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Abstract: In order to investigate the stochastic features in urban traffic dynamics, we propose a
Stochastic Link Flow Model (SLFM) for signalized traffic networks with demand uncertainties. In
the proposed model, the link traffic state is described using four different link state modes, and the
probability for each link state mode is determined based on the stochastic link states. The SLFM model
is expressed as a finite mixture approximation of the link state probabilities and the dynamic link flow
models for all the four link state modes. Using data from microscopic traffic simulator SUMO, we
illustrate that the proposed model can provide a reliable estimation of the link traffic states, and as well
as good estimations on the link state uncertainties propagating within a signalized traffic network.

Keywords: Stochastic traffic model; Traffic signals; Urban traffic network.

1. INTRODUCTION

In real-life traffic networks, uncertainties always exist in traffic
flow dynamics. However, these uncertainties are seldom ex-
plicitly expressed in traffic models, especially for urban traffic
networks with traffic signals. In order to better understand the
stochastic features of urban traffic networks, this research in-
vestigates the randomness in a link flow model under the traffic
demand uncertainties.

There are many reasons for demand uncertainties in a traf-
fic network, e.g. weather conditions, public holidays, special
events, etc. These demand uncertainties may either vary from
time to time within a day as short-term variations, or vary in a
week, a month, or a year as long-term variations (Lam et al.,
2008; Chen et al., 2011). The demand uncertainty coming from
outside of a network is usually considered as an exogenous
source of uncertainty (Shao et al., 2006).

There are some research works on dynamic stochastic traffic
models, which describe the traffic dynamics as well as the
stochastic characteristics in the traffic state evolution (e.g. traf-
fic flow, density). According to the evolution method, the dy-
namic models can be generally classified into two categories,
i.e. state transition model and spatio-temporal dynamic model.
For the state transition model, the randomness in the traffic
dynamics is modeled directly with certain probability distribu-
tions, and the traffic state evolution is described by a Markov
Process in which the traffic states are updated with pre-obtained
transition probabilities. For instance, in (Yu and Recker, 2006),

the arriving traffic flow in a link is described by a Poisson dis-
tribution, and the dynamics of traffic evolution is modeled by a
Markov decision process, in which the next discrete traffic state
depends on the previous traffic state, the control action, and
its transition probability. A Markov jump traffic model is also
proposed considering the receiving ability of the downstream
links in (Tordeux et al., 2014). This kind of stochastic traffic
model has discrete traffic states and constant transition proba-
bilities derived from historical real traffic data or simulations.
It is heuristic in describing the traffic evolution, for they do not
rely on existing traffic dynamic models. For the spatio-temporal
dynamic models, the uncertainty modeling is integrated into
existing dynamic traffic models, e.g. the LWR model (Lighthill
and Whitham, 1955), the CTM model (Daganzo, 1994), and
other dynamic traffic models (Papageorgiou, 1995; Yperman,
2007; Lin et al., 2012). There are several research works
about stochastic traffic models based on the CTM model. Boel
and Mihaylova (2006) proposed a cell-based stochastic model
by introducing randomness into the flow speed of each cell.
Sumalee et al. (2011) proposed a stochastic CTM model (i.e.
SCTM) for freeways by integrating random link Fundamental
Diagrams (FDs) into the CTM dynamics to generate a stochas-
tic traffic state evolution, and also extended for signalized traffic
networks by Zhong et al. (2013). After that, the SCTM model
was applied for journey time estimation and short-term traffic
state prediction in (Sumalee et al., 2013; Pan et al., 2013).
Jabari and Liu (2012) proposed a stochastic traffic flow model
with random vehicle headways depending on the traffic states
of successive cells, and the model was shown to be consistent



with the CTM model. The model was validated in real traffic
field by Jabari and Liu (2013). Flötteröd and Osorio (2017)
proposed a Stochastic Link Transmission Model (SLTM) to
describe the stochastic queuing in LTM. These stochastic traffic
models usually have traffic states defined discrete in time, and
the transition probabilities for transferring from one time step
to the next time step are state dependent, and thus can vary with
time. This kind of model integrates the stochastic modeling into
the mechanism of the existing dynamic traffic models, and is
more focus on the inherent stochastic features in the network
supply and the traffic flow propagation.

In this paper, we propose a Stochastic Link Flow Model
(SLFM) for signalized traffic networks. The model is a stochas-
tic spatio-temporal dynamic model, and exogenous sources
of uncertainty (i.e. demand uncertainty) are considered in the
model. The dynamic evolution of the model is realized by
iteratively updating the link densities with input and output
averaged link flows for the four link state modes. According
to the stochastic features of link states, the probability for each
link state mode is determined based on the boundary states of
the two ends of the link. The link density is expressed as a finite
mixture approximation of probabilistic dynamic traffic models
for the four link state modes. The model has a comparatively
low computational complexity, for its dimensions both in time
and space are all reduced. The SLFM can describe the varia-
tions of the link density and flow under the influence of traffic
signal splits. It provides the possibility of investigating the
propagation of the traffic demand and its uncertainty through
urban traffic networks.

2. LINK FUNDAMENTAL DIAGRAM WITH TRAFFIC
SIGNALS

Fundamental Diagram (FD) provides the relation between flow
q and density ρ on a link. In the model, we suppose that
the Fundamental Diagram (FD) on each link has a theoretical
triangular shape. However, in signalized traffic networks, the
capacity of the FD of a link will be restricted by the signal
timings due to the stop-and-go of the flow. Thus, the triangular
link FD is chopped at the capacity because of the traffic signal
restrictions on the intersection, and turns into a trapezoid shape
with a restricted capacity (Wu et al., 2011; Lo, 1999, 2001),
as shown in Fig. 1. In this paper, we define a one-way link
with signals at the downstream end as a subsystem, and we
assume that the link in the subsystem is long enough such that
it has the normal triangular FD at the upstream boundary and
the constrained trapezoidal FD at the downstream boundary.

The capacity is restricted by the fraction of the green time over
the cycle time on the link:

Q
′

M =
QM ·g

c
, (1)

where QM and Q
′

M are the capacity and the restricted capacity
of the FD, g is the effective green time on the link, and c is
the cycle time of the downstream intersection connecting to the
link.

As Fig. 1 shows, ρc is the critical density, ρcd and ρcu are
the lower bound and the upper bound critical densities for the
restricted capacity; ρJ is the junction density, vf is the free-flow
speed, and wc is the spillback speed.
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Fig. 1. Illustration for the traffic light constrained link FD
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Fig. 2. Signalized urban road link with upstream and down-
stream FDs

3. STOCHASTIC LINK FLOW MODEL (SLFM) WITH
TRAFFIC SIGNALS

3.1 Link state modes and probabilities

A link and the FDs on its two boundaries are shown in Fig. 2.
The normal triangular FD at the entry of the link is separated
into two linear states, i.e. free flow (f) on left-hand side and
congestion (c) on the right-hand side; the constrained trape-
zoidal FD in front of the traffic signals is divided into three
linear states, i.e. free flow (f), congestion (c), and saturation (s)
at the restricted capacity.

For each subsystem, we can define 4 link state modes according
to the two boundary states at the ends of the link (i.e. at the entry
of the link and at the stop line). As shown in Fig. 3, the link state
mode of a subsystem can be classified into

* Free-flow mode (F): free-flow state at the upstream bound-
ary of a link and free-flow state at the downstream bound-
ary of the link;

* Accumulating mode (A): free-flow state at the upstream
boundary of a link and saturation state at the downstream
boundary of the link;

* Congestion mode (C): congestion state at the upstream
boundary of a link and congestion state at the downstream
boundary of the link;

* Dissipating mode (D): congestion state at the upstream
boundary of a link and saturation state at the downstream
boundary of the link.

Suppose a link is in Free-flow mode at the beginning. When the
traffic demand increases, the traffic will gradually accumulate
and the traffic state of the link will switch from Free-flow
mode to Accumulating mode, in which the entering flow is
still free flow but the leaving flow is saturated. If the demand



q

ρ

f

f

f

ss

c

c

c

F A D C

Fig. 3. Illustration for the link state modes

keeps on increasing, the traffic state of the link will switch
from Accumulating mode to Congestion mode, in which the
traffic congestion is built up and propagates to the upstream
link. When the traffic demand reduces, the traffic state of the
link will switch from Congestion mode to Dissipating mode, in
which the congested vehicles will discharge gradually from the
link with saturation flow. The traffic state of the link switches
back to Free-flow mode when the discharging flow reduces to a
value below the restricted capacity (i.e. saturation flow). Similar
state modes was defined for CTM freeway model in (Muñoz
et al., 2006).

Since the traffic demands and the traffic disturbances are
stochastic, the traffic state of a link is also stochastic. The 4
link state modes are defined as a mode set M = {F,A,C,D},
and the probability of the link state in each mode is defined as
Pm (m ∈ M). So we have

∑
m∈M

Pm = 1. (2)

Assume that the density on a link follows the Normal distribu-
tion as ρ(k) ∼ N(µ(k),σ(k)), then the probabilities of all the
link state modes can be written as

PF = Pr{0 ≤ ρ(k)< ρcl} (3)

PA = Pr{ρcl ≤ ρ(k)≤ ρc} (4)

PC = Pr{ρcu < ρ(k)≤ ρJ} (5)

PD = Pr{ρc < ρ(k)≤ ρcu}. (6)

Then, the link density can be expressed as a linear combination
of the densities in the 4 link state modes:

f (ρ(k)) = ∑
m∈M

Pm(k) fm(ρ(k)), (7)

where f (·) is the probability density function (PDF) of the link
traffic density, fm(·) is the PDF of the link traffic density in
mode m, Pm(k) is the probability of link state mode m ∈ M at
time step k, and ρ(k) is the density of a link at time step k.
Consequently, the expectation of the link density is

E(ρ(k)) = ∑
m∈M

Pm(k)E(ρm(k)). (8)

Define µm(k) = E(ρm(k)) and µ(k) = E(ρ(k)). Then the co-
variance can be calculated as

Var(ρ(k)) = ∑
m∈M

Pm(k)Ωm(k)− (µ(k))2, (9)

where Ωm(k) = E((ρm(k))
2) is the autocorrelation function of

ρm(k). Thus, the standard deviation of the joint link density is

σ(k) =
√

Var(ρ(k)). For more details, one can refer to Sumalee
et al. (2011).

3.2 Link models for different link state modes

For each of the link state mode in M, a time-variant model is
formulated to update the traffic state on the link based on the
averaged entering and leaving flows. Moreover, we also take
into account of the influence of the traffic signals. Averaged
CTM model is also proposed by Grandinetti et al. (2015).
Therefore, the dynamic evolution of the traffic density at time
step k on a link is

ρ(k+1) = Aρ(k)+B0ρ(k)U(k)+B1U(k)+Dd(k)+C,
(10)

U(k) = β (k)r(k), (11)

where A, B0, B1, D, and C are constant parameters, U(k) is the
scalar control input at time step k which is assumed to be a
deterministic value, β (k) is the vector of turning ratios in front
of the traffic signals on a link at time step k, r(k) is the vector
of green time splits on a link at time step k, d(k) contains the
stochastic disturbances from outside of the link (i.e. demands
from upstream links, supply from the downstream links, and
input/output disturbances on the link).

The disturbance vector d(k) is the vector containing the dis-
turbances from the input flow qE(k) (i.e. entering flow) of
the link, which is a sum of the leaving flows from the up-
stream links, the output flow qA(k) (i.e. accepted flow) of the
link, which is decided by the available receiving flows of the
downstream links, and the disturbance flows that getting in
and out along the link (i.e. di(k) and do(k)). Thus, we have

d(k) = [qE(k) di(k) do(k) qA(k)]
T.

If we define the simulation time step as the cycle time, i.e.
Ts = c, then the control input can be written as

U(k) = βth(k)rth(k)+βl(k)rl(k), (12)

in which βth(k) and βl(k) are the through and left turning
ratios of the flow in the link (see Fig. 4 and 5), rth(k) and
rl(k) are the green time splits for the flows going straight and
turning left, e.g. the throughput green time split is defined as
rth(k) = gth(k)/c. If the set of phases in one cycle time is P,
then the green time splits of the cycle time satisfy

∑
p∈P

rp(k) = 1. (13)

In this context, the dynamic model can be further written
explicitly for all 4 modes under the mode probabilities.

For the link state mode F, the upstream and downstream of
the link are all having free flows, thus the dynamic model for
updating the density becomes

ρ(k+1) = Aρ(k)+B0ρ(k)U(k)+Dd(k), (14)

where A = 1+ βrB0, B0 = −Ts
l

vf, D = [Ts
l

0 0 0], and l is the
length of the link.

For the link state mode A, the upstream link has free flow, but
the downstream link is saturated, thus the dynamic model for
updating the density becomes

ρ(k+1) = Aρ(k)+B1U(k)+Dd(k)+C, (15)

where A = 1, B1 =−Ts
l

QM, D = [Ts
l

0 0 0], and C = βrB1.

For the link state mode C, the upstream and the downstream
link are all congested, thus the dynamic model for updating the
density becomes

ρ(k+1) = Aρ(k)+Dd(k)+C, (16)

where A = 1+ Ts
l

wc, D = [0 0 0 − Ts
l
], and C =−Ts

l
wcρJ.



For the link state mode D, the upstream link is congested,
but the downstream link becomes saturated, thus the dynamic
model for updating the density becomes

ρ(k+1) = Aρ(k)+B1U(k)+Dd(k)+C, (17)

where A = 1+ Ts
l

wc, B1 =−Ts
l

QM, and C =−Ts
l

wcρJ +βrB1.

3.3 Link mean density and auto-correlation

Let µ(k) = E(ρ(k)). Then according to the evolution formula
for link density in eq. (10), the mean of the link density can be
iteratively calculated as

µ(k+1)= (A+B0U(k))µ(k)+B1U(k)+DE(d(k))+C, (18)

where how much the previous link mean density will affect the
current link mean density is influenced by the previous control
signal input.

Let the auto-correlation of link density be Ω(k) = E(ρ2(k)),
we can further calculate the iterative equation for the auto-
correlation as follows:

Ω(k+1) =F1(k)Ω(k)+F0(k)µ(k)

+G(k)E(d(k))+E(dT(k)DT(k)Dd(k))

+H(k), (19)

where

F1(k) =A2 +B2
0U2(k)+2AB0U(k), (20)

F0(k) =2B0B1U2(k)+2(B0DE(d(k))+AB1 +B0C)U(k)

+2ADE(d(k))+2AC, (21)

G(k) =2B1DU(k)+2CD, (22)

H(k) =B2
1U2(k)+2B1CU(k)+C2. (23)

Therefore, the mean and the auto-correlation of the link density
evolve iteratively with time based on the previous traffic states
both inside the link and outside the link. Consequently, the
demand uncertainties can propagate along the travel routes and
also with time, but the propagating speed may vary according
to the green time splits.

3.4 Link leaving and receiving flows

The leaving flow of a link is the estimated linear mixture of the
leaving flows in different link modes, and the receiving flow of
a link is the estimated linear mixture of the receiving flows that
can be accepted by the link in all the link modes. The leaving
and receiving flows of the link are parts of the input and output
flows of its neighbor links. Therefore, the receiving flow and
the leaving flow of a link need to be calculated.

The leaving flow of a link can be written as a linear combination
of the leaving flows in all the link modes as

q(k) = PFρ(k)v fU(k)+(PA +PD)QMU(k)+PCA(k), (24)

which means that the leaving flow of a link depends on the
free flow, the saturation flow (the restricted capacity), and the
accepting flow of the downstream links.

The receiving flow of a link is a linear combination of the
receiving flows in all link modes as

qR(k) = (PA +PF)QM +(PC +PD)wc(ρ(k)−ρJ), (25)

which means that the receiving flow of a link depends on the
capacity and the congestion flow of the link.

3.5 Entering and accepted link flows

In some of the link model modes, we need to know the entering
flow and the accepted flow of the link. In F and A modes, the
entering flow is provided by the upstream links, because the link
has enough space to receive the flow due to the free-flow state
in upstream of the link; in C mode, the accepted flow depends
on the available space of the downstream links, because the
congestion propagates upwards along the links.

Let the output link set of link i be Oi with downstream links
as the elements, the input link set of link i be Ii with upstream
links as the elements.

Then, the entering flow of link i can be written as the sum of all
the flows from upstream links as

qE,i(k) = ∑
u∈Ii

βu,iqu(k), (26)

where qE,i(k) is the entering flow of link i at time step k, βu,i is
the turning ratio that the flow turning from link u to link i, and
qu(k) is the leaving flow of link u at time step k.

In the C mode, due to the traffic congestion in downstream
link, the accepted flow depends on the available space of the
downstream link. However, this may not be the case for all
the downstream links, some of the downstream links of link i
maybe not congested. In such case, for each downstream link
d, the accepted traffic flow can be separated into two situations
with probabilities as

P1,d(k) = Pr{qR,d(k)≤ QM,iβi,dri,d(k)}, (27)

P2,d(k) = Pr{qR,d(k)> QM,iβi,dri,d(k)}, (28)

where qR,d(k) is the receiving flow of link d at time step k, QM,i

is the capacity flow of link i, and ri,d(k) is the green time split
for the flow turning from link i to link d at time step k. P1,d(k)
represents the probability that the receiving flow of link d is less
equal than the separated and restricted capacity flow of link i at
time step k; P2,d(k) represents the probability that the receiving
flow of link d is larger than the separated and restricted capacity
flow of link i at time step k, i.e. downstream link d does not
contribute to the congestion in link i.

Therefore, the accepted flow of link i by the downstream links
can be calculated as

qA,i(k) = ∑
d∈Oi

[P1,d(k)qR,d(k)+P2,d(k)QM,iβi,dri,d(k)]. (29)

The entering flow and accepted flow are used in the link models
of different modes as the input and output flows provided and
accepted by the upstream and downstream links, and then the
link states are updated with these flows at the next time step for
all the link state modes.

4. SIMULATIONS

To test the SLFM, we use the microscopic traffic simulator
SUMO to simulate a real traffic environment, which provides
the stochastic traffic demands, as well as the stochastic traffic
densities and the traffic flows. We give the SLFM the traffic
demands generated by SUMO, and compare the estimated link
densities and the link leaving flows from the SLFM with the
real values generated by SUMO.
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4.1 Network and traffic signal setup

We consider an urban network with 3 signalized intersections,
4 links inside the network (see Fig. 4). The traffic demands
are provided to the network in all the 8 entry links. There are
4 traffic signal phases, North-South through, North-South left,
East-West through, and East-West left, as in Fig. 5.

Stochastic traffic demands are generated for all the entry links
of the network for 7 hours, and a traffic flow peak is simulated
during the time. The mean and standard deviation of the traffic
demand is shown in Fig. 6.

4.2 Results

The comparison is given for the densities between the SLFM
and the real values from SUMO for link 1, 2, 3 and 4 in Fig. 7.
The results show that the estimated mean link densities from
SLFM match well with the link densities from SUMO, and link
density peaks emerge on all the links due to the existence of
the peaks in traffic demands. The estimated standard deviations
of the link density from SLFM increase when the links are
approaching the congested state (i.e. when the link densities
grow high), which verifies that the higher the mean link density
is, the higher the uncertainty of the link density will be. In
addition, the estimated standard deviations of links 1 and 3 are
higher than those of links 2 and 4. By comparing the variations
of probabilities for all link state modes in Fig. 8, we can see
that links 1 and 3 are more congested than links 2 and 4 during
the peak, where links 1 and 3 are more in D mode, but links 2
and 4 are more in A mode. If a link is more congested, based
on the previous derivation of the SLFM, the standard deviation
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Fig. 7. The estimated link densities vs. the SUMO real link
densities
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Fig. 8. The variations of probabilities for all link state modes

of the link density is influenced more by the high mean and
auto-correlation of the link in previous time step. This means
that congestion is created in links 1 and 3 due to the increase of
the entering flows, and congestion will increase the uncertainty
in the link density estimation. Uncertainties in traffic demands
can propagate through links in the traffic network; however
congestion is the main cause of the stochastic disturbances in
link traffic flows, and thus causes more uncertainties.

As Fig. 8 shows, the probabilities for the 4 link state modes
oscillate a lot due to the peak of the traffic demands. This means
that traffic congestion under high traffic demands will make the
SLFM model have strong randomness in determining the link
state modes.

The simulation results show that the SLFM model could be
used to investigate the propagation of urban traffic demand and
its uncertainties, or be used in traffic signal optimizations for
urban traffic networks with demand variations.

5. CONCLUSIONS

In order to investigate the stochastic features in urban traffic
dynamics, we have proposed a Stochastic Link Flow Model



(SLFM) for signalized traffic networks. In the proposed model,
the link traffic state is defined into four different link state
modes, and the probability for each mode was derived on
the basis of the stochastic link states. The SLFM model was
presented as a finite mixture approximation of the link state
probabilities and the dynamic link flow models for all the four
link state modes.

In the numerical example, we compared the estimated link
traffic states obtained using the SLFM against the link traffic
states generated from SUMO. It was found that the estimated
link states were close to the simulation results from SUMO. It
was also observed that the mean link states simulated the peaks
similar to the one of the real traffic demands. In addition, the
link state uncertainties could also be estimated taking account
the uncertainty in traffic demands propagating into the urban
network along the links. Note that the highest uncertainty was
due to the congestion state when the link traffic density was
comparatively high. It was shown that the SLFM model could
be used to investigate the propagation of urban traffic demand
and its uncertainties, or used in traffic signal optimizations for
urban traffic networks with demand variations.
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