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Abstract

We study the integration of real-time traffic management and train control by using mixed-integer nonlin-
ear programming (MINLP) and mixed-integer linear programming (MILP) approaches. Three innovative
integrated optimization approaches for real-time traffic management that inherently include train control
are developed to deliver both a train dispatching solution (including train routes, orders, departure and
arrival times at passing stations) and a train control solution (i.e., train speed trajectories). Train speed
is considered variable, and the blocking time of a train on a block section dynamically depends on its real
speed. To formulate the integrated problem, we first propose an MINLP problem (PNLP), which is solved
by a two-level approach. This MINLP problem is then reformulated by approximating the nonlinear terms
with piecewise affine functions, resulting in an MILP problem (PPWA). Moreover, we consider a prepro-
cessing method to generate the possible speed profile options for each train on each block section, one of
which is further selected by a proposed MILP problem (PTSPO) with respect to safety, capacity, and speed
consistency constraints. This problem is solved by means of a custom-designed two-step approach, in or-
der to speed up the solving procedure. Numerical experiments are conducted using data from the Dutch
railway network to comparatively evaluate the effectiveness and efficiency of the three proposed approaches
with heterogeneous traffic. According to the experimental results, the MILP approach (PTSPO) yields the
best overall performance within the required computation time. The experimental results demonstrate the
benefits of the integration, i.e., train delays can be reduced by managing train speed.

Keywords: Real-time traffic management, Train control, Integrated optimization, Delay recovery, Mixed
integer linear programming (MILP)

1. Introduction

Railway transport systems are of crucial importance for the competitiveness of national or regional
economy as well as for the mobility of people and goods. To improve reliability of train services and increase
satisfaction of customers, many railway infrastructure managers (e.g., Network Rail in United Kingdom and
Banedanmark in Denmark) and train operating companies (e.g., V/Line in Australia) have set their own
targets for train punctuality, in terms of punctuality rates. Moreover, there have been many projects over
the years that have aimed at improving the punctuality of trains, such as the On-Time project (Quaglietta
et al. 2016). Policy makers and researchers have been seeking approaches for attaining the punctuality goals.
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In real operations, unavoidable perturbations (caused by bad weather, infrastructure failure, extra pas-
senger flow, etc.) often happen and result in delays to the original train timetable, which make difficulties in
achieving the punctuality goals. When trains are delayed from the normal operation, train dispatchers are in
charge of adjusting the impacted train timetables from perturbations (by means of taking proper dispatching
measures, e.g., re-timing, re-ordering, and re-routing), so as to reduce potential negative consequences (train
delays); train drivers are responsible for controlling the delayed trains (by means of taking proper driving
actions, i.e., accelerating, cruising, coasting, and braking) to reach the stations at the times specified by
train dispatchers, with the aim of minimizing energy consumption. The problem faced by train dispatchers
is well-known as the real-time traffic management problem, and the problem encountered by train drivers is
the so-called train control problem. In fact, significant interconnections exist between these two problems,
as the traffic-related properties have impact on the train-related properties, and vice versa. Solving the two
problems in a sequential way hides the potential improvements in performance of train operations. Better
train operations can be potentially achieved by jointly considering the two problems, i.e., (re-)constructing
a train timetable in a way that applies different diving actions. However, such a joint consideration leads to
a very complex and difficult optimization problem, because not only the timetable should be well-defined
for synchronizing the accelerating and braking actions of trains in the same block section, but also the
driving actions should be controlled under the speed limits, travel time, and distance constraints (Tuyttens
et al. 2013). This is even more critical and difficult for real-time operations. Moreover, the safety headway
between two consecutive trains dynamically depends on their real speed and acceleration/deceleration rate.
As a result, a prompt and reliable decision-making support tool for both dispatchers and drivers is desired,
which requires the integration of a rescheduling optimization with microscopic details and highly accurate
real-time train speed trajectory optimization at once.

A growing body of scientific literature is available for real-time traffic management (e.g., the recent survey
by Fang et al. 2015) and train control (e.g., the recent review by Yang et al. 2016). These two problems are
well-studied separately, but a gap still exists with regards to their integration. Most approaches focus only
on one side of the problem and include parts of the other by control loops, extra constraints, hierarchical
decomposition, or additional objectives. Such focus on a single side of the problem leaves an open gap
in terms of operational performance of jointly considering those two perspectives at once. The purpose
of achieving better train operation and the gap in the scientific literature motivate us to address their
integration.

We therefore address the integration of real-time traffic management and train control by using optimiza-
tion methods, identifying both traffic-related properties (i.e., a set of times, orders, routes to be followed by
trains) and train-related properties (i.e., speed trajectories) at once. To formulate the integrated problem, a
mixed-integer non-linear programming (MINLP) problem (PNLP) is first proposed and solved by a two-level
approach. An approximation based on piecewise affine functions, is applied to the nonlinear terms in the
PNLP problem, which results in a mixed-integer linear programming (MILP) problem (PPWA). Furthermore,
a preprocessing method for generating the possible train speed profile options (TSPOs) for each train on
each block section is considered to reduce the complexity of the problem and to restrict the search only
to a subset that allows better energy performance. An MILP problem (PTSPO) is developed to determine
the optimal option with minimum train delays.The two MILP problems are both solved by using an MILP
solver, but a custom-designed two-step method is particularly used for the PTSPO problem to speed up the
solving procedure. In our optimization problems, the blocking time of a train on a block section dynamically
depends on its real speed. We consider the minimization of the total train delay times as the objective. Ac-
cording to the experimental results, the proposed approach can obtain feasible solutions (with good quality)
of the integrated traffic management and train control problem for a single direction along a 50 km corridor
with 9 stations and 15 trains each hour within 3-minute computation time, meanwhile the goal of reducing
train delays by managing train speed can be achieved. In Part 2 of this paper, we further discuss energy-
related extensions based on the proposed optimization approaches, i.e., evaluating energy consumption and
computing regenerative energy utilization. With the inclusion of the energy-related aspects, we aim at both
delay recovery and energy efficiency, in order to achieve energy-efficient train operation.

The remainder of this paper is organized as follows. Section 2 provides a detailed literature review on the
studies addressing the real-time railway traffic management problem without considering train dynamics, and
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the studies dealing with the interaction of traffic management and train control for better train operations.
In Section 3, a problem statement and assumptions are given first. Then, three optimization problems
formulating the integration of traffic management and train control are presented. Section 4 introduces
the solution approaches for the three proposed problems, i.e., a two-level approach for solving the MINLP
problem (PNLP), and a custom-designed two-step method for improving the computational efficiency of the
MILP problem (PTSPO). Experimental results based on a real-world railway network are given in Section 5
for evaluating the performance of the proposed approaches and investigating the benefits of the integration.
Finally, Section 6 ends the paper with conclusions and topics for further research.

2. Literature review

An extensive study of literature is available for real-time railway traffic management and train control.
In this section, we review the state of the art for two directions: 1) real-time traffic management, where the
train speed is commonly considered fixed, i.e., a constant minimum running time is given; 2) better train
operations, where traffic and train control are interacting or integrated in some way.

2.1. Real-time traffic management: better train rescheduling

The real-time railway traffic management problem has been attracting much attention in the last years.
Advances in scheduling theory make it possible to solve real-life train scheduling instances, in which not only
departure/arrival times (Ginkel and Schöbel 2007, D’Ariano et al. 2007a), but also train orders, routes, and
further operational freedom are considered as variables (e.g., Törnquist and Persson 2007, Corman et al.
2010, 2012, Meng and Zhou 2014). For more information, we direct to the review papers by Narayanaswami
and Rangaraj (2011), Corman and Meng (2015), Cacchiani et al. (2014), Fang et al. (2015), and the recent
book by Hansen and Pachl (2014).

To formulate the railway network topology (infrastructure), traffic situation, and traffic constraints,
several approaches based on operations research techniques are available in the scientific literature. A
particularly popular stream of studies considers the alternative graph model, which uses a combination of
job shop and alternative graph techniques (D’Ariano et al. 2007a). In the alternative graph model, each block
section is formulated as a single capacity server with further no-store constraints and blocking constraints
relating to the processing over multiple adjacent block sections (D’Ariano et al. 2007a). Some studies employ
the alternative graph based formulation to deal with the problem of rerouting trains by developing meta-
heuristics, e.g., a Tabu Search algorithm proposed by Corman et al. (2010); considering multiple classes of
running traffic (Corman et al. 2011a); determining the Pareto frontier of the bi-objective problem of reducing
delays and maintaining as many passenger connections as possible (Corman et al. 2012); investigating the
impact of the levels of detail and the number of operational constraints on the applicability of models, in
terms of solution quality and computational efficiency (Kecman et al. 2013); and rescheduling high-speed
traffic based on a quasi-moving block system, which integrates the modeling of traffic management measures
and the supervision of speed, braking, and headway (Xu et al. 2017).

Another stream of studies focuses on developing macroscopic models based on an event-activity network,
which allows for faster resolution and larger geographical scope. Schöbel (2007) proposed an event-activity
based integer programming model to solve the delay management problem. The model was further extended
to address a discrete time/cost trade-off problem of maintaining service quality and reducing passengers’
inconvenience (Ginkel and Schöbel 2007); and by including headways and capacity constraints and test-
ing multiple pre-processing heuristics in order to fix integer variables and to speed up the computation
(Schachtebeck and Schöbel 2010). In their proposed models, connections are decided to be maintained or
dropped by minimizing the number of missed connections, while minimizing the sum of all delays of all
events. Dollevoet et al. (2012) presented an event-activity based model to address the problem of rerouting
passengers in the delay management process. Zhan et al. (2015) employed the event-activity network to
reschedule the operations, when a segment of a high speed railway was totally blocked without considering
rerouting, aiming to minimize the number of canceled and delayed trains.

Other approaches have also been proposed for solving the same problem. Rodriguez (2007) presented
two constraint programming models for the rescheduling and rerouting of trains running through a junction,
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considering a fixed speed and a variable speed respectively. The latter does not consider proper speed
variation dynamics, but it constrains train running times to be coherent with train braking and acceleration
in the case of conflict. Törnquist and Persson (2007) described a mathematical model for rescheduling
traffic to minimize the consequences of a single disturbance, which can be an infrastructure failure, a vehicle
malfunction, or a personnel availability problem. Different strategies to reschedule trains were considered,
such as a change to the track used by a train or a modified train order, in order to reduce computation
time depending on the size of the instance. To improve the computational efficiency, a greedy heuristic
approach was further developed by Törnquist (2012), based on the same formulation of the problem. The
idea was to obtain reasonably good feasible solutions in a very short time and to use the rest of the
predefined computation time to improve it by backtracking and reversing decisions made in the first stage.
In Mu and Dessouky (2011), a simultaneous freight train routing and scheduling problem was formulated
as an MILP model with macroscopic details, which was solved via heuristic procedures based on clustering
trains according to their entrance time in the network. Meng and Zhou (2014) investigated the benefits of
simultaneous train rerouting and rescheduling compared to sequential approaches in general rail networks.
Network-wide cumulative flow variables were used to implicitly model capacity constraints, which enabled
an easy problem decomposition mechanism. The decomposed sub-problems were then solved by an adapted
time-dependent least-cost algorithm. Pellegrini et al. (2014) formulated an MILP model to tackle the real-
time railway traffic management problem, representing the infrastructure with fine granularity, i.e., the
route-lock route-release interlocking system and the route-lock sectional-release system. They studied the
problem in the case of simple junctions and more complex areas, and used CPLEX to solve the model. In
Pellegrini et al. (2015), a heuristic algorithm, named RECIFE-MILP, was developed based on an extended
version of the MILP formulation proposed in Pellegrini et al. (2014). Samà et al. (2016) further investigated
how to select the most promising train routes among all possible alternatives, through developing an ant
colony optimization meta-heuristic. The most promising subset of train routes was included in the large and
complex MILP determined by Pellegrini et al. (2014) and solved with the exact and heuristic approaches
presented in Pellegrini et al. (2015).

Table 1 summarizes some relevant studies on the real-time traffic management problem, in terms of
problem description (i.e., the level of detail, rescheduling measure), mathematical formulation (including
model structure, objective, constraints, etc.) and solution algorithm, particularly focusing on the way of
handling speed dynamics. From the discussion, studies tend to consider microscopic details (including
signals and switches) and precise headway between trains. Moreover, these studies mostly have a common
assumption that a fixed speed profile is used for each train, given a minimum running time and neglecting
the dynamic change in speed profile as a consequence of the dispatching actions. Thus, any dynamics-related
objectives, such as energy consumption, cannot be considered.

2.2. Interaction of traffic management and train control: better train operations

Many studies deal with controlling the train speed, with the aim of minimizing energy consumption. In
the literature, the approaches mostly identify train speed profiles using very rough approximation, at least
when optimizing. A general overview of the studies can be found in the review papers by Albrecht et al.
(2011), Wang et al. (2011), and Yang et al. (2016).

For operations according to the schedule, there is a large corpus of research available by now that is
able to compute the regimes to be used, and to optimally follow the path of minimal energy consumption,
given a running time (see e.g., Howlett and Pudney 2012, Chevrier et al. 2013, Wang et al. 2013). Some
studies focused on maximizing the regenerative energy utilization, (e.g., Rodrigo et al. 2013, Yang et al.
2014). Since little interaction with traffic management is considered in these studies, we do not elaborate
on them in this paper. We next focus on the studies that address the interaction/integration with traffic
management in some way, e.g., in a decomposed, iterative, or non-optimized manner.

A lot of inspiration comes from metro operations, which have a particular structure of very high homo-
geneity (see e.g., Li and Lo 2014a,b), basic autonomy from other systems, and limited, predicted interaction
along a line. The usage of Automatic Train Operations and Communication-Based Train Control is the
most common paradigm to achieve precise control of running traffic (Albrecht et al. 2011). The approach
implemented in the Lötschberg tunnel system was described in Montigel (2009), which simulated only very
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Table 1. Summary of the relevant studies on the real-time traffic management problem

Publications
Level of
detail

Rescheduling
measure

Model
structure

Objective(s)
Solution
algorithm

Consider
speed

management

D’Ariano et al.
(2007a)

micro rT, rO
AG-based

MILP
minimize the maximum secondary delay for all
trains at all visited stations

B&B, H
(FCFS, FLFS)

No

Ginkel and
Schöbel (2007)

macro rT, rO
EA-based

IP
minimize the sum of train delays and
the weighted sum of all missed connections

H (FSFS,
FRFS,

FRFS-fix,
FSFS-fix)

No

Rodriguez (2007) micro rT, rO, rR CPM minimize the total delays of all trains B&B No

Törnquist and
Persson (2007)

macro rT MILP
minimize the total final delays of all trains;
minimize the total cost associated with delays

CS based on
four different
dispatching
strategies

No

Corman et al.
(2010)

micro rT, rO, rR
AG-based

MILP
minimize the maximum consecutive delays in
lexicographic order

B&B, H (tabu
search)

No

Schachtebeck
and Schöbel

(2010)
macro rT, rO

EA-based
IP

minimize the delays and the number of missed
connections

H (FSFS,
FRFS,

FRFS-fix,
FSFS-fix)

No

Corman et al.
(2011a)

micro rT, rO
AG-based

MILP
minimize the total delays of all trains along
other multiple objectives

B&B, H
(priority rule
based, FCFS)

No

Mu and
Dessouky

(2011)
macro rT, rO, rR MILP minimize the total delays of all trains GHA, NSA No

Corman et al.
(2012)

micro rT, rO
AG-based

MILP
minimize the train delays and the number of
missed connections

B&B, H
(pareto

front based)
No

Dollevoet et al.
(2012)

macro rT, rO
EA-based

IP
minimize the average delay of all passengers

CS, a modified
Dijkstra’s
algorithm

No

Törnquist
(2012)

macro rT, rO MILP minimize the total final delays all trains GHA No

Kecman et al.
(2013)

macro rT, rO
AG-based

MILP
minimize the maximum consecutive delay

B&B,
H (FIFO)

No

Meng and Zhou
(2014)

micro rT, rO, rR
CF-based

IP
minimize the total completion time of all trains

CS, LR, H
(priority rule

based)
No

Pellegrini et al.
(2014, 2015)

micro rT, rO, rR MILP
minimize the maximum or total consecutive
delays

CS, H
(RECIFE-

MILP)
No

Zhan et al.
(2015)

macro rT, rO
EA-based

MILP
minimize the number of canceled and delayed
trains

CS No

Samà et al.
(2016)

micro rT, rO, rR MILP minimize the total consecutive delays
CS, ACO
meta-H

No

Xu et al. (2017) micro rT, rO
AG-based

MILP
minimize the total consecutive delays; minimize
the sum of the positive consecutive delays

CS
Yes

optimized
speed level

Luan et al.
(this work)

micro rT, rO MILP

Part 1: minimize the sum over all trains of the
mean absolute delay time at all visited stations
Part 2: minimize the sum over all trains of the
mean absolute delay time at all visited stations
and the energy consumption for accelerating
trains and overcoming resistance

CS
Yes

optimized

∗ Symbol descriptions for Table 1: re-time (rT); re-order (rO); re-route (rR); Alternative graph (AG); Cumulative flow (CF);
Event-activity network (EA); Constraint programming model (CPM); Discrete event model (DEM); Commercial solver (CS);
Heuristics (H); Branch-and-bound (B&B); Greedy heuristic algorithm (GHA); Neighborhood search algorithm (NSA); First-
Leave-First-Served (FLFS); First-Come-First-Served (FCFS); First-Scheduled-First-Served (FSFS); First-Rescheduled-First-
Served (FRFS); FSFS with early connection fixing (FSFS-fix); FRFS with early connection fixing (FRFS-fix); Ant colony
optimization (ACO); REcherche sur la Capacité des Infrastructures FErroviaires (RECIFE, in French).
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few trains at a time, in terms of train and traffic characteristics. The approach has a very good performance,
but it is limited to a well-defined small test case with a limited traffic volume. The optimal solution can be
found by exhaustive search; however, the scalability and applicability of the approach to different situations
(e.g., larger networks and heterogeneous traffic) still need to be assessed. The approach proposed by Rao
et al. (2013) aimed at pushing this concept further. Some heuristic extensions of the previous work were in-
volved to address the open issues on the scalability and applicability to general networks and heterogeneous
traffic.

In the general case of delayed and rescheduled traffic, the most common approach for integrating these two
problems is the sequential adjustment of the speed profile, based on a scheduling solution that approximates
or neglects the train control problem, see e.g. D’Ariano et al. (2007b, 2008). In this stream, Albrecht (2009),
and D’Ariano and Albrecht (2010) focused on the energy minimization problem to deliver a continuous speed
profile, given a schedule. In Albrecht et al. (2013), the time windows at stations and relevant points were
used to give enough room for the rescheduling problem to calculate energy-efficient speed profiles of trains.
The result is optimal for energy efficiency, given the solution to the scheduling part, i.e., the passing times
of trains at stations and relevant points.

Another stream of approaches includes iterative approaches that feed an optimized speed trajectory back
to the scheduling model to improve traffic performance. In general, those approaches offer no guarantee of
optimality in either traffic management or train control. Such approaches include the method of Mazzarello
and Ottaviani (2007) for the EU project Combine, which proposed a double feedback loop architecture
to determine both traffic-related and train-related properties by heuristics. A similar approach was later
proposed by Lüthi (2009), which allowed the rescheduling of trains in real time and provided dynamic
schedule information to drivers, so that they can adjust their speed in order to meet the required schedule.
The positive feature of such approaches is that the feedback loops keep the deviations (i.e., train delays
from the planned timetable) small. However, having the two models separated means a match between the
objectives of the two models has to be found; typically, this may lead to extra delay introduced by speed
management. Furthermore, stability, convergence, quality of the system under a closed-loop feedback control
are even more difficult to quantify than a corresponding sequential one. Quaglietta et al. (2013), Corman
and Quaglietta (2015) investigated and analyzed the outcome for what concerns stability and performance
inherently introduced by closing control loops.

In a different research stream, Wang and Goverde (2016) presented a multiple-phase train trajectory
optimization method under real-time traffic management. The train trajectory is re-calculated to track
the possibly adjusted timetable, i.e., the train schedule is updated by adjusting train speed profiles. This
proposed method was only applied in a case of two successive trains running on a corridor with various
delays. In such cases, train control interacts with traffic management by identifying train speed profiles
that match the schedule of minimal delays. The updated trajectory solutions are fed back to re-compute an
improved scheduling solution by iterative approaches, without any guarantee of optimality in either traffic
management or train control.

A radically different approach is to invert the hierarchy of the problems, i.e., first solving the problem
of generating efficient speed profiles and then using only these in the traffic management part. This has
been operationally translated into a choice of speed profiles from a finite set: a single speed profile in the
case of Corman et al. (2009), apart from retiming actions; multiple speed profiles in the case of Caimi et al.
(2012), including retiming. Then those profiles were included in the optimization problem. Two conflicting
objectives of energy efficiency and delay minimization were considered in Corman et al. (2009), in which
the first objective was used as a hard constraint. Two policies were analyzed: 1) waiting in corridors, i.e.,
trains are allowed to wait in stations and along the line; and 2) green-wave, where trains can wait only at
stations. In Caimi et al. (2012), the retiming and rerouting decisions were combined through the definition
of blocking-stairways, each one combining a routing and a speed profile, selecting then few among a finite
number of alternatives for each trains.

In Zhou et al. (2017), a unified model was developed based on a space-time-speed grid network to integrate
the two problems of macroscopic train timetabling and microscopic train trajectory calculations for high-
speed rail lines. Most information regarding traffic properties and train properties was pre-described in the
space-time-speed grid network, and the integrated problem was then simplified as a path finding problem.
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A dynamic programming solution algorithm was proposed to find the train speed profile solutions with
dualized train headway and power supply constraints.

2.3. Paper contribution

The vast majority of the optimization-based train rescheduling approaches has a common assumption
that a fixed speed profile is used for each train, i.e., a pre-determined (constant) minimum running time
for each train is considered and train dynamics are neglected, as reviewed in Section 2.1. As a result, any
dynamics-related objectives, such as energy consumption, cannot be directly considered in the optimization.
The studies on train control mostly focus on trajectory optimization with a given running time, i.e., deter-
mining the driving regimes and the switching points, with the aim of minimizing energy consumption (see
the review paper by Yang et al. 2016). As significant correlations exist between these two problems, some
studies try to address their interaction/integration in a decomposed, iterative, or non-optimized manner,
refer to Section 2.2. However, few authors deal with the integrated problem by employing mathematical
optimization methods. When they do so, they typically either address the energy-efficient management
problem for the urban transit systems (e.g., Li and Lo 2014a,b) or the high-speed railway lines (e.g., Zhou
et al. 2017) with high homogeneity, classify speed into several levels and managing speed by indicating
additional travel time (e.g., Xu et al. 2017), or focus on one of these two problems with some simplification
of the other (e.g., Caimi et al. 2012).

Moreover, train operations require safety separation over block sections, in terms of time headway or
space headway. The safety headway, either time headway or space headway, between two consecutive trains
dynamically depends on their real speed and acceleration/deceleration rate. In real operations, we cannot
assume that all traffic runs in free-flow conditions. To deal with this issue, an integrated model with
microscopic details is needed that is able to consider variable running times and safety headways, according
to the train speed, accelerating or deceleration features.

Based on the achievements and gaps in the literature, the main contributions of this paper are summarized
as follows:

• This study integrates two single optimization problem decisions on real-time traffic management and
train control, which are typically addressed in a separated, decomposed, iterative, or non-optimized
manner in previous studies. The integrated modeling approach is innovative, and it incorporates the
representations of microscopic traffic regulations and train speed trajectories into a single optimization
model.

• An MINLP model and two MILP models are proposed to construct the real-time train timetable in a
way of optimizing the train accelerating and braking actions. A train dispatching solution and a train
control solution are delivered at once by each proposed model.

• In our models, the train speed is considered to be variable, whereas it is commonly assumed to be
constant and regarded as a minimum running time in previous traffic management research. The
blocking time dynamically depends on the real operating train speed, and we do not assume a fixed
minimum safety headway anymore.

• Comprehensive experiments are conducted based on a real-world railway network with heterogeneous
traffic1, which is relatively complex in comparison with most existing studies of the integrated problem
in the literature. An analysis of the experimental results identifies the good/satisfactory performance
of the PTSPO model and the potential benefits of the integration. The performance of the proposed
approaches on larger-scale networks is also examined on a more sophisticated railway network from
INFORMS RAS (2012).

• The proposed methods enable us to identify and evaluate the performance-related indicators. Com-
pared with the solutions neglecting train dynamics, the solutions obtained by using the proposed
methods achieve up to 8% reduction of train delay.

1In a heterogeneous situation, trains with different speeds or different stop patterns may interfere with each other.
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3. Mathematical formulations

In this section, after a problem statement and formulation assumptions, three optimization approaches
are proposed to address the integration of traffic management and train control, i.e., an MINLP approach
(PNLP) presented in Section 3.2.1, an MILP approach (PPWA) obtained by approximating the nonlinear
terms with PWA functions in Section 3.2.2, and another MILP approach (PTSPO) considering multiple
TSPOs generated in a preprocessing step (Section 3.2.3).

3.1. Problem statement and formulation assumptions

The safety headway time is the time interval between two following trains and the minimum headway
depends on the so-called “blocking time” (Pachl 2009). The blocking time is the time interval in which a
section of track (usually a block section) is exclusively allocated to a train and therefore blocked for other
trains. Thus, the blocking time lasts from the moment of issuing a train movement authorization (e.g., by
clearing a signal) to the moment that it becomes possible to issue a movement authorization to another
train to enter that same section. The blocking time of a block section is usually much longer than the time
that the train occupies the block section. Fig. 1(a) and Fig. 1(b) illustrate the blocking time of a block
section for a train without and with a scheduled stop respectively.

clearing time

release time

train
length

sight and reaction time

setup time

running time between 
block signals

minimum headway (as distance) of following trains

sighting 
distance

train
length

block section block section

sight and reaction time

setup time

approach time

clearing time

release time

running time between 
block signals

(a) train without stop

(b) train with stop

space

e
mit

Fig. 1. The blocking time of a block section for a train without/with a scheduled stop

Pachl (2009) defined the components of the blocking time illustrated in Fig. 1 as follows: 1) the setup
time is the time duration for clearing the signal before the arrival of a train; 2) the sight and reaction time
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is a certain time duration for the driver to view the signal; 3) the approach time is the time duration for
train running over the preceding block section (from the approach signal to the block signal); 4) the running
time is the time duration for a train to run on the block section; 5) the clearing time is the time duration to
clear the block section and the overlap with the full length of the train (if required) after the departure of
a train; 6) the release time is used to unlock the safety block system. Note that the five components of the
blocking time are all time durations, the former three terms are used for pre-blocking a block section, and
the latter two terms are for post-releasing a block section. Based on the explanations, the approach time
and the clearing time strongly depend on the train characteristics (e.g., train speed and train length) and
the rail network conditions (e.g., length of block section); therefore, they are considered as decision variables
and the others (e.g., the setup time) are regarded as constant in this paper.

Given a railway network with the technical and operational requirements of stations and segments (e.g.,
lengths of block section, speed limitations, and allowed/un-allowed dwelling events), a set of trains from
pre-specified origins to pre-specified destinations and with pre-specified train characteristics (e.g., length,
speed limitation, acceleration, and deceleration), the statement of the integrated traffic management and
train control problem is to determine the routes, orders, arrival times, and departure times of the trains at
passing stations by finding the optimal train speed profiles, in order to reduce the train delay, and at the
same time save the energy for accelerating and re-accelerating caused by unnecessary braking.

We focus on the investigation of the traffic operations. Thus, when constructing the formulations, we
emphasize in detail the operational aspect of the traffic and consider the train control aspect with relatively
less accuracy in computing the energy consumption (at least, compared with the studies only focusing on
train trajectory optimization). In fact, what we target is not to take decisions to change the cruising speed of
trains (as it may result in lots of delays due to the high dependence among trains), or to exploit running time
buffers to save energy (which can be done focusing on a single train at a time only, running ahead of time),
but mostly by avoiding unnecessary acceleration and deceleration due to interaction of traffic. We construct
and reschedule the train timetable by optimizing the train accelerating and braking actions. Therefore,
in our optimization problems, we make the following assumptions: (1) train acceleration is considered as
a piecewise constant function by giving a fixed switching point (breakpoint) of speed (e.g., 60 km/h) for
each train category; (2) train deceleration is constant for a certain train category and differs among train
categories; (3) the speed limit is considered as constant for a certain train category on a certain block
section, i.e., the minimum value of the designed train speed and the designed block section (track) speed,
but differs among train categories and block sections; (4) the beginning/ending point of a block section or of
a main/siding track in a station, or a point of merging/diverging of tracks on a segment, is represented by a
node; (5) a block section is described as a cell, which connects two nodes in a pair; (6) a station is simplified
to a number of main/siding track(s), which can be further modeled as a single cell or a set of cells; (7) for a
double-track railway segment between two stations, each track is modeled as a sequence of directional cells
(i.e., directional block sections), and for a single-track railway segment, the only track between two stations
is modeled as bi-directional cells (i.e., bi-directional block section); (8) the speed of a train on a cell is divided
into three phases, i.e., incoming, cruising, and outgoing phases, and train coasting is neglected (however,
a coasting phase can be introduced by assuming a piecewise constant deceleration function of the cruising
speed, as discussed in Part 2 of this paper); (9) the resistances caused by air, roll, track grade, curves, and
tunnels are not considered in this part, but they are included in Part 2 while evaluating energy consumption,
i.e., the energy consumed for overcoming resistance in accelerating, cruising, and decelerating is computed
in Part 2; (10) only one train is allowed to access a cell at any time; (11) the time step (granularity of time)
is one second. Note that the maximum acceleration and deceleration depend on the traction and braking
force. In the literature, the researchers either consider tractive force as a precise function of speed and
control (Howlett 2000), or assume constant power (then tractive force is a function of speed, e.g., Howlett
2000), or assume to have constant acceleration (Wang et al. 2016).

3.2. Three mathematical formulations for integrating the traffic management and train control

3.2.1. Formulation of the PNLP problem

Table 2 lists the sets, subscripts, input parameters, and decision variables used by the PNLP problem.
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Table 2. Sets, subscripts, input parameters, and decision variables

Symbol Description

Sets and subscripts

F set of trains, |F | is the number of trains
V set of nodes, |V | is the number of nodes
E set of cells, i.e., block sections, E ⊆ V × V , |E| is the number of cells
f train index, f ∈ F
p, i, j, k node index, p, i, j, k ∈ V
e cell index, denoted by (i, j), e ∈ E
Ef set of cells (or sections) that train f may use, Ef ⊆ E

Estop
f set of cells in which train f should stop, Estop

f ⊆ Ef , |Estop
f | is the number of stops of train f

Input parameters

of/sf origin/destination node of train f
Ltrain
f length of train f

cpri
f primary delay time of train f at its origin node

cf planned departure time of train f at its origin node
ρf direction of train f
vturn
f the train speed at the switching point of acceleration for train f
vmincru the minimum cruising speed for each train on each cell
vnlim
i train speed limitation at node i
vclim
i,j train speed limitation on cell (i, j)
Lcell
i,j length of cell (i, j)

Df,i,j planned arrival time of train f on cell (i, j), (i, j) ∈ Estop
f

wmin
f,i,j/w

max
f,i,j the minimum/maximum dwell time of train f on cell (i, j)

α1,f,i,j the maximum acceleration of train f on cell (i, j), when train speed is not larger than vturn
f

α2,f,i,j the maximum acceleration of train f on cell (i, j), when train speed is larger than vturn
f

βf,i,j the maximum deceleration of train f on cell (i, j)

τ setup
f,i,j setup time for setting cell (i, j) when trainf is approaching

τ sight
f,i,j

sight time, i.e., running time over a sight distance when train f is approaching cell (p, i).
Note that cell (p, i) is the preceding cell of cell (i, j)

τ reaction
f,i,j reaction time of train f ’s driver while approaching cell (i, j)
τ release
f,i,j release time for releasing cell (i, j) after the clearance of train f
M/ε a sufficiently large/small positive number

Decision variables

af,i,j/df,i,j arrival/departure time of train f at cell (i, j)

aturn
f,i,j/d

turn
f,i,j

time point that train f reaches the switching speed vturn
f in the incoming/outgoing phase

on cell (i, j)

acru
f,i,j/d

cru
f,i,j

time point that train f starts/ends cruising, i.e., the starting/ending time of cruising phase
on cell (i, j)

vin
f,i,j/v

cru
f,i,j/

vout
f,i,j

incoming speed, cruising speed, and outgoing speed of train f on cell (i, j)

θf,f ′,i,j
binary train ordering variables, θf,f ′,i,j = 1 if train f ′ arrives at cell (i, j) after train f , and
otherwise θf,f ′,i,j = 0

wf,i,j dwell time of train f on cell (i, j)

τapproach
f,i,j approach time of train f on cell (i, j), i.e., running time of train f on the preceding cell (p, i)

τ clear
f,i,j clearing time for clearing cell (i, j) with the length of train f
gf,i,j safety time interval between occupancy of cell (i, j) and arrival of train f
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Symbol Description

hf,i,j safety time interval between departure of train f and release of cell (i, j)
σf,i,j/δf,i,j occupancy/release time of cell (i, j) for train f

Θin
f,i,j/Θout

f,i,j
energy consumption of train f caused by traction force, represented by the difference of
the squared speeds in the incoming/outgoing phase on cell (i, j)

ζ1,f,i,j ,...,
ζ6,f,i,j

logical variables to indicate the relation of the incoming, cruising, outgoing speed, and
switching speed vturn

f , for train f on cell (i, j), as explained in Table 3

Three types of variables are used to formalize the traffic and train related decisions: time variables a and
d, speed variables v, and train order variables θ. The other variables are a consequence of the interactions
among these variables for all trains in the network, with respect to the formulas of the uniformly accelerating
and decelerating motions, definition of the blocking time, and safety requirements.
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Fig. 2. Speed-time graph of train f on cell (i, j) and cell (j, k) to illustrate the relevant decision variables

Fig. 2 illustrates the relevant variables of train f on two adjacent cells, namely cell (i, j) and cell (j, k).
The trajectory of train f on each cell is divided into three phases: incoming, cruising, and outgoing phases.
As illustrated in Fig. 2, train f enters cell (i, j) at time af,i,j with a speed vin

f,i,j , and then a sequence of the
following actions is taken on cell (i, j):

1) in the time interval [af,i,j , a
turn
f,i,j ], the train accelerates from speed vin

f,i,j to speed vturn
f at a steady accel-

eration α1,f,i,j ;

2) in the time interval [aturn
f,i,j , a

cru
f,i,j ], the train accelerates from speed vturn

f to speed vcru
f,i,j at a steady accel-

eration α2,f,i,j ;

3) in the time interval [acru
f,i,j , d

cru
f,i,j ], the train keeps a constant speed vcru

f,i,j ;

4) in the time interval [dcru
f,i,j , df,i,j − wf,i,j ], the train decelerates from speed vcru

f,i,j to speed vout
f,i,j (i.e., 0

km/h in this case) at a steady deceleration −βf,i,j ;
5) in the time interval [df,i,j − wf,i,j , df,i,j ], the train dwells in cell (i, j).

Then, train f departs from cell (i, j) at time df,i,j . Meanwhile, train f arrives at cell (j, k) at time af,j,k,

and starts accelerating. As train f does not reach the switching speed vturn
f in the incoming phase of cell

(j, k), only one acceleration α1,f,i,j is used. Note that the sequence of the action(s) taken by a train on a cell
do not follow a pre-specified frame (like the one described above); in fact, it is determined by optimizing the
time variables (a/d) and speed variables (v). For instance, a train may take a sequence of actions to first
accelerate and then decelerate on a cell (i.e., vin

f,i,j < vcru
f,i,j and vout

f,i,j < vcru
f,i,j), and it may also take only one

action to keep a constant speed traversing the cell (i.e., vin
f,i,j = vcru

f,i,j = vout
f,i,j). All possible train trajectories

in the incoming and outgoing phases are intuitively provided and explained in Table 6 of Appendix A.1.
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We next formulate the integrated traffic management and train control problem. As commonly used in
train dispatching optimization problems, each train is assigned a planned arrival time at each planned stop.
In the objective function, we minimize the sum over all trains of the mean absolute delay time at all visited
stations, i.e., minimizing the deviation from the planned train timetable:

minZ =
∑
f∈F

∑
(i,j)∈Estop

f

|df,i,j − wf,i,j −Df,i,j |∣∣∣Estop
f

∣∣∣ , (1)

The train speed consistency constraint

vout
f,i,j = vin

f,j,k, ∀f ∈ F, j 6= of , (i, j) ∈ Ef , (j, k) ∈ Ef (2)

ensures the consistency of the train speed between two adjacent cells, i.e., the incoming speed of train f on
cell (j, k) equals to its outgoing speed on the preceding cell (i, j).

A set of train speed limitation constraints is presented, in which

vin
f,of ,j

= 0, ∀f ∈ F, (of , j) ∈ Ef , (3)

vout
f,j,sf

= 0, ∀f ∈ F, (j, sf ) ∈ Ef (4)

guarantee that trains stop at their origins and destinations respectively, i.e., the incoming speed of the origin
cell (of , j) and the outgoing speed of the destination cell (j, sf ) is zero, and

0 ≤ vin
f,i,j ≤ vnlim

i , ∀f ∈ F, (i, j) ∈ Ef , (5)

0 ≤ vout
f,i,j ≤ vnlim

j , ∀f ∈ F, (i, j) ∈ Ef , (6)

vmincru ≤ vcru
f,i,j ≤ vclim

i,j , ∀f ∈ F, (i, j) ∈ Ef (7)

ensure that train speed cannot exceed the given speed limitation at each node and on each cell.
The following constraint

af,i,j ≤ aturn
f,i,j ≤ acru

f,i,j ≤ dcru
f,i,j ≤ dturn

f,i,j ≤ df,i,j − wf,i,j , ∀f ∈ F, (i, j) ∈ Ef (8)

ensures a proper sequence of the multiple events of train f on cell (i, j), e.g., train arrival, cruising, and
departure occur in sequence.

The cell-to-cell transition constraint

df,i,j = af,j,k, ∀f ∈ F, (i, j) ∈ Ef , (j, k) ∈ Ef (9)

enforces the transition time between two adjacent cells, i.e., the departure time of train f on the preceding
cell (i, j) equals the arrival time of train f on the successive cell (j, k), if two adjacent cells (i, j) and (j, k)
are used consecutively by train f .

The earliest departure time constraint

af,of ,j ≥ cf + cpri
f , ∀f ∈ F, (of , j) ∈ Ef (10)

ensures that trains do not leave their origins before the earliest departure time, i.e., the sum of the planned
departure time and the primary delay time.

A set of train dwell time constraints is considered, in which

wmin
f,i,j ≤ wf,i,j ≤ wmax

f,i,j , ∀f ∈ F, (i, j) ∈ Ef (11)

guarantees the required minimum and maximum dwell times at stations, and{
vout
f,i,j = 0, if wf,i,j > 0

vout
f,i,j > 0, if wf,i,j = 0

, ∀f ∈ F, (i, j) ∈ Ef (12)

links the outgoing speed variables vout
f,i,j and the dwell time variables wf,i,j . The maximum dwell time is

used to avoid un-allowed dwell events of trains. If a train is allowed to stop on a block section (in a general
case), then the corresponding maximum dwell time is set to be sufficiently large; if a train is required to not
stop on some particular block sections, then the maximum dwell times on these particular block sections
are set to be zero. In (12), if train f stops on cell (i, j), i.e., the dwell time wf,i,j is larger than zero, then
the corresponding outgoing speed vout

f,i,j equals zero; otherwise, vout
f,i,j should be larger than zero. Note that
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constraint (12) is an “if-then” constraint, which can be rewritten as mixed-integer linear constraints by
applying the transformation properties in Williams (2013), which will be introduced in Section 3.2.2.

The cell length constraints can be written as

Lcell
i,j = Lin

f,i,j + Lcru
f,i,j + Lout

f,i,j , ∀f ∈ F, (i, j) ∈ Ef , (13)

where Lin
f,i,j , L

cru
f,i,j , and Lout

f,i,j indicate the distance that train f runs through on cell (i, j) in the incoming,
cruising, and outgoing phases respectively; these distances are given by the following equations:

Lin
f,i,j =


1
2

(
vin
f,i,j + vturn

f

)(
aturn
f,i,j − af,i,j

)
+ 1

2

(
vturn
f + vcru

f,i,j

)(
acru
f,i,j − aturn

f,i,j

)
, if vin

f,i,j ≤ vturn
f ≤ vcru

f,i,j

1
2

(
vin
f,i,j + vcru

f,i,j

)(
acru
f,i,j − af,i,j

)
, otherwise

(14a)

Lcru
f,i,j = vcru

f,i,j ·
(
dcru
f,i,j − acru

f,i,j

)
, (14b)

Lout
f,i,j =


1
2

(
vcru
f,i,j + vturn

f

)(
dturn
f,i,j − dcru

f,i,j

)
+ 1

2

(
vturn
f + vout

f,i,j

)(
df,i,j − wf,i,j − dturn

f,i,j

)
, if vcru

f,i,j ≤ vturn
f ≤ vout

f,i,j

1
2

(
vcru
f,i,j + vout

f,i,j

)(
df,i,j − wf,i,j − dcru

f,i,j

)
, otherwise

(14c)

These equations derive from the basic formulas of uniformly accelerating or decelerating motions, i.e., for
such a motion with an initial speed vo, a final speed vt and an elapsed time ∆t, the distance traveled is
L = v0+vt

2 ·∆t. Note that the distance Lin
i,j that train f runs over on cell (i, j) equals the length of cell (i, j)

and corresponds to the shaded area in Fig. 2. Constraints (14a)-(14c) are nonlinear, due to the nonlinear
dynamics of time, speed, and distance.

The approach time and clearing time constraints can be written as

τapproach
f,j,k =

{
0, if wf,i,j > 0

df,i,j − af,i,j , if wf,i,j = 0
, ∀f ∈ F, (i, j) ∈ Ef , (j, k) ∈ Ef , (15)

τ clear
f,p,i = 2 · Ltrain

f

/
(vout
f,p,i + vcru

f,i,j), ∀f ∈ F, (p, i) ∈ Ef , (i, j) ∈ Ef . (16)

These two constraints are also nonlinear. In (15), if train f does not stop on the preceding cell (i, j), the
approach time of train f on cell (j, k) equals its running time on the preceding cell (i, j); otherwise, the
approach time of train f on cell (j, k) equals zero. This “if-then” constraint can be rewritten as mixed-integer
linear constraints by applying the transformation properties in Williams (2013), which will be introduced in
Section 3.2.2. The clearing time of train f on cell (p, i) is determined in (16) according to its incoming and
cruising speed on the successive cell (i, j).

A set of equations is proposed for determining the safety time interval illustrated in Fig. 1, in which:

gf,i,j = τ setup
f,i,j + τ sight

f,i,j + τ reaction
f,i,j + τapproach

f,i,j , ∀f ∈ F, (i, j) ∈ Ef (17)

defines the safety time interval between cell occupancy and train arrival, including the setup time τ setup
f,i,j ,

the sight time τ sight
f,i,j , the reaction time τ reaction

f,i,j , and the approach time τapproach
f,i,j , and

hf,i,j = τ release
f,i,j + τ clear

f,i,j , ∀f ∈ F, (i, j) ∈ Ef (18)

calculates the safety time interval between train departure and cell release, including the release time τ release
f,i,j

and the clearing time τ clearing
f,i,j .

Then, the cell occupancy and cell release times, i.e., the blocking time for train f traversing cell (i, j),
can be respectively written as

σf,i,j = af,i,j − gf,i,j , ∀f ∈ F, (i, j) ∈ Ef , (19)

δf,i,j = df,i,j + hf,i,j , ∀f ∈ F, (i, j) ∈ Ef . (20)

The following constraint

θf,f ′,i,j + θf ′,f,i,j = 1, ∀f ∈ F, f ′ ∈ F, (i, j) ∈ Ef , (i, j) ∈ Ef ′ (21)

indicates that either train f ’ arrives at cell (i, j) after train f or train f arrives at cell (i, j) after train f ′.
Recall that as cells can be bi-directional, trains can use the same cell in different directions, i.e., it is

possible to use cell (i, j) and (j, i). Based on the restriction of the train orders in (21), the cell capacity
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constraints can be written as

σf ′,i,j + (1− θf,f ′,i,j) ·M ≥ δf,i,j , ∀f ∈ F, f ′ ∈ F, f 6= f ′, ρf = ρf ′ , (i, j) ∈ Ef , (i, j) ∈ Ef ′ , (22)

σf ′,j,i + (1− θf,f ′,i,j) ·M ≥ δf,i,j , ∀f ∈ F, f ′ ∈ F, f 6= f ′, ρf 6= ρf ′ , (i, j) ∈ Ef , (j, i) ∈ Ef ′ . (23)

Constraints (22) and (23) ensure that any pair of trains using one cell in the same or different direction
respectively are conflict-free, by avoiding the overlap between the cell release time for a preceding train and
the cell occupancy time for a successive train. Specifically, for both train f and f ′ traversing cell (i, j) (i.e.,
with the same running direction ρf = ρf ′), if train f ′ arrives at cell (i, j) after train f , i.e., θf,f ′,i,j = 1,
constraint (23) is non-active and (22) reduces to σf ′,i,j ≥ δf,i,j , which implies that the occupancy time of
cell (i, j) for train f ′ should be later than the release time of cell (i, j) for train f .

Table 3. Explanation of the speed indicators ζ1,f,i,j , ..., ζ6,f,i,j for train f on cell (i, j)

Incoming phase Outgoing phase

Speed conditions vin
f,i,j ≤ vcru

f,i,j vturn
f ≤ vin

f,i,j vcru
f,i,j ≤ vturn

f vcru
f,i,j ≤ vout

f,i,j vturn
f ≤ vcru

f,i,j vout
f,i,j ≤ vturn

f

m m m m m m
Speed indicators ζ1,f,i,j = 1 ζ3,f,i,j = 1 ζ4,f,i,j = 1 ζ2,f,i,j = 1 ζ5,f,i,j = 1 ζ6,f,i,j = 1

To formulate the uniformly accelerating and decelerating motions, six logical speed indicators ζ1,f,i,j ,
..., ζ6,f,i,j are used to indicate the train speed. Table 3 gives an overview of the link between the speed
conditions and the speed indicators, and Appendix A.1 provides the detailed explanation of these indicators.
By adapting the transformation properties in Williams (2013) (briefly introduced in Section 3.2.2), these
if-then constraints can be further represented by a set of linear inequalities. For instance, ζ1,f,i,j = 1, if and

only if vin
f,i,j ≤ vcru

f,i,j can be represented by the following inequalities:

vin
f,i,j − vcru

f,i,j ≤ vnlim
i ·

(
1− ζ1,f,i,j

)
, (24a)

vin
f,i,j − vcru

f,i,j ≥ ε+
(
−vclim

i,j − ε
)
· ζ1,f,i,j , (24b)

where vnlim
i is the upper bound of (vin

f,i,j − vcru
f,i,j) and −vclim

i,j is the lower bound of (vin
f,i,j − vcru

f,i,j).
Thanks to the logical speed indicators ζ1,f,i,j , ..., ζ6,f,i,j , we can formulate the uniformly accelerating

and decelerating motion in a linear manner and consider multiple scenarios (in which different values of
acceleration and deceleration are required) at once. The following set of constraints is presented for the
incoming phase, in which

−v
cru
f,i,j−v

in
f,i,j

βf,i,j
−M · ζ1,f,i,j ≤ acru

f,i,j − af,i,j ≤ −
vcruf,i,j−v

in
f,i,j

βf,i,j
+M · ζ1,f,i,j (25a)

indicates the uniformly decelerating motion at a steady deceleration −βf,i,j ,
vcruf,i,j−v

in
f,i,j

α2,f,i,j
−M · (2− ζ1,f,i,j − ζ3,f,i,j) ≤ acru

f,i,j − af,i,j ≤
vcruf,i,j−v

in
f,i,j

α2,f,i,j
+M · (2− ζ1,f,i,j − ζ3,f,i,j) (25b)

indicates the uniformly accelerating motion at a steady acceleration α2,f,i,j , when the train speed is always
larger than the switching speed vturn

f ,

vcruf,i,j−v
in
f,i,j

α1,f,i,j
−M · (2− ζ1,f,i,j − ζ4,f,i,j) ≤ acru

f,i,j − af,i,j ≤
vcruf,i,j−v

in
f,i,j

α1,f,i,j
+M · (2− ζ1,f,i,j − ζ4,f,i,j) (25c)

indicates the uniformly accelerating motion at a steady acceleration α1,f,i,j , when the train speed is always
less than the switching speed vturn

f , and

vturn
f −vinf,i,j
α1,f,i,j

−M · (1− ζ1,f,i,j + 2 · ζ3,f,i,j + 2 · ζ4,f,i,j) ≤ aturn
f,i,j − af,i,j

≤ vturnf −vinf,i,j
α1,f,i,j

+M · (1− ζ1,f,i,j + 2 · ζ3,f,i,j + 2 · ζ4,f,i,j)
(25d)

vcruf,i,j−v
turn
f

α2,f,i,j
−M · (1− ζ1,f,i,j + 2 · ζ3,f,i,j + 2 · ζ4,f,i,j) ≤ acru

f,i,j − aturn
f,i,j

≤ vcruf,i,j−v
turn
f

α2,f,i,j
+M · (1− ζ1,f,i,j + 2 · ζ3,f,i,j + 2 · ζ4,f,i,j)

(25e)
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indicate a two-stage uniformly accelerating motion, i.e., the train first accelerates at a steady acceleration
α1,f,i,j and then accelerates at a steady acceleration α2,f,i,j . The detailed explanation of (25) is provided
in Appendix A.2.

To compute the time points aturn
f,i,j and dturn

f,i,j under some special scenarios, e.g., a train does not reach the

switching speed vturn
f on a cell, the following set of constraints is proposed for the incoming phase:

aturn
f,i,j ≤ af,i,j +M · |ζ1,f,i,j − ζ3,f,i,j | , (26a)

aturn
f,i,j ≥ acru

f,i,j −M · |ζ1,f,i,j − ζ4,f,i,j | . (26b)

Specifically, when ζ1,f,i,j = ζ3,f,i,j , i.e., vturn
f ≤ vin

f,i,j ≤ vcru
f,i,j or vcru

f,i,j < vin
f,i,j < vturn

f , constraint (26a)

reduces to aturn
f,i,j ≤ af,i,j . Since af,i,j ≤ aturn

f,i,j is required in (8), we can further obtain aturn
f,i,j = af,i,j , i.e., let

the time point that train f reaches the speed vturn
f on cell (i, j) equals the arrival time of the train. The

formulations similar to (25) and (26) can also be constructed for the outgoing phase.
The optimization problem including the objective function (1) and constraints (2)-(26), is called the

PNLP problem, among which there are if-then constraints, i.e., (12) and (15), and nonlinear constraints, i.e.,
(14) and (16).

3.2.2. Formulation of the PPWA Model: the PNLP Model approximated by using PWA functions

This section proposes the MILP problem (PPWA) by reformulating and approximating the nonlinear terms
in the PNLP problem, i.e., (12), (14), (15), and (16). A PWA function is adopted for the approximation, as
well as three transformation properties proposed in Williams (2013), which are briefly introduced as below.
Interested readers may refer to this reference for more details.

Let us consider the statement f̃ (x̃) ≤ 0, where f̃ : Rn → R is affine, x̃ ∈ χ with χ ⊂ Rn and let
Q̃ = max

x̃∈χ
f̃ (x̃), q̃ = min

x̃∈χ
f̃ (x̃).

• Transformation property I : if we introduce a logical variable l ∈ {0, 1}, then the following equiv-

alence holds:
[
f̃ (x̃) ≤ 0

]
⇔ [l = 1] is true iff f̃ (x̃) ≤ Q̃ · (1− l) and f̃ (x̃) ≥ ε+ (q̃ − ε) · l.

• Transformation property II : the product of two logical variables l1 and l2 can be replaced by an
auxiliary logical variable l3 = l1 · l2, i.e., [l3 = 1] ⇔ [l1 = l2 = 1], which is equivalent to three linear
inequalities: −l1 + l3 ≤ 0, −l2 + l3 ≤ 0 and l1 + l2 − l3 ≤ 1.

• Transformation property III : the product l · f̃ (x̃) can be replaced by the auxiliary real variable

r = l · f̃ (x̃), which satisfies [l = 0]⇒ [r = 0] and [l = 1]⇒
[
r = f̃ (x̃)

]
. Then r = l · f̃ (x̃) is equivalent

to four inequalities: r ≤ Q̃ · l, r ≥ q̃ · l, r ≤ f̃ (x̃)− q̃ · (1− l) and r ≥ f̃ (x̃)− Q̃ · (1− l).

Note that Transformation property I has been used to formulate (24) for the speed indicators in Table 3
of Section 3.2.1. Moreover, the if-then constraints (12) and (15) can be reformulated as linear constraints
by using Transformation property I (for the sake of compactness, we do not present the details here).

To approximate the nonlinear terms, constraint (14a) for calculating Lin
f,i,j is first reformulated as the

following set of linear constraints by using the logical speed indicators ζ1,f,i,j , ζ3,f,i,j , and ζ4,f,i,j :

− (vcruf,i,j)2−(vinf,i,j)2

2·βf,i,j
−M · ζ1,f,i,j ≤ Lin

f,i,j ≤ −
(vcruf,i,j)2−(vinf,i,j)2

2·βf,i,j
+M · ζ1,f,i,j , (27a)

(vcruf,i,j)2−(vinf,i,j)2

2·α2,f,i,j
−M · (2− ζ1,f,i,j − ζ3,f,i,j) ≤ Lin

f,i,j ≤
(vcruf,i,j)2−(vinf,i,j)2

2·α2,f,i,j
+M · (2− ζ1,f,i,j − ζ3,f,i,j), (27b)

(vcruf,i,j)2−(vinf,i,j)2

2·α1,f,i,j
−M · (2− ζ1,f,i,j − ζ4,f,i,j) ≤ Lin

f,i,j ≤
(vcruf,i,j)2−(vinf,i,j)2

2·α1,f,i,j
+M · (2− ζ1,f,i,j − ζ4,f,i,j), (27c)

(vturn
f )

2−(vinf,i,j)2

2·α1,f,i,j
+

(vcruf,i,j)2−(vturn
f )

2

2·α2,f,i,j
−M · (1− ζ1,f,i,j + 2 · ζ3,f,i,j + 2 · ζ4,f,i,j) ≤ Lin

f,i,j

≤ (vturnf )
2−(vinf,i,j)2

2·α1,f
+

(vcruf,i,j)2−(vturnf )
2

2·α2,f,i,j
+M · (1− ζ1,f,i,j + 2 · ζ3,f,i,j + 2 · ζ4,f,i,j) .

(27d)
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These constraints satisfy the uniformly accelerating and decelerating motions, and the detailed explanation
of (27) is provided in Appendix A.3. Constraints similar to (27) can also be constructed for reformulating
(14c) and for further calculating Lout

f,i,j , but for the sake of compactness, we do not report those details here.

Let $in
f,i,j , $

cru
f,i,j , and $out

f,i,j be the square of vin
f,i,j , v

cru
f,i,j , and vout

f,i,j respectively, as formulated in (28):

$in
f,i,j =

(
vin
f,i,j

)2
, ∀f ∈ F, (i, j) ∈ Ef , (28a)

$cru
f,i,j =

(
vcru
f,i,j

)2
, ∀f ∈ F, (i, j) ∈ Ef , (28b)

$out
f,i,j =

(
vout
f,i,j

)2
, ∀f ∈ F, (i, j) ∈ Ef . (28c)

As a result, (27a)-(27d) become linear, and instead (28a)-(28c) are nonlinear and should be approximated.
The reason that we first reformulate (14a) and (14c) as above is to reduce the number of nonlinear terms
that need to be approximated, i.e., by introducing (28), (27) and those constraints for reformulating (14c)
become linear. Regarding (14b) that calculates Lcru

f,i,j for the cruising phase, an additional step is needed to

reformulate the nonlinear term x · y as (x+y)2−(x−y)2

4 , i.e., reformulating (14b) as follows:

Lcru
i,j =

1

4
·
[(
vcru
f,i,j + dcru

f,i,j − acru
f,i,j

)2 − (vcru
f,i,j − dcru

f,i,j + acru
f,i,j

)2]
. (29)

Then, by defining

mf,i,j =
(
vcru
f,i,j + dcru

f,i,j − acru
f,i,j

)2
, (30a)

nf,i,j =
(
vcru
f,i,j − dcru

f,i,j + acru
f,i,j

)2
, (30b)

equation (29) becomes linear, and instead (30a)-(30b) need to be approximated by using PWA functions, as
will be explained next.

Based on the above reformulation, the nonlinear constraints (16), (28), and (30) need to be further
approximated by using PWA functions. For simplicity, we only describe the approximating process of (28a)
here; a similar process can be followed for approximating the other nonlinear constraints.
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3(a) Upper line fitting method 3(b) Lower line fitting method

Fig. 3. The PWA approximation of the non-linear function

We adopt an approximation using three affine sub-functions as illustrated in Fig. 3. Note that more affine
sub-functions can be selected if needed; the approach then stays similar in such a case. We consider two kinds
of line fitting methods, namely the upper/lower line fitting method, where the values of the approximated
line segments are no less/greater than the original curve, as shown in Fig. 3(a)-Fig. 3(b) respectively. The
relevant coefficients regarding the three line segments (e.g., vin bk

2,f,i,j and vin bk
3,f,i,j) are determined through

minimizing the approximation errors between the original curve (indicated in black) and three line segments
(indicated in blue). It is worth noting that the reason of using these two methods is to keep the approximated
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constraints feasible. For instance, constraint (28a) should be approximated by using the lower line fitting
method in Fig. 3(b), in order to guarantee that the approximated value of the train speed is not greater than
its actual value and the corresponding speed limitation as well. Additionally, the approximated value of the
time, the distance, and the square of the train speed should not be negative, so we keep all approximated
values non-negative.

The PWA approximation of the nonlinear function (28a) over the interval
[
min

(
vin
f,i,j

)
,max

(
vin
f,i,j

)]
,

i.e.,
[
vin bk

1,f,i,j , v
in bk
4,f,i,j

]
, can be written as

u1,PWA

(
vin
f,i,j

)
= $in

f,i,j =


µ1,f,i,j · vin

f,i,j + η1,f,i,j , if vin bk
1,f,i,j ≤ vin

f,i,j ≤ vin bk
2,f,i,j

µ2,f,i,j · vin
f,i,j + η2,f,i,j , if vin bk

2,f,i,j ≤ vin
f,i,j ≤ vin bk

3,f,i,j

µ3,f,i,j · vin
f,i,j + η3,f,i,j , if vin bk

3,f,i,j ≤ vin
f,i,j ≤ vin bk

4,f,i,j

(31)

where µx,f,i,j and ηx,f,i,j are coefficients, x = 1, ..., 3.

Let us consider the logical variables λ1,f,i,j and λ2,f,i,j to satisfy the conditions
[
vin
f,i,j − vin bk

2,f,i,j ≤ 0
]
⇔

[λ1,f,i,j = 1] and
[
vin
f,i,j − vin bk

3,f,i,j ≤ 0
]
⇔ [λ2,f,i,j = 1], which can be represented as a set of linear inequalities

by using Transformation property I (Williams 2013). Then, the function (31) can be rewritten as

u1,PWA

(
vin
f,i,j

)
= $in

f,i,j = λ1,f,i,j · λ2,f,i,j ·
(
µ1,f,i,j · vin

f,i,j + η1,f,i,j

)
+ (1− λ1,f,i,j) · λ2,f,i,j ·

(
µ2,f,i,j · vin

f,i,j + η2,f,i,j

)
+ (1− λ1,f,i,j) · (1− λ2,f,i,j) ·

(
µ3,f,i,j · vin

f,i,j + η3,f,i,j

) (32)

We introduce the auxiliary logical variable λ3,f,i,j to replace the product λ1,f,i,j · λ2,f,i,j . According to
Transformation property II, the condition λ3,f,i,j = λ1,f,i,j · λ2,f,i,j can also be rewritten as a system of
linear inequalities. Moreover, by defining new auxiliary variables zx,f,i,j = λx,f,i,j · vin

f,i,j , x = 1, ..., 3, which
can be expressed as a set of linear inequalities by adapting Transformation property III, the function (32)
can be further rewritten as

u1,PWA

(
vin
f,i,j

)
= $in

f,i,j = z3,f,i,j · (µ1,f,i,j − µ2,f,i,j + µ3,f,i,j) + z2,f,i,j · (µ2,f,i,j − µ3,f,i,j)

+λ3,f,i,j · (η1,f,i,j − η2,f,i,j + η3,f,i,j) + λ2,f,i,j · (η2,f,i,j − η3,f,i,j)
−z1,f,i,j · µ3,f,i,j − λ1,f,i,j · η3,f,i,j + µ3,f,i,j · vin

f,i,j + η3,f,i,j

(33)

Finally, the nonlinear constraints (28a) can be replaced by the linear equation (33) and those linear in-
equalities obtained by using the three transformation properties, three logical variables λ1,f,i,j , λ2,f,i,j , λ3,f,i,j ,
and three auxiliary variables z1,f,i,j , z2,f,i,j , z3,f,i,j . Similar process can be followed for approximating the
nonlinear constraints (16), (28b), (28c), and (30) by applying the three transformation properties and in-
troducing extra logical variables and auxiliary variables, thus we do not report those details in this paper.

In particular, the clearing time constraint (16) is approximated by using a piece-wise constant function.
We can also use the transformation properties in Williams (2013) to approximate (16), similar to the
approximating process of (28a).

The optimization problem including the objective function (1), constraints (2)-(11), (13), (17)-(26), (27),
(29), (33), and those constraints for reformulating (12) and (15) and for approximating (16), (28b), (28c),
and (30), which are not detailed in this paper, is called the PPWA problem.

3.2.3. Formulation of the PTSPO problem: considering multiple train speed profile options (TSPOs) generated
in a preprocessing step

In this section, another MILP problem (PTSPO) considering multiple TSPOs is developed. A prepro-
cessing step is used to generate multiple TSPOs, in order to restrict the search only to an efficient subset
of all possible TSPOs. We still refer to the notations in Table 2, with the changes listed in Table 4. Note
that the pre-generated TSPOs respect the formulas of the uniformly accelerating/decelerating motion and
the technical requirements of train operations and infrastructures, e.g., train speed limitation, train accel-
eration/deceleration (which depends on traction/braking force), and length of block section.
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Table 4. Changes of sets, subscripts, parameters, and variables for the PTSPO problem, compared with
Table 2

Type of
changes

Symbol Description

added set Yf,i,j
the set of options of train speed profile vectors that train f may follow on cell (i, j), |Yf,i,j |
is the number of TSPOs for train f on cell (i, j)

added
subscript

b TSPO index, bf,i,j = 1, ..., |Yf,i,j |, which indicates the TSPO index of train f on cell (i, j)

added
parameter

yf,i,j,b the bth train speed profile vector, yf,i,j,b ∈ Yf,i,j

added
variable

ϑf,i,j,b
binary variables, ϑf,i,j,b = 1 if the corresponding train speed vector yf,i,j,b is used by train f

on cell (i, j), and otherwise ϑf,i,j,b = 0

added
parameter

yin
f,i,j,b, y

cru
f,i,j,b,

yout
f,i,j,b

the bth incoming, cruising, and outgoing speed of train f on cell (i, j),

yf,i,j,b =
[
yin
f,i,j,b ycru

f,i,j,b yout
f,i,j,b

]> ∈ Yf,i,j
changed to
parameters

Lin
f,i,j,b/L

out
f,i,j,b

distance that train f runs over on cell (i, j) in the incoming/outgoing phase in the bth train
speed profile vector yf,i,j,b

changed to
parameters

ζ1,f,i,j,b, ...,

ζ6.f,i,j,b

logical parameters to indicate the relation of the incoming, cruising, outgoing speed, and
switching speed vturn

f in the bth train speed profile vector yf,i,j,b, refer to Table 3

For each train on each cell, some train speed profile vectors yf,i,j,b are given, and each vector contains

a possible set of incoming, cruising, and outgoing speeds, i.e., yf,i,j,b =
[
yin
f,i,j,b ycru

f,i,j,b yout
f,i,j,b

]>
. Logical

parameters ζ1,f,i,j,b, ..., ζ6,f,i,j,b are used to indicate the speed conditions in the corresponding train speed
profile vector yf,i,j,b, as explained in Table 3. The problem objective is also to minimize the total train delay
times at all visited stations, as formulated in (1). In addition, some constraints used by the PTSPO problem
are presented as follows:

vin
f,i,j =

|Yf,i,j |∑
b=1

ϑf,i,j,b · yin
f,i,j,b, ∀f ∈ F, (i, j) ∈ Ef , (34)

vcru
f,i,j =

|Yf,i,j |∑
b=1

ϑf,i,j,b · ycru
f,i,j,b, ∀f ∈ F, (i, j) ∈ Ef , (35)

vout
f,i,j =

|Yf,i,j |∑
b=1

ϑf,i,j,b · yout
f,i,j,b, ∀f ∈ F, (i, j) ∈ Ef , (36)

|Yf,i,j |∑
b=1

ϑf,i,j,b = 1, ∀f ∈ F, (i, j) ∈ Ef (37)

ϑf,i,j,b ·
(Lcell

i,j −L
in
f,i,j,b−L

out
f,i,j,b)

ycruf,i,j,b
≤ dcru

f,i,j − acru
f,i,j ≤

(Lcell
i,j −L

in
f,i,j,b−L

out
f,i,j,b)

ycruf,i,j,b
+M · (1− ϑf,i,j,b) (38)

(df,i,j−af,i,j)·yout
f,i,j,b

ε+yout
f,i,j,b

−M · (1− ϑf,i,j,b) ≤ τapproach
f,j,k ≤ (df,i,j−af,i,j)·youtf,i,j,b

ε+youtf,i,j,b
+M · (1− ϑf,i,j,b),

∀f ∈ F, (i, j) ∈ Ef , (j, k) ∈ Ef , b = 1, ..., |Yf,i,j |
(39)

τ clear
f,p,i =

|Yf,i,j |∑
b=1

2 · Ltrain
f · ϑf,i,j,b

yin
f,i,j,b + ycru

f,i,j,b

, ∀f ∈ F, (p, i) ∈ Ef , (i, j) ∈ Ef (40)

Constraints (34)-(36) determine the selected incoming, cruising, and outgoing speed respectively, i.e., if
ϑf,i,j,b = 1, then vin

f,i,j = yin
f,i,j,b, v

cru
f,i,j = ycru

f,i,j,b, and vout
f,i,j = yout

f,i,j,b. Constraint (37) ensures that one and
only one TSPO is selected for each train on each cell. Constraint (38) is the cell length constraint, which
restricts the distance that a train runs over on a cell. Specifically, if ϑf,i,j,b = 1, i.e., the bth train speed profile

vector yf,i,j,b is used, constraint (38) reduces to a linear equation dcru
f,i,j−acru

f,i,j =
(Lcell

i,j −L
in
f,i,j,b−L

out
f,i,j,b)

ycruf,i,j,b
, which

satisfies the basic formula “time = distance
constant speed” of the uniform motion. Constraints (39) and (40) define
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the approach time and clearing time respectively. Note that if train f stops on cell (i, j), i.e., ϑf,i,j,b = 1
and yout

f,i,j,b = 0, the approach time of train f on the successive cell (j, k) should be zero. To avoid the error
that the denominator is zero, a sufficiently small positive number ε is used in (39).

The optimization problem including the objective function (1), constraints (2)-(4), (8)-(11), (17)-(23),
(25)-(26), and (34)-(40), is called the PTSPO problem.

4. Solution approaches

In this section, we introduce the solution approaches for solving the proposed optimization approaches,
i.e., a two-level approach for solving the PNLP problem and a custom-designed two-step approach for solving
the PTSPO problem. Regarding the solution approach of the PPWA problem, an MILP solver can be used,
such as CPLEX or Gurobi.

4.1. A two-level approach for solving the PNLP problem

The nonlinear dynamics of the PNLP problem limit its scalability and applicability for large-scale in-
stances. Thus, we propose a two-level approach to solve the PNLP problem, as illustrated in Fig. 4(a), where
a genetic algorithm based heuristic is introduced to generate the possible train orders based on the track
layouts, train routes, delays, etc. in the upper level, and a nonlinear programming method is used in the
lower level to optimize the departure/arrival times and the train speed profiles under the fixed train orders.

In the upper level, to describe the entire set of train orders in the network, we use a chromosome. This is
defined as a vector that is composed by several sub-vectors. There is a sub-vector for each merging/diverging
point (i.e., where train orders can change; we call them relevant points in what follows) of the network. A
sub-vector is used to indicate the train orders at that specific relevant point. In order to generate feasible
initial populations, the train orders defined in the original train timetable or the initial solution can be used
as a starting point. In addition, we only adopt the mutation operation for the genetic algorithm used in this
paper to generate feasible chromosomes. In particular, the mutation operation is carried out by swapping
the order of two trains at a relevant point inside the chromosomes. Since the orders of trains at the relevant
points are related to each other, the order of these two chosen trains at other relevant points may need to be
swapped accordingly. Furthermore, the train delays at the relevant points are also used as a supplement for
the decision of swapping trains. After a new population is generated, the nonlinear programming method
in the lower level is used to optimize the departure/arrival times and train speed profiles and to obtain the
fitness for each chromosome. We terminate the genetic algorithm after a given number of generations, i.e.,
10 generations considered in our case.

Due to the non-convexity of using the PNLP problem for the nonlinear optimization problem, the two-level
approach can only obtain a local minimum for the departure/arrival times and speeds, by given the train
orders; therefore, the final solution of the nonlinear optimization problem is a local minimum associated with
the best upper level solution. The two-level approach with multiple initial solutions (including multiple initial
train orders for the upper level and multiple initial departure/arrival times and train speeds for the lower
level) could improve the performance, but reaching the global optimum can in general not be guaranteed.
The initial solution could be the original timetable or the initial solution obtained by the PTSPO problem
through considering a fixed full TSPO for each train, as indicated by the blue dashed line in Fig. 4.

4.2. A custom-designed two-step approach for solving the PTSPO problem

The PTSPO problem is an MILP problem that can be solved by a standard MILP solver. Inspired
by the good performance on similar problems in Xu et al. (2017), a custom designed two-step approach is
particularly developed to solve the PTSPO problem, in order to speed up the solving procedure, as illustrated
in Fig. 4(b).

As the PTSPO problem is defined by considering multiple pre-determined TSPOs, a preprocessing stage
is used to generate the possible TSPOs (by Function A) and to clarify the full TSPO (by Function B). Each
TSPO generated by Function A respects the formulas of the uniformly accelerating/decelerating motion
and the technical requirements of train operations and infrastructures, e.g., train speed limitation, train
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Fig. 4. Illustration of the solution approaches

acceleration/deceleration (which depends on traction/braking force), and length of block section. The full
TSPO for each train derives from the corresponding set of all possible TSPOs, by selecting the fastest TSPO
from this set that lets the train run as fast as possible. In Function C of the solving stage, we consider
the selected full TSPO only to solve the PTSPO problem by using a standard MILP solver, which results
in an initial solution (i.e., an upper bound with a fixed full TSPO for each train). Then, the obtained
initial solution is given as one feasible solution to the MILP solver, for solving the PTSPO problem with the
larger set of all possible TSPOs. Therefore, in Function D, an improved secondary solution can be obtained
through optimizing the TSPOs (and optimizing the train orders as well). Moreover, the train orders of
the initial solution can also be given as an input of the problem in Function D; as a result, we can obtain
an improved secondary solution with fixed train orders. Due to the limited number of TSPOs resulting
from the preprocessing stage, only a local optimal solution can be obtained for the PTSPO problem and its
performance strongly depends on the given subset of TSPOs.

5. Numerical experiments

Before reporting the experimental results, we first describe the dataset in Section 5.1, i.e., a Dutch
railway network. In Section 5.2, we compare the overall performance of the three proposed optimization
approaches based on the Dutch test case described in Section 5.1. For the PPWA problem and the PTSPO

problem, we have multiple computational configurations; therefore, we further investigate the impact of
these configurations on the results. In Sections 5.3, the analysis of the PPWA problem focuses on assessing
the effectiveness of the approximation when using different line fitting methods, from the viewpoints of
feasibility and approximation error. For the PTSPO problem, Sections 5.4 investigates the impact of the
TSPOs generated in the preprocessing step on the solution quality, by considering different sets of discrete
speed values. Moreover, we explore the benefits of changing train orders and managing train speeds. Finally,
a lower bound is generated to evaluate the quality of the PTSPO solution obtained within a given computation
time limit. Moreover, we additionally report the detailed data about the solutions of this test case in the
online repository (Research Collection ETH Zurich). In Appendix C, we explore the applicability of the
proposed approach to a different test case adapted from INFORMS RAS (2012), in order to show the
generality of the conclusions.

We use the SNOPT solver implemented in the MATLAB (R2016a) TOMLAB toolbox to solve the MINLP
problem, i.e., the PNLP problem, by applying the two-level approach introduced in Section 4. We adopt the
IBM ILOG CPLEX optimization studio 12.6.3 with default settings to solve the MILP problems, i.e., the
PPWA problem and the PTSPO problem. The custom-designed two-step approach described in Section 4.2
is particularly considered for the PTSPO problem. The experiments are all performed on a computer with
an Intel R©CoreTM i7 @ 2.00 GHz processor and 16GB RAM.
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5.1. Description of the experimental dataset

We consider the line of the Dutch railway network, connecting Utrecht (Ut) to Den Bosch (Ht), of about
50 km length. The network under consideration is shown in Fig. 5. The network is composed of 40 nodes
and 42 cells, with 2 main tracks, divided into a long corridor for each traffic direction and 9 stations. The
two tracks in different directions are independent, so only one direction is considered, i.e., from Utrecht (Ut)
to Den Bosch (Ht). Three categories of trains are considered: intercity, sprinter, and freight trains, with
different acceleration, deceleration, and dynamic characteristics. Four global1 routes (identified by color:
blue for intercity, green for sprinter, red for freight) are determined and graphically presented in the lower
part of Fig. 5, in terms of origin, intermediate stop, destination, and number of trains per hour. We consider
one hour of traffic based on a regular-interval timetable, with 15 trains. Sprinter trains stop at all stations;
intercity and freight trains stop only at the origin and destination stations.

Hto

Ut

Ht
HtnHtncClZbm Utl

origin
destination
intermediate stop

1 freight train

2 sprinter trains
2 intercity trains

}
global route 1

global route 4

global route 3

}

}

Gdm

global route 2

Fig. 5. A real-world experimental network adapted from the Dutch railway network

Each train is given a randomly generated primary delay time cpri
f at its origin. More specifically, we

consider 10 delay cases of the primary delays following a 3-parameter Weibull distribution. The delay
distributions differ per train category, and the following parameters in the form of [scale, shape, shift] are
used: 1) for intercity trains, [394, 2.27, 315]; 2) for sprinter trains, [235, 3.00, 186]; 3) for freight trains,
[1099, 2.62, 885]. These values come from fitting to real-life data as explained in Corman et al. (2011b).

5.2. Performance evaluation of the PNLP problem, the PPWA problem, and the PTSPO problem

In this section, we use the Dutch test case introduced in Section 5.1 to evaluate the overall performance
of the three proposed optimization approaches, from the point of view of effectiveness and efficiency.

We assess the performance of the three proposed optimization approaches on multi-scale instances, i.e.,
considering several instances with different numbers of trains (ranging from 2 to 15, a subset of the 15 trains
described in Fig. 5) and with heterogeneous traffic. We here consider two computation time limits (i.e., 180
and 3600 seconds) for all three proposed optimization problems, and we output the best feasible solution
obtained within each given computation time limit. A large set of TSPOs (i.e., Set 1 in Table 5) is used
here for the PTSPO problem, due to its good solution quality, as will be discussed in Section 5.4. Moreover,
we consider two scenarios for the PPWA problem regarding the upper and lower line fitting methods used
for approximating the nonlinear constraints, indicated as “PWA ul” and “PWA ll”, as will be explained in
Section 5.3.

In some experiments of the PPWA problem, we cannot obtain any feasible solution within the given
computation time limit; therefore, in Fig. 6, we particularly report the average results of the three proposed
optimization approaches respectively for the corresponding feasible cases of the PPWA problem. The bars
indicate the total train delay time, and refer to the Y-axis on the left-hand side, and the lines (with symbols)
indicate the actual computation time, and refer to the Y-axis on the right-hand side. A missing bar/line

1A global route identifies the origin and destination of a train service, but does not specify tracks and platforms used in
station areas. The tracks and platforms used in a station area are described as local routes.
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(a) scenario PWA_ul, timelimit = 180 seconds (b) scenario PWA_ul, timelimit = 3600 seconds

(c) scenario PWA_ll, timelimit = 180 seconds (d) scenario PWA_ll, timelimit = 3600 seconds

Number of trains considered

Number of trains considered

Number of trains considered

Number of trains considered

180

Fig. 6. Results of the three optimization approaches, corresponding to the feasible cases of the PPWA

approach

means that no feasible solution is found for the given instance. Fig. 6(a) and Fig. 6(b) correspond to the
“PWA ul” scenario of the PPWA problem, and Fig. 6(c) and Fig. 6(d) correspond to the “PWA ll” scenario.
Fig. 6(a) and Fig. 6(c) illustrate the results obtained within 180 seconds of computation time, and Fig. 6(b)
and Fig. 6(d) give the results obtained within 3600 seconds.

We can see that the solution quality of the PPWA problem is the worst in most instances, as the dark gray
bars are much higher than the other bars, even when the computation time is extended to 3600 seconds. The
solution quality of the PNLP problem and the PTSPO problem is similar in most instances, with a deviation
of less than 33% (corresponding to a delay time of 151 seconds). When focusing on the computational
efficiency, the PNLP problem appears to perform better on small-scale instances, because the black line
(with dots) is mostly lower than the light gray line (with triangles) for the instances with less than 10 trains,
as is shown in Fig. 6(b) and Fig. 6(d).

As the PNLP problem and the PTSPO problem can obtain feasible solutions for all delay cases, we next
focus on all the results of the 10 delay cases to further evaluate the performance of these two optimization
approaches, instead of only considering the corresponding feasible cases of the PPWA problem. Fig. 7
comparatively presents the results of these two models, as an average of the 10 delay cases, in terms of
the objective value (i.e., the total train delay time), the actual computation time, and the improvement in
solution quality. Fig. 7(a) has the same structure as Fig. 6. In Fig. 7(b), each black (white) bar indicates
the average improvement in solution quality for each instance, when comparing the PNLP solution with the
PTSPO solution obtained within 180 (3600) seconds respectively, i.e., PNLP solution−PTSPO solution

PNLP solution × 100%. A
positive value means that the solution quality of the PTSPO problem is better, while a negative value implies
a better solution quality of the PNLP problem.

As illustrated in Fig. 7, the solution quality of the PNLP problem and the PTSPO problem differs among
instances. Regarding the instances with a larger number of trains (i.e., 8-15 trains), much better solutions
are found by the PTSPO problem, attaining a 30% improvement in the solution quality at most. The PTSPO

solution found within 180 seconds is even better than the PNLP solution obtained by consuming a longer
computation time (which extends to 3600 seconds). In the other instances with smaller scales, the PNLP

problem performs better, as a solution with a smaller train delay time can be found. Although the PNLP

problem can find better solutions in small-scale instances, in comparison, the PTSPO solution obtained within
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Fig. 7. Results of the PNLP problem and the PTSPO problem

180 seconds of computation time is still satisfactory. The PTSPO solution is 3% worse at most than the PNLP

solution, which is relatively small when comparing to the 30% improvement of the PTSPO problem achieved
for larger-scale instances. Overall, the performance of the PTSPO problem is the best, as a solution with
a good quality can be found efficiently (within 180 seconds). Moreover, the train timetables (dispatching
solutions) and the speed-space graphs obtained by the PNLP problem and the PTSPO problem for the Dutch
test case are provided in Fig. 14 - Fig. 14(d) of Appendix B.

5.3. Further analysis of the experimental results of the PPWA problem

We now study the solution quality and computational efficiency of the PPWA problem by considering
different line fitting methods (namely the upper and lower line fitting methods, as illustrated in Fig. 3), and
we also analyze the resulting approximation errors. As discussed before, in order to guarantee the feasibility
of the approximated constraints, we only use the lower line fitting method in Fig. 3(b) to approximate (28).
Regarding the approximation of (30), we consider both the upper and lower line fitting methods, which
results in two scenarios, indicated as “PWA ul” and “PWA ll” respectively, and we further explore the
impact of the line fitting method on the solution quality. We also use the Dutch railway network in Fig. 5
as test bed, and we consider different instances with different numbers of trains (ranging from 2 to 15, a
subset of the 15 trains described in Fig. 5) and with heterogeneous traffic.

The CPLEX solving process of the PPWA problem is terminated by considering a given computation time
limit (i.e., 180 seconds and 3600 seconds), and we then output the best feasible solution obtained within
the given computation time limit. Fig. 8 illustrates the relevant results of “PWA ul” and “PWA ll” for
each computation time limit, indicated as dark bars and light bars respectively. A missing bar means that
no feasible solution is found for the instance within the given computation time limit. Fig. 8(a) gives the
number of the obtained feasible solutions, out of the 10 delay cases. Fig. 8(b)-Fig. 8(c) present the actual
computation time and the objective value as an average of the 10 delay cases.

The optimal solution can be obtained when considering only 2 trains (and 4 trains in “PWA ll” scenario as
well), as the actual computation time of these instances is less than the given computation time limit. For the
other instances, the optimality cannot be guaranteed. A longer computation time leads to better objective
values and a larger number of cases for which a feasible solution can be attained. No feasible solution
can be obtained within 180 seconds for the instances with more than 4 trains, and no feasible solution is
obtained within 3600 seconds for the instances with more than 12 trains. Moreover, “PWA ll” yields a
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Fig. 8. Results of the PPWA problem, for “PWA ul” and “PWA ll”

better performance in most instances, as it attains more feasible solutions, relatively shorter computation
times, and smaller objective values.

The approximation errors of “PWA ul” and “PWA ll” for different constraints of the PPWA problem are

presented in Fig. 9, as the percentage, i.e., |approximated value−actual value|
actual value × 100%, and as an average of the 10

delay cases. The errors caused by approximating (30a) and (30b) lead to a deviation for calculating Lcru in
(29), so we directly analyze the deviation value (approximation error) of Lcru in (29). The (blue) diamond,
(green) square, (pink) dot, and (orange) triangle symbols indicate the approximation errors in the final
solution for (29), (28a), (28b), and (28c) respectively. The dark small symbols indicate the approximation
error of the solution obtained within 180 seconds of computation time, and the light large symbols represent
the approximation error of the solution obtained within 3600 seconds. A missing symbol means that no
feasible solution is found within the given computation time limit, i.e., the dark small symbols for the
instances considering more than 4 trains and the light large symbols for the instances with 14-15 trains.
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As illustrated in Fig. 9, the performance of “PWA ll” and “PWA ul” differs among instances, i.e.,
“PWA ll” performs better for the instances with 2, 4, 10, and 12 trains, while “PWA ul” performs better
for the instances with 6 and 8 trains. However, “PWA ll” and “PWA ul” overall perform similarly, with less
than 2.5% difference of errors between them. Moreover, the approximation error of (29) is larger than that
of the others, ranging from 6% to 12%, which results from the different magnitudes of the speed variable (v)
and the time variables (a and d). The approximation error of (28b) is the smallest, and it ranges from 4% to
8%. For reducing the errors further, we can consider a PWA approximation using more affine subfunctions,
and follow the approach described in Section 3.2.2.

Furthermore, we analyze the number of constraint violations caused by the PWA approximation. Re-
garding (28), no constraint is violated, as we apply the lower line fitting method to keep a smaller (positive)
approximated value of the train speed than its actual value. For (29), around 5% (ranging from 4.2% to
5.0% for “PWA ll” and from 4.1% to 5.6% for “PWA ul”) of the constraints is violated, in the sense that
the approximated distance that a train travels in the cruising phase is larger than the actual distance that
a train can move.

In summary, from all perspectives, i.e., the solution quality, the computational efficiency, the feasibility,
and the errors, the PPWA problem do not seem to perform good enough for addressing the integrated problem
of traffic management and train control.

5.4. Further analysis of the experimental results of the PTSPO problem

We now study the impact of the TSPOs generated in the preprocessing step on the solution quality.
Six sets of TSPOs are generated by considering different discrete speed values for different train categories
presented in Table 5, denoted as Set 1, ..., Set 6 respectively. Note that intercity and sprinter trains use
the same speed pattern in each set. The number of the discrete speed values used in Set 1, ..., Set 6 is
decreasing, which implies that the resolution of the train speed becomes lower and less TSPOs are available.
The total number of TSPOs corresponding to the 6 sets is provided in columns 4-5 of Table 5. Column 4
gives the total number of TSPOs per train per block section, i.e., summing up the number of TSPOs for
each train on each block section; column 5 presents the number of possibilities of combining the TSPOs for
the train services, which indicates the scale of the feasible solution space.

Table 5. Six sets of TSPOs generated by using different discrete speed values
Discrete speed values for intercity

train and sprinter train (unit: km/h)
Discrete speed values for
freight train (unit: km/h)

Total number of TSPOs per
train per block section

Number of all possibilities
of combining the TSPOs

Set 1 {0, 40, 60, 80, 90, 100, 110, 120, 130} {0, 20, 30, 40, 50, 60, 70, 80} 16402 5.70× 1050

Set 2 {0, 40, 70, 90, 100, 110, 120, 130} {0, 20, 40, 50, 60, 70, 80} 12370 5.28× 1046

Set 3 {0, 40, 70, 90, 110, 120, 130} {0, 20, 40, 60, 70, 80} 9084 3.16× 1043

Set 4 {0, 40, 70, 100, 120, 130} {0, 20, 50, 70, 80} 6332 5.56× 1039

Set 5 {0, 40, 100, 130} {0, 40, 80} 2388 8.27× 1028

Set 6 {0, 40, 130} {0, 40, 80} 1278 6.71× 1019

Fig. 10 illustrates the results of the 6 sets as a function of the computation time, in particular, the total
train delay time on average of the 10 delay cases. Note that the CPLEX solving process is terminated
by considering 8 computation time limits ranging from 180 to 3600 seconds, and the best feasible solution
obtained within each given computation time limit is presented. The 6 sets are distinguished by colors:
green, blue, purple, pink, orange and yellow for Set 1, ..., Set 6 respectively. For each set, the result with
fixed train orders is drawn as a solid line and the result considering variable train orders is indicated by a
dashed line. Each line presents an initial solution (represented by a star) and secondary solutions (indicated
by dot and square symbols) as a function of computation time. Recall that the initial solution is obtained
by considering a fixed full TSPO for each train on each block section and then improved to generate the
secondary solutions by considering a larger set of multiple TSPOs.

We first focus on the results with fixed train orders, presented as solid lines in Fig. 10. The initial optimal
solution considering a fixed full TSPO for each train on each block section (i.e., each train is required to
run as fast as possible with respect to the safety, technical, and operational requirements) can be obtained
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Fig. 10. Total train delay time of the 6 sets as a function of computation time

efficiently (i.e., less than 6 seconds). The initial solution is further improved to generate the secondary
solutions by considering a larger set of multiple TSPOs. As shown, when focusing on one set, the total
delay time decreases as a function of the computation time, implying an improvement in solution quality.
This demonstrates the benefit of integrating traffic management and train control, i.e., train delays can be
reduced by managing train speed. Moreover, focusing on all the 6 sets, the total delay time increases in both
the initial solution and the secondary solutions, if fewer discrete speed values are considered. So the total
delay time increases with a decreasing resolution of the train speed in Set 1, ..., Set 6 sequentially. This
results from the reduced solution space, i.e., the reduced number of TSPOs available. The improvement in
train delay time of Set 1 (the best/significant one with the lowest total delay time) is 3.14% at 180 seconds,
and it increases to 8.08% when extending the computation time to 3600 seconds.

When comparing with the results with fixed train orders, the solution quality considering variable train
orders is better for Set 2, ..., Set 6, i.e., the dashed line is mostly lower than the corresponding solid line.
For Set 1, which contains the largest number of TSPOs among the 6 sets, the result considering variable
train order is worse than that for fixed train orders. This may result from the large solution space caused by
the huge number of TSPOs and various possibilities of train orders, and the high sensitivity of the solutions
to the train speed. The sensitivity of the solutions to the train speed is higher with an increasing number of
TSPOs. Therefore, the MILP solver is unable to explore the effective space (regarding train speed) within
a given computation time limit. When reducing the solution space by fixing train orders, the MILP solver
has a higher chance to explore the solution space more efficiently within the same time limit. To conclude,
we may consider variable train orders for the case with a low resolution of the train speed, and fixed train
orders for the case with a high train speed resolution, in order to obtain a better solution within a given
computation time limit.
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Fig. 11(a) and Fig. 11(b) present the percentage of improvement in solution quality from the initial
solution as a function of computation time, for the cases considering fixed and variable train order respec-
tively. This percentage of improvement is calculated by the formula Φ`−1−Φ`

Φ1−Φ9
, for ` = 2, ..., 9. Note that

` is the index of the computation time limits considered, i.e., ` = 1, ..., 9 represent 0 (initial solution),
180, 300, 600, 1200, 1800, 2400, 3000, and 3600 seconds of computation time limits respectively; and Φ`
indicates the total train delay time at the corresponding computation time limit `. For instance, the de-
lay time of the initial solution for Set 1 is 4902 seconds (i.e., Φ1 = 4902), which is reduced to 4748 and
4506 seconds in the secondary solutions obtained at 180 and 3600 seconds of computation time respectively
(i.e., Φ2 = 4748 and Φ9 = 4506); the percentage of improvement in solution quality within 180 seconds is
then Φ1−Φ2

Φ1−Φ9
= 4902−4748

4902−4506=39%. In each figure, the percentages of improvement in solution quality at the 8
computation time limits are respectively drawn from the left to the right using different colors, and each
horizontal bar represents a set of TSPOs.
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Fig. 11. Percentage of the improvement in solution quality as a function of computation time for the 6 sets

As illustrated, the green region (i.e., the improvement in solution quality at the first 180 seconds) occupies
most of the space for each bar, ranging from 38% to 85% in Fig. 11(a) and from 39% to 76% in Fig. 11(b).
When expanding the focus to the green and light blue portions, the percentage of the quality improvement
from 0 to 300 seconds of computation time is more than a half for all the sets, achieving 52% - 87% in
Fig. 11(a) and 56% - 76% in Fig. 11(b). This implies that a significant improvement in solution quality can
be achieved efficiently. Although the solution quality can be improved by considering a longer computation
time, the improvement is not as significant as that achieved within the first 180 seconds. Hence, practically,
it is not a good choice to consume a much longer computation time for obtaining a small improvement only.

Although a significant improvement from the initial solution can be achieved efficiently, the solution
quality is still unknown, i.e., how far is the solution away from the optimal one (an estimation of the
optimality gap). Therefore, we generate lower bounds for the PTSPO problem to assess their solution
quality. The so-called lower bound here is not physically feasible and therefore not the best lower bound.

Fig. 12(a) and Fig. 12(b) illustrate the obtained lower bounds, feasible solutions, and the corresponding
estimation of optimality gaps1 as a function of the computation time, and as an average of 10 delay cases,
considering fixed and variable train orders respectively. The largest set of TSPOs (i.e., Set 1) is used for
computing the lower bounds, due to its good solution quality. The best feasible solutions obtained within
the given computation time limits are represented by black dots (connected by a solid line), and the lower
bound is indicated by a horizontal dashed line. The percentage in blue color indicates the optimality gap.
To calculate these lower bounds, we have neglected train acceleration and deceleration characteristics, i.e.,
we assume that a train can suddenly and instantly accelerate or decelerate to any given speed value (listed
in row 2 of Table 5). This leads to a reduction of the optimization problem to identify an optimal cruising

1Note that the gap between the feasible solution obtained and the lower bound is considered as an estimation of the
optimality gap.
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speed for each train on each block section, as the incoming speed and the outgoing speeds do not affect the
final results anymore. The calculation of the lower bounds is also an MILP problem, so we use the CPLEX
solver to get them.
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Fig. 12. Lower bounds, feasible solutions, and estimation of optimality gaps

The lower bound of the case with fixed train order in Fig. 12(a) is tighter than that of the case considering
variable train order in Fig. 12(b), which results from the reduced solution space by fixing train orders.
As shown in Fig. 12(a), when fixing the train orders, the optimality gap is 17% within 180 seconds of
computation time, and it is then reduced to 11% by extending the computation time to at most 3600
seconds. In comparison, the optimality gap of the case considering variable train orders is larger, ranging
from 22% to 16%, as shown in Fig. 12(b).

5.5. Summary of the experimental results

We here derive the main conclusions, sketched quantitatively in Fig. 13, from the viewpoints of solution
feasibility (constraint violation), solution quality, computational efficiency (reported approximately), and
applicability for large-scale instances (measured by the total number of the cases, for which at lease one
feasible solution is obtained within the given computation time limit). The center indicates the worst
performance for all the four items.
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Fig. 13. Overview of the performance of the three proposed approaches

In view of the solution feasibility and the applicability for large-scale instances, the PNLP problem and
the PTSPO problem have a similar performance, as they can find feasible solutions for all instances (and
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for all delay cases, even the instance with 15 trains). These two approaches perform better than the PPWA

problem, because some constraints are violated in the PPWA solution, and for some large-scale instances no
feasible solution is obtained by the PPWA problem within the given computation time limit.

Regarding the solution quality, the PPWA approach is also the worst among the three approaches. The
solution quality of the PNLP problem and the PTSPO problem differs among instances. The PTSPO approach
has a better performance on the instances with a larger number of trains, and the PNLP approach performs a
little better on the instances with a smaller number of trains. Overall, the PTSPO solution is better than the
PNLP solution, achieving a 23.2% improvement, corresponding to a total delay time of 3727 seconds, within
180 seconds of computation time. The improvement of the PTSPO approach in solution quality reduces to
6.7%, when extending the computation time to 3600 seconds.

From the perspective of computational efficiency, the PPWA approach does not yield any feasible solution
within the given time limit for many instances, so the computational efficiency of the PPWA approach is
recognized as being the worst. In the experiments, feasible solutions (having satisfactory quality in fact)
can always be found by the PTSPO approach within the shortest computation time limit (i.e., 180 seconds),
and a significant improvement (with respect to the corresponding initial solution) in solution quality can
be achieved efficiently. Regarding the computational efficiency of the PNLP approach, feasible solutions can
also be obtained within the given computation time limit, but with a worse quality in comparison with the
PTSPO solution. As computation time limits are considered and feasible solutions can be found by both
the PNLP approach and the PTSPO approach for all delay cases, within 180 seconds of computation time,
we cannot make conclusion on their computational efficiency. Their computational efficiency is therefore
reflected by the quality of the solutions obtained within the given computation time limits.

Computational efficiency is a key factor for addressing real-time problems, and the problem of integrating
real-time traffic management and train control is such a case. Therefore, the overall performance of the
PTSPO approach is recognized as being the best, as a solution with better and satisfactory quality can be
found efficiently (within 180 seconds), see Fig. 7. Using a larger set of TSPOs for the PTSPO approach leads
to a better solution. The results show that we could consider to fix the train orders when using a larger set
of TSPOs, in order to better explore a smaller solution space regarding the train speed within a time limit.

The experimental results demonstrate the benefits of integrating traffic management and train control.
The benefit is reflected by the reduced train delays, i.e., train delays can be reduced by managing the train
speed and by changing the train orders. In our test case, the consideration of multiple TSPOs leads to
3.14%/8.08% reduction of train delays for Set 1 within 180/3600 seconds of computation time, and the
consideration of changing train orders results in an additional 1.59% improvement in the solution quality
for Set 2, as discussed in Section 5.4.

6. Conclusions and future research

In this paper, we have tackled the integration of real-time traffic management and train control by using
mixed-integer nonlinear programming (MINLP) and mixed-integer linear programming (MILP) methods.
Three optimization approaches are developed, i.e., one MINLP problem (PNLP) and two MILP problems
(PPWA and PTSPO), for delivering both a train dispatching solution (i.e., binary/integer combinational
decisions on a set of times, orders, and routes to be followed by trains) and a train control solution (i.e.,
train speed trajectories following nonlinear dynamics) simultaneously. In these optimization problems, the
train speed is considered variable, and the blocking time of a train on a block section dynamically depends
on its real speed. Regarding the solution approaches, we have presented a two-level approach for solving
the PNLP problem and proposed a custom-designed two-step approach for solving the PTSPO problem. The
performance of the three proposed optimization approaches is comparatively evaluated from the viewpoints
of solution feasibility, solution quality, computational efficiency, and applicability for large-scale instances,
based on a real-world dataset adapted from the Dutch railway network. According to the experimental
results, the PTSPO problem overall yields the best performance among the three optimization approaches,
as it is able to exploit the solution space efficiently. Moreover, the benefits of integrating real-time traffic
management and train control are demonstrated: the train delay can be reduced up to 8% by managing the
train speed and by changing the train orders.
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Our future research will focus on the following main extensions. First, although the PTSPO approach
is applicable for instances much larger than those in the literature, we could still consider to increase the
instance scale. One extension is therefore to apply distributed optimization methods to further improve
the computational efficiency, in order to further increase the applicability of the proposed optimization
approaches to larger-scale instances. Second, the resistances caused by air, roll, track grade, curves, and
tunnels to train movements should be considered to a more precise extent and calibrated as it is prerequisite
to accurately estimate the train speed, distance, and headway in areas with a rugged topography. Then,
a precise computation of the energy consumption can be derived through considering a precise inclusion of
the resistances into cruising. In Part 2 of this paper, we discuss this extension on energy-related aspects,
i.e., evaluating the energy consumption for accelerating trains and overcoming resistance and calculating the
regenerative energy utilization. Finally, a comprehensive system could be developed based on the PTSPO

problem to integrate the multiple steps in the solving procedure, e.g., the preprocessing step for generating
a set (or an efficient subset) of the possible TSPOs, the solving step to solve the MILP problem (PTSPO) by
using an MILP solver, and the displaying step to show train timetables and speed-space graphs.
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Appendix A Additional explanations of the formulations in Section 3

In Section 3, we have introduced six logical speed indicators ζ1,f,i,j , ..., ζ6,f,i,j to indicate the actions
taken by train f on cell (i, j), i.e., the train trajectory. Some constraints, e.g., (25) and (27), further employ
these indicators to perform their functions. For assisting the readers to understand our formulations, we
here describe the six logical speed indicators in detail, and then we explain how these indicators play a
role in other constraints. In the remainder of this section, we omit the subscripts f, i, j of the parameters
and variables to improve the readability, e.g., the incoming speed is denoted as vin, and the acceleration is
indicated as α1 when the train speed is less than the switching speed vturn (the speed point for switching
the train acceleration) and as α2 when the train speed is larger than the switching speed vturn.

A.1 Explanation of the six logical speed indicators ζ1,f,i,j , ..., ζ6,f,i,j in Table 3

Table 6 summarizes all possible train trajectories, i.e., the action(s) that a train may take, in the incoming
and outgoing phases respectively.

Table 6. Summary of the possible train trajectories and the corresponding value of the speed indicators
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As presented, there are 9 possible trajectories for each phase. Each scenario can be represented by
the speed indicators ζ1, ζ3, and ζ4 for the incoming phase or by the speed indicators ζ2, ζ5, and ζ6 for the
outgoing phase. Regarding the cruising phase, the train speed is constant, so only one train trajectory is
possible, like “Trajectory 3”, “Trajectory 5”, and “Trajectory 9”.

A.2 Explanation of (25)

Constraints (25a)-(25e) are proposed for the incoming phase by employing the speed indicators and by
satisfying the formula of the uniformly accelerating and decelerating motions, i.e., for such a motion with an
initial speed v0, a final speed vt, and a steady acceleration α, the elapsed time for accelerating from speed v0

to speed vt is ∆t = vt−v0
α . As shown in Table 7, constraints (25a)-(25e) represent the 9 possible trajectories

for the incoming phase in Table 6.
Regarding the cases of “Trajectory 3”, “Trajectory 5”, and “Trajectory 9”, as the incoming speed vin

equals the cruising speed vcru, the incoming phase does not exist anymore, and the condition acru = a is re-
quired by (25b) and (25c). Note that similar constraints can be constructed to represent the “Trajectory 10”,
..., “Trajectory 18” for the outgoing phase in Table 6. We do not present those details here.
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Table 7. Overview of the details of (25)

Value of the speed indicators
Constraint Corresponding trajectory ID

ζ1 ζ3 ζ4
Reduced equation

(25a) Trajectory 6, Trajectory 7, and Trajectory 8 0 0 or 1 0 or 1 acru − a = −v
cru−vin
β

(25b) Trajectory 2, Trajectory 3, and Trajectory 9 1 1 0 or 1 acru − a = vcru−vin
α2

(25c) Trajectory 4, Trajectory 5, and Trajectory 9 1 0 or 1 1 acru − a = vcru−vin
α1

(25d) Trajectory 1 1 0 0 aturn − a = vturn−vin
α1

(25e) Trajectory 1 1 0 0 acru − aturn = vcru−vturn

α2

A.3 Explanation of (27)

Constraints (27a)-(27d) are proposed for calculating the distance Lin that a train travels within a cell in
the incoming phase. These constraints also satisfy the formula of the uniformly accelerating and decelerating
motions, i.e., for such a motion with an initial speed v0, a final speed vt, and a steady acceleration α, the

distance traveled for accelerating from speed v0 to speed vt is L = vt
2−v02

2·α . As shown in Table 8, constraints
(27a)-(27d) represent the 9 possible trajectories for the incoming phase in Table 6.

Table 8. Overview of the details of (27)

Value of the speed indicators
Constraint Corresponding trajectory ID

ζ1 ζ3 ζ4
Reduced equation

(27a) Trajectory 6, Trajectory 7, and Trajectory 8 0 0 or 1 0 or 1 Lin = − (vcru)2−(vin)2

2·β

(27b) Trajectory 2, Trajectory 3, and Trajectory 9 1 1 0 or 1 Lin = (vcru)2−(vin)2

2·α2

(27c) Trajectory 4, Trajectory 5, and Trajectory 9 1 0 or 1 1 Lin = (vcru)2−(vin)2

2·α1

(27d) Trajectory 1 1 0 0
Lin = (vturn)2−(vin)2

2·α1

+ (vcru)2−(vturn)2

2·α2

Regarding the “Trajectory 3”, “Trajectory 5”, and “Trajectory 9”, as the incoming speed vin equals
the cruising speed vcru, the incoming phase does not exist anymore, and then the distance Lin equals zero
according to (27b) and (27c). Note that similar constraints can be constructed to represent the “Trajec-
tory 10”, ..., “Trajectory 18” in Table 6, for calculating the distance Lout that a train runs over on a cell in
the outgoing phase. We do not present those details here.

Appendix B Illustration of the train timetables

We report here the train timetables of a representative case for the Dutch test case (regarding the
experiments in Section 5.2), obtained by the PNLP problem (in Fig. 14(a)) and the PTSPO problem (an
initial solution in Fig. 14(b) and a secondary solution in Fig. 14(c)) respectively. Fig. 14(d) then provides
the speed-space graphs for all trains, corresponding to the train timetables given in Fig. 14(a)-Fig. 14(c).
As there are siding tracks in some station areas, it is hard to draw every train path in a single timetable.
In order to present all train paths completely, we draw the train blocking times on the main tracks by
using dark gray blocks, and we use light gray blocks to show the train blocking times on the siding tracks.
Therefore, an overlap of the dark and light gray blocks does not indicate a train conflict, and it means that
the two trains are running on different siding tracks in the same station area.

The total train delay time of the train timetables in Fig. 14(a)-Fig. 14(c) is 3993 seconds, 3793 seconds,
and 3426 seconds respectively. As we can see in the train timetables of Fig. 14(a) and Fig. 14(b)-Fig. 14(c),
the orders of the sprinter train 1B60001 and the intercity train 1D8001 (and the freight train 1RBH40S
as well) change on some cells, e.g., cell (8, 9). As a result, in Fig. 14(b), the sprinter train 1B60001 has
more delays (916 seconds), and the sum of the delays of the other affected trains (including train 1RBH40S,
1D8001, and 1OVF11) decreases by 1219 seconds; in Fig. 14(c), the delay of train 1B60001 increases by 927
seconds, and the total delay of the other affected trains decreases by 1302 seconds.
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(a) Train timetable, corresponding to the solution obtained
by the PNLP problem
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(b) Train timetable, corresponding to the initial solution of
the PTSPO problem
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(c) Train timetable, corresponding to the secondary solution
of the PTSPO problem
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Fig. 14. Train timetables and train speed-space graphs for the Dutch railway network

Appendix C Case study based on the railway network from the INFORMS RAS problem
solving competition 2012

C.1 Description of the railway network

To further assess the model performance on larger-scale instances, we adapt the railway network from the
INFORMS RAS problem solving competition 2012 (INFORMS RAS 2012), with both single-track segments
and double-track segments, consisting of 67 nodes and 76 cells, as sketched in Fig. 15(a).

origin
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x intercity, y sprinter, and z freight
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(x,y,z)

intermediate station
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track direction

Single track Double track Single track
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Fig. 15. A rail network adapted from INFORMS RAS (2012)
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The train data (e.g., acceleration/deceleration rate, category, and length) and the stop pattern same
to the Dutch railway network are used here; we refer to Section 5.1 for more information. We consider
2.5 hours of traffic with 25 trains, including 10 intercity, 10 sprinter, and 5 freight trains, and six global
(bi-)directional train routes, as illustrated in Fig. 15(b). Each route has a mark in the form of (x, y, z) at
its origin; the mark indicates the numbers of intercity (x), sprinter (y), and freight (z) trains respectively
that are operated on this route.

C.2 Performance of the PTSPO model on a larger-scale instance

As evaluated in Section 5.2, the PTSPO model yields the best performance, and the other two models
already have computation burden in the experiments based on the Dutch railway network, either obtaining
no feasible solution or taking a much longer computation time. In this section, we only examine the PTSPO

model performance on larger-scale instances, by using the INFORMS RAS railway network described in
Section C.1. We use the larger set of TSPOs (i.e., Set 1 in Table 5), due to its good solution quality, as
discussed in Section 5.4. The average results of the 10 delay cases with randomly generated primary delays
are illustrated in Fig. 16, including the initial solution, the secondary solutions along the computation time,
and the improvement in the objective value.
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Fig. 16. Total train delay time as a function of computation time, results for the INFORMS RAS railway
network

Similar to the results of the Dutch railway network, the initial solution is still obtained very quickly,
and the total train delay time decreases as a function of the computation time in the secondary solutions.
Considering multiple TSPOs achieves 3.33% improvement in the train delay time within 180 seconds, which
increases to 10.62% when the computation time is extended to 3600 seconds.
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(a) Train timetable, corresponding to the initial solution of
the PTSPO model on INFORMS RAS railway network
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(b) Train timetable, corresponding to the secondary solution
of the PTSPO model on INFORMS RAS railway network

Fig. 17. Train timetables for the INFORMS RAS railway network

Fig. 17 reports the train timetables of a representative case for the INFORMS RAS railway network,
obtained by the PTSPO model. An initial solution and a secondary solution are provided in Fig. 17(a) and
Fig. 17(b) respectively.
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