization problem. The goal is to solve the
problems either serially or in parallel that jointly minimize

⋆ The work of the first author is supported by China Scholarship
Council under Grant 201507090058.

a separable objective function, usually subject to intercon-
necting constraints that force them to exchange informa-
tion during the optimization process. We refer to Nedic
and Ozdaglar (2010) and Meinel et al. (2014) for details.

In order to improve the computational efficiency of the
real-time traffic management approaches for large-scale
cases, we introduce a distributed optimization method,
inspired by Kersbergen et al. (2016). We consider a
geography-based decomposition, which consists in split-
ting the whole network into many elementary block sec-
tions and then clustering these block sections into a given
number of regions. An integer linear optimization ap-
proach is proposed to cluster the block sections, aiming at
minimizing the weighted-sum of the costs for interactions
among regions and for balancing the region size. A mixed-
integer linear programming (MILP) approach developed
in our previous work (Luan et al., 2017) is used for each
individual region to simultaneously determine the traffic-
related properties (i.e., departure and arrival times, orders,
and routes to be followed by trains) and the train-related
properties (i.e., speed trajectories), by considering micro
details of the network. For considering the interaction
between the regions, a set of interconnecting constraints
has to be added for the trains that traverse two or more
regions. Due to the presence of the interconnecting con-
straints, the combined overall problem becomes indecom-



posable. To handle this issue, we develop an Alternating
Direction Method of Multipliers (ADMM) algorithm based
solution approach, where the subproblem of each region is
solved through coordination with the other regions in an
iterative manner. An upper bound (feasible solution) is
also computed by applying a priority rule based solution
algorithm, where the subproblems corresponding to the
regions are sequentially solved in a priority order, where
the priority order is determined dynamically. Therefore, in
case of lack of convergence, we can also provide a feasible
solution. We conduct experiments on the Dutch railway
network to show the performance of the proposed solution
approach, in terms of effectiveness and efficiency.

The contributions of this paper are summarized as follows:

• An integer linear optimization approach is proposed
for clustering block sections into a given number of
regions, with the objective of reducing interactions
among regions and balancing the region size.

• An ADMM based solution approach is developed
to solve the sub-problem of each region through
coordination with the others in an iterative manner.

• A priority rule based solution approach is considered
to solve the sub-problems in a priority order, in
order to provide feasible solutions in case of lacking
convergence of the ADMM based solution approach.

The reminder of this paper is organized as follows. In Sec-
tion 2, we briefly introduce an MILP approach for address-
ing the integrated problem of traffic management and train
control, proposed in our previous study (Luan et al., 2017).
Section 3 presents an integer linear programming (ILP) ap-
proach for clustering block sections into regions, followed
by the description of interconnecting constraints for the
interactions among the resulting regions. In Section 4, we
propose the ADMM algorithm based solution approach
and the priority rule based solution approach. Section 5
examines the effectiveness and efficiency of the proposed
solution approaches, through numerical experiments on
the Dutch railway network. Finally, the conclusions and
suggestions for future research are given in Section 6.

2. AN MILP APPROACH FOR INTEGRATING
TRAFFIC MANAGEMENT AND TRAIN CONTROL

In our previous work (Luan et al., 2017), we have devel-
oped an MILP approach for addressing the integration
of traffic management and train control. This approach
involves solving an MILP problem of the following form:

min w⊤ · λ (1)

s.t. A · λ ≤ b (2)

Aeq · λ = beq (3)

with variable λ ∈ Rn, matrices A ∈ Rp×n and Aeq ∈
Rq×n, and vectors w ∈ Rn, b ∈ Rp, and beq ∈ Rq.

The vector λ contains variables for describing the train
movements on block sections, in particular, the arrival
times a, departure times d, incoming speeds vin, and
outgoing speeds vout. The constraints (2)-(3) ensure the
train speed limitation, enforce the consistency of train
transition times and speeds, guarantee the required dwell
times, determine train blocking times, and respect the
block section capacities. Interested readers are referred to

the PTSPO model proposed in Luan et al. (2017) for more
details. Note that the MILP optimization problem (1)-(3)
can be solved by a standard MILP solver, e.g., CPLEX.

3. PROBLEM DECOMPOSITION

We present an ILP approach in Section 3.1 to partition
the network into regions. By taking the interactions among
regions into account, we present a set of interconnecting
constraints for the trains traverse two or more regions in
Section 3.2.

3.1 Decomposition and clustering

Consider a railway network composed of a set of block
sections E and a set of scheduled trains F traversing
this network. We could easily partition the whole network
into |E| units, by means of geography (block section)-
based decomposition; however, this could result in a large
number of interconnected subproblems. In general, a larger
number of subproblems implies more interactions among
them, which makes coordination difficult and may affect
the overall performance of the system; therefore, we cluster
these elementary block sections into a pre-defined number
|R| of regions 1 . An ILP approach is proposed to achieve
this, with the objective of minimizing the cost of interac-
tions among regions (i.e., the total number of different
regions traversed by trains) and the cost of balancing
the region size (i.e., the absolute deviation between the
number of block sections contained in an individual region
and the average value |E|/|R|).
The set Ef contains a sequence of block sections compos-
ing the route of train f , and |Ef | represents the number
of block sections along the route of train f . The binary
vector βf indicates whether two consecutive block sections
along the route of train f belong to different regions, e.g.,

if (βf )j = 1, then the jth and (j + 1)
th

block sections in
set Ef belong to different regions, otherwise, (βf )j = 0.
The binary vector αr indicates the assignment of all block
sections for region r, e.g., if (αr)i = 1, then the ith

block section in set E is assigned to region r, otherwise,
(αr)i = 0. The route matrix Bf ∈ Z(|Ef |−1)×|E| indicates
that train f traverses a sequence of block sections, e.g.,
if train f traverses from the 2nd block section to the 4st

block section in set E, then Bf = [ 0 1 0 −1 0 ... ]. The

integer vector µ ∈ (Z+)|E|×1 indicates the index of regions
that each block section e ∈ E belongs to. We use ∥ · ∥1 to
denote the 1-norm.

The objective function is formulated as follows:

min ζ ·

( ∑
f∈F

∥βf∥1

)
+ (1− ζ) ·

(
|R|∑
r=1

∣∣∣∥αr∥1 − |E|
|R|

∣∣∣) , (4)

where the weight ζ ∈ [0, 1] is used to balance the im-
portance of the two objectives. The first term serves to
minimize the interconnections of trains among regions, and
the second term aims at balancing the region size.

The approach has four constraints, presented as follows:∣∣∣(Bf · µ)j
∣∣∣

|R| − 1
≤ (βf )j , ∀f ∈ F, j ∈ {1, ..., |Ef | − 1} , (5)

1 Note that R = {1, 2, ..., |R|} is the set of regions.



guarantees that (βf )j > 0, if the two consecutive block
sections along the route of train f belong to different

regions, i.e.,
∣∣∣(Bf · µ)j

∣∣∣ > 0,

µi ∈ {1, ..., |R|} , ∀i ∈ {1, ... |E|} , (6)

enforces that the indices of the resulting regions cannot
exceed the pre-defined number of regions, and

(αr)i ≤ 1− |µi−r|
|R|−1 , ∀r ∈ {1, ..., |R|} , i ∈ {1, ... |E|} , (7)

and ∥αr∥1 ≥ 1, ∀r ∈ {1, ..., |R|} , (8)

are used to avoid the solution that no block section is
assigned to some region(s). Specifically, in (7), if the ith

block section in set E is assigned to region r, i.e., µi = r,
then the binary variable (αr)i = 1; otherwise, (αr)i = 0.
We further enforce ∥αr∥1 ≥ 1 for region r ∈ {1, ..., |R|}
in (8), i.e., we have to assign at least one block section to
each region. As a result, (7) and (8) imply that the number
of the resulting regions must equal the given number |R|.

train f

e
1

e
2

e
4

e
3

train f : e
1
 -> e

2
 -> e

4 e
5

Fig. 1. A small instance

We provide a small instance to explain the above formula-
tions. Given a network in Fig. 1 with a set of block sections
E = {e1, e2, e3, e4, e5} and a train f that follows a route in
a sequence of block sections Ef = {e1, e2, e4}, the goal is
to split the network into two regions (|R| = 2). The route
matrix Bf and the variable vector βf for train f and the
variable vector µ for block sections can be expressed as

Bf =

[
1 −1 0 0 0
0 1 0 −1 0

]
, βf =

[
(βf )1
(βf )2

]
,

and µ = [ µ1 µ2 µ3 µ4 µ5 ]
⊤
.

Consider the consecutive block sections e1 and e2 in the

route of train f , (5) results in the inequality |µ1−µ2|
|R|−1 ≤

(βf )1. If the two block sections belong to the same region,
i.e., µ1 = µ2, then we will have (βf )1 = 0 (as we are
solving a minimization problem). If block sections e1 and
e2 belong to different regions, i.e., µ1 ̸= µ2, then we will
have (βf )1 = 1, as the left-hand side of the inequality
is strictly in range [0, 1) and Bf is an integer matrix.
Constraints (7)-(8) are used to avoid the solution like

µ = [ 1 1 1 1 1 ]
⊤

or [ 2 2 2 2 2 ]
⊤

for this small instance.

Let us define Er as the set of block sections assigned to
region r, i.e., Er = {ei ∈ E|(αr)i = 1}.
By applying the ILP approach with objective (4) and
constraints (5)-(8), the block sections are assigned into
|R| regions, depending on the network layout and the
train services. We then partition the integrated traffic
management and train control problem for the whole
network into a set of |R| interconnected sub-problems,
corresponding to the resulting regions. The sub-problem
of each region can be solved by the MILP approach
introduced in Section 2. We use a subscript r to indicate
the variable vectors of the MILP approach related to a

single region, e.g., λr = [a⊤r , d
⊤
r , v

in
r

⊤
, voutr

⊤
, ...]⊤, where

ar contains the scalars af,e for all block sections e ∈ Er

and for all trains f ∈ F that use the block section e.

3.2 Interconnecting constraints for regions’ interactions

With a decomposed layout of the railway network, the
MILP approach introduced in Section 2 can only handle
the sub-problem for each single region; however, to finish
a train service, the train usually has to traverse different
regions. Without loss of generality, we have to consider
the interaction and interconnection of any two regions. To
implement the interactions of two interconnected regions
r and q, the following constraints should be considered:
for a train traversing from region r to region q,

Sout
r,q · voutr = Sin

q,r · vinq , (9)

ensures that the outgoing speed of the train leaving region
r equals the incoming speed of the same train entering
region q, and

Tout
r,q · dr = Tin

q,r · aq, (10)

enforces the train departure time from region r equals
its arrival time at region q, where Sout

r,q , S
in
q,r, T

out
r,q , and

Tin
q,r are selection matrices for selecting the interconnecting

variables between regions r and q. Specifically, matrices
Sout
r,q and Tout

r,q are used for selecting the local outgoing
speed variable and departure time variable respectively
that relate to region r for its neighboring region q, and
matrices Sin

q,r and Tin
q,r are used for selecting the local

incoming speed variable and arrival time variable respec-
tively that relate to region q for its neighboring region r.

Let us define an interconnecting input γinput
q,r and an

interconnecting output γoutput
r,q . The input variable γinput

q,r is
seen as an input for train movements in region r, resulting
from train movements in region q. The output variable
γoutput
r,q is seen as the influence that the train movements

in region r have on the running traffic of region q. Define
the interconnecting input and output vectors for trains in
region r as

γinput
r = Hin

r [vinr
⊤

ar
⊤]⊤, (11)

γoutput
r = Hout

r [voutr
⊤

dr
⊤]⊤, (12)

where Hin
r and Hout

r are input and output selection ma-
trices for selecting the variables interconnected among
regions, i.e., selecting the input variables that relate to
the local variables and selecting the local variables that
relate to the variables of the other neighboring regions
respectively. Note that matrixHin

r is derived from matrices
Sin
q,r and Tin

q,r for all neighboring regions of region r, and

matrix Hout
r is derived from matrices Sout

r,q and Tout
r,q for all

neighboring regions of region r.

Let us denote Qr = {qr,1, qr,2, ..., qr,mr} as the set of
mr neighboring regions of region r; we then have γinput

r

= [γinput
qr,1,r

⊤
, ..., γinput

qr,mr ,r
⊤
]⊤ and γoutput

r = [γoutput
qr,1,r

⊤
, ...,

γoutput
qr,mr ,r

⊤
]⊤. The interconnecting inputs of region r with

respect to region q must be equal to the interconnecting
outputs from region q to region r. Then, the following
constraints should be satisfied for q ∈ Qr

γinput
q,r = γoutput

r,q , (13)



γoutput
q,r = γinput

r,q . (14)

Since each interconnecting constraint depends on the vari-
ables of two regions, we cannot add them explicitly to the
problem of any individual region. Instead we can determine
and exchange values of the interconnecting inputs and
outputs among regions in an iterative way. The trains of
one region r can obtain an agreement through iterations
that inform the trains of the neighboring regions q ∈ Qr

about what region r prefers the values of interconnecting
inputs to be.

To achieve this agreement, for the signal region r, we have
to compute the optimal interconnecting input variables
γinput
r,q for the other neighboring regions q ∈ Qr as well,

instead of only focusing on computing optimal local vari-
ables. Moreover, for the other neighboring regions q ∈ Qr,
we need compute both the optimal local variables and
optimal interconnecting outputs γoutput

q,r . An ADMM al-
gorithm based solution approach is developed for reaching
this agreement, refer to Section 4.

4. SOLUTION APPROACHES

We introduce an ADMM algorithm based solution ap-
proach and a priority rule based solution approach in
Sections 4.1 and 4.2 respectively. Section 4.3 gives the
overall framework of the two solution approaches.

4.1 The ADMM algorithm based solution approach

The ADMM algorithm (we refer to Boyd et al. (2011))
solves problems in the following form

min f(x) + g(z)
s.t. A · x+B · z = c,

(15)

with variables x ∈ Rn and z ∈ Rm, matricesA ∈ Rp×n and
B ∈ Rp×m, and vector c ∈ Rp. Assume that the variables
x and z can be split into two parts, with the objective
function separable across this splitting. We can then form
the augmented Lagrangian relaxation as

Lρ(x, z, y) = f(x) + g(z) + y⊤(A · x+B · z − c)
+ρ

2∥A · x+B · z − c∥22,
(16)

where y is the dual variable (Lagrangian multiplier),
the parameter ρ > 0 indicates the penalty multiplier,
and ∥·∥2 denotes the Euclidean norm. The augmented
Lagrangian function is optimized by minimizing over x
and z alternately or sequentially and then evaluating the
resulting equality constraint residual.

By applying the dual ascent method, the ADMM algo-
rithm consists of the following iterations:

xi+1 := argmin
x

Lρ(x, z
i, yi),

zi+1 := argmin
z

Lρ(x
i+1, z, yi),

yi+1 := yi + ρ(A · xi+1 +B · zi+1 − c),

(17)

where the superscript i is the iteration counter. In the
ADMM algorithm, the variables x and z are updated in
an alternating or sequential fashion, which accounts for
the term alternating direction.

Based on the ADMM algorithm introduced above, we
formulate the augmented Lagrangian function of the com-
bined overall problem of regions as follows:

Lρ(λ1, ..., λ|R|, y
in
q1,1,1, ..., y

in
q1,m1

,1, ..., y
in
q|R|,1,|R|, ..., y

in
q|R|,m|R| ,|R|)

=
∑
r∈R

[
w⊤

r · λr +
∑

q∈Qr

(
yinq,r · (γinput

q,r − γoutput
r,q )

+ρ
2∥γ

input
q,r − γoutput

r,q ∥22

) ]
.

(18)

Then, the resulting optimization problem is

max
yinq1,1,1, ..., y

in
q|R|,m|R| ,|R|

min
λ1, ..., λ|R|

[
Lρ(λ1, ..., λ|R|,

yinq1,1,1, ..., y
in
q|R|,m|R| ,|R|)

]
(19)

subject to, for r ∈ R, constraints (2)-(3) for the train
movements of region r.

The iterations to compute the solution of the combined
overall problem based on the augmented Lagrangian for-
mulation (18) include quadratic terms; therefore, the func-
tion cannot directly be distributed over regions. Inspired
by Negenborn et al. (2008), for dealing with this non-
separable problem, the problem (18) can be approximated
by solving |R| separate problems of the form

min
λr, γ

input
qr,1,r, ..., γ

input
qr,mr ,r

γoutput
qr,1,r , ..., γoutput

qr,mr ,r

[
w⊤

r · λr +
∑

q∈Qr

Jr(γ
input
q,r , γoutput

q,r , y
in(i)
q,r , y

out(i)
r,q )

]
(20)

subject to (2)-(3) for the train movements in region r,
where the additional term Jr(·) deals with the intercon-
necting input and output variables and the term i indicates
the iteration counter.

We now discuss how to define the term Jr(·) by using a
serial implementation. For dealing with the non-separable
quadratic term in the augmented Lagrangian function
(18), we apply a block coordinate descent (Beltran Royoa
and Heredia, 2002; Negenborn et al., 2008). The approach
minimizes the quadratic term directly in a serial manner.
One region after another minimizes its local and intercon-
necting variables while the variables of the other regions

stay fixed. Let us denote Q̂i
r ⊆ Qr as the set of the

neighboring regions (of region r) that has been solved
before region r at iteration i.

The serial implementation uses the information from
both the current iteration and the last iteration. With
the information γinput pre

r,q = γ
input(i)
r,q and γoutput pre

r,q =

γ
output(i)
r,q computed at the current iteration i for each

region q ∈ Q̂i
r and the information γinput pre

r,q = γ
input(i−1)
r,q

and γoutput pre
q,r = γ

output(i−1)
q,r obtained at the last iteration

i− 1 for the other neighboring regions q ∈ Qr\Q̂i
r, we can

solve the problem (20) for region r by using the following
function:

Jr(γ
input
q,r , γoutput

q,r , y
in(i)
q,r , y

out(i)
r,q ) =[

y
in(i)
q,r

−y
out(i)
r,q

]⊤ [
γinput
q,r

γoutput
q,r

]
+ c

2

∥∥∥∥ γinput pre
r,q − γoutput

q,r

γoutput pre
r,q − γinput

q,r

∥∥∥∥2
2

.
(21)

The parameter c penalizes the deviation from the inter-
connecting variable iterates that were computed for the
neighboring regions before region r in the current iteration
i and by the other regions during the last iteration i− 1.

4.2 Priority rule based solution approach

The ADMM based solution approach in Section 4.1 in-
corporates the interconnecting constraints (13)-(14) into
the objective function and strives to make the information
consistent among regions (i.e., each region should respect
the information of the other regions) in an iterative man-



ner. However, convergence cannot be guaranteed for non-
convex problems, so that a feasible solution may not be
available. In order to provide a feasible suboptimal solution
in case of lack of convergence, we introduce a priority rule
based solution approach.

The main idea of the approach is to optimize the train
schedules of the regions in a sequential manner according
to region priorities, with respect to the outputs of the other
regions that have been solved at the current iteration. The
region priorities are determined by the train delay times of
the regions, e.g., solve the region with largest delay time
first. Moreover, the result could be different even with the
same region priorities, as multiple optimal solutions exist
for each region. The different optimal solutions with the
same objective value for one region could result in different
objective values for the other regions.

With the information γinput pre
r,q = γ

input(i)
r,q and γoutput pre

r,q

= γ
output(i)
r,q computed at the current iteration i for each

region q ∈ Q̂i
r, the priority rule based solution approach is

described by the following steps:

(1) For the current iteration i, determine the priority by
the train delay times of regions in the dual solution.

(2) Optimize the train schedules of the regions one by one:
(i) Schedule the trains of region r with the high-

est priority through using the MILP approach
proposed in Section 2, with respect to the in-
formation γinput pre

r,q and γoutput pre
r,q for the re-

gions q ∈ Q̂i
r;

(ii) Let γinput pre
q,r =γ

input(i)
q,r and γoutput pre

q,r = γ
output(i)
q,r

for the regions q ∈ Qr\Q̂i
r, of which the subprob-

lems have not yet been solved;
(iii) If the subproblems of all regions have been

solved, move to the next step; otherwise, loop
step (2).

(3) Compute the objective value of the solution obtained
in step (2), i.e., the local upper bound.

By using the priority rule based solution approach, a
feasible solution (local upper bound) can be found at
each iteration. A global upper bound is initialized to be
a sufficient large positive number at the first iteration and
further updated to equal the local upper bound if the
global upper bound is larger than the local upper bound
at each iteration (i.e., a better feasible solution is found) .

4.3 Overall framework of the solution approaches

The overall framework of the solution approaches com-
prises the following steps:

(1) Initialization: for r ∈ R, set the iteration counter

i = 1, local upper bound o
(1)
UB = M , and global

upper bound O
(1)
UB = M , where M is a sufficient large

positive number, and initialize the penalty multiplier

ρ and the Lagrange multipliers y
in(1)
q,r and y

out(1)
r,q

arbitrarily.
(2) Solve the train dispatching problem with the objec-

tive functions (20)-(21) and constraints (2)-(3), for
region r ∈ R, by following the serial implementation
introduced in Section 4.1. Specifically, for r ∈ R,

one region after another, we determine λ
(i)
r , γ

input(i)
q,r ,

and γ
output(i)
q,r and send the information γ

input(i)
q,r and

γ
output(i)
q,r to its neighbors q ∈ Qr\Q̂i

r of which the
subproblems have not yet been solved at the current
iteration step i.

(3) Obtain a feasible solution by using the priority rule
based solution approach introduced in Section 4.2.

Compute the local upper bound o
(i)
UB, and update the

global upper bound O
(i)
UB = o

(i)
UB, if the global upper

bound is larger than the local upper bound.
(4) Update the Lagrange multipliers by yin(i) = yin(i−1)+

ρ(γ
input(i)
q,r − γ

output(i)
r,q ).

(5) The iterations stop when one of the following condi-
tions is satisfied:
(i) the difference of the interconnecting input and

output variables between iterations i and i − 1
is less than the expected gap ϵ, i.e.,∥∥∥∥∥∥∥∥


y
input(i)
q1,1,1

− y
input(i−1)
q1,1,1

...

y
input(i)
q|R|,m|R| ,|R| − y

input(i−1)
q|R|,m|R| ,|R|


∥∥∥∥∥∥∥∥
∞

≤ ϵ,

where ϵ is a small positive scalar and ∥·∥∞
denotes the infinity norm.

(ii) the current number of iterations i has reached
the predefined maximum number of iterations
Imax, i.e., i = Imax.

(iii) the global upper bounds are not improved for a

given number of iterations κ, i.e., O
(i)
UB = O

(i−κ)
UB .

If none of the termination conditions are reached,
move to the next iteration by letting i := i + 1, and
repeat steps (2)-(5).

5. NUMERICAL EXPERIMENTS

In our case study, we use a line of the Dutch railway
network, connecting Utrecht (Ut) to Den Bosch (Ht),
of about 50 km length, with 9 stations. We consider
one hour of traffic based on a regular interval timetable
with 15 trains. We adopt the CPLEX solver version
12.6.3 implemented in the MATLAB (R2016a) TOMLAB
toolbox to solve the MILP problems. The experiments are
performed on a computer with an Intel®CoreTM i7 @
2.00 GHz processor and 16GB RAM.

5.1 Results of clustering block sections into regions

By applying the ILP approach introduced in Section 3.1,
the whole network can be decomposed into a pre-defined
number of regions. Fig. 2 graphically presents the results
of the cases that consider 2, 3, and 4 regions. As shown, we
partition the network at switches, not on the open-track.
This is a better way of partitioning, because we formulate
train departure and arrival times at switches.

Fig. 3 presents the number of interactions among regions,
obtained by using the ILP approach with the given number
of regions. To show the trend of the number of interactions,
the results of more than 4 regions (up to 14 regions) is also
provided.

As shown, an increasing number of regions results in a
decreasing number of block sections per region, i.e., the
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Fig. 2. Railway network, partitioned in 2, 3, and 4 regions
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Table 1. Computational results

Number
of regions

ADMM based solution
approach

Priority rule based
solution approach Lower bound

comp. time obj. value comp. time obj. value comp. time obj. value

2 172.85 9182.78 608.84 8390.62 96.73 7669.39
3 – – 485.04 8634.12 17.59 7348.91
4 – – 397.59 12425.29 23.81 6920.34

∗ Note that “obj. value” means objective value, “comp. time” means
computation time (unit: second), and “–” implies that a feasible solution
is not available, due to the lack of convergence.

size of each region is reduced; however, a larger number
of interactions among regions then need to be handled. A
smaller region size generally implies a shorter computation
time, but results in much more difficulties in making
the larger number of interconnecting input and output
variables all converge to matching values.

5.2 Results of the proposed solution approaches

In this section, we consider the cases of 2, 3, and 4
regions as test bed for the solution approaches proposed
in Section 4. The computational results are presented in
Table 1, including the objective value and the computation
time. Additionally, lower bounds are also computed by
neglecting the interactions among regions, i.e., solving the
sub-problems of the regions one by one without considering
the interconnecting constraints (13)-(14).

The ADMM based solution approach achieves convergence
quickly in the case of 2 regions; when the number of regions
is increased, we do not attain convergence, due to the
difficulties of handling the larger number of interactions
among regions, as shown in Fig. 2. By applying the priority
rule based solution approach, a better feasible solution is
obtained when considering 2 regions, at the expense of
a longer computation time. With an increasing number

of regions, the solution quality becomes worse, but the
computation time gets shorter. In the case of 2 regions,
the result of the priority rule based solution approach
has the smallest gap with the lower bound; however, the
gap becomes larger with an increasing number of regions,
resulting from both the looser lower bounds and worse
feasible solutions.
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The evolution of the interconnecting input and output
variables in the iterative process of the ADMM based
solution approach is illustrated in Fig. 4, for the case of 2
regions. The X-axis and Y-axis represent the values of the
interconnecting input and output variables respectively,
and each black dot indicates a pair of input and output
variables. The dashed line is a benchmark line, indicating
the function f(x) = x, which implies that the value of
the input variable equals the value of the output variable.
Therefore, a situation that all black dots are located on
the dashed line implies convergence of the solution. For
presentation convenience, the interconnecting input and
output variables are all normalized in the range of [0, 100].

As shown, some black dots are far from the benchmark
line at the first iteration in Fig. 4(a), and after some
intermediate iterations in Fig. 4(b)-Fig. 4(e), all black dots
gather to the benchmark line in Fig. 4(f), i.e., convergence
is achieved.

6. CONCLUSIONS AND FUTURE RESEARCH

We have introduced a distributed optimization method
aiming at improving the computational efficiency of real-
time traffic management approaches for large-scale rail-
way networks. An integer linear optimization approach
is proposed to decompose the large network into regions.
Two solution approaches are proposed for dealing with the
interactions among regions, i.e., the ADMM based solution
approach and the priority rule based solution approach.
According to the experimental results, for the case of 2
regions, the ADMM based solution approach performs
better from the computational efficiency perspective, and
the priority rule based solution approach performs better
in view of the solution quality. For the cases of more
than 2 regions, the priority rule based solution approach
yields a better performance. Moreover, the results of the
priority rule based solution approach show the trade-off



between computation time and solution quality, i.e., a
better solution quality needs a longer computation time,
and a shorter computation time results in a worse solution
quality.

Future research will focus on improving the ADMM
based solution approach and on exploring other ap-
proaches, e.g., the proximal alternating-direction of multi-
pliers (PADMM) algorithm, in order to enable convergence
for the cases with larger numbers of interactions.
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