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Corrections to “Integrated Urban Traffic Control for

the Reduction of Travel Delays and Emissions”
Anahita Jamshidnejad*, Shu Lin*, Member, IEEE, Yugeng Xi, Senior Member, IEEE, and Bart

De Schutter, Senior Member, IEEE

Abstract—This short paper provides corrections and modifi-
cations to the urban traffic flow model, called S-model, and the
integrated flow and emission model given in [1]. These corrections
involve some formulas in [1] that have been derived either based
on a wrong reasoning or assumption, or that could be improved
by the aid of the proposed corrections and modifications to obtain
a higher level of accuracy in the simulations.

CORRECTIONS

THE corrections given in this erratum involve Equa-

tions (4), (5), (9) in the S-model and Equations (13)–(16)

in the integrated flow and emission model introduced in [1].

For details and extensive proofs of the proposed corrections

and modifications, we refer the readers to [2], [3]. Moreover,

we propose some extensions/modifications to Eq. (9) of [1]

that result in a simple formula that can be used to compute

the integral in (9). Since the S-model was originally introduced

in [4], the corrections and modifications given for the S-model

in this paper also hold for [4].

The mathematical notations and concepts that are frequently

used in this short paper, are represented and defined in Table I.

A. Corrections to Eq. (4) of [1]

We first represent a remark that corrects two of the fre-

quently used mathematical notations in [1].

Remark 1: The parameters τ(kd) and γ(kd) in [1] should

be corrected as τu,d(kd) and γu,d(kd), as they are link-

dependent. Therefore, in the remainder of the erratum, u
and d are used as subscripts for these parameters (and their

equivalent continuous-time versions τ̃u,d(t) and γ̃u,d(t)).

Eq. (4) given in [1] for computation of αarriv
u,d (kd) is not

correct for the following two main reasons. First, although the

two parameters τu,d and γu,d in [1] have been considered to

be time-varying, (4) has been derived based on a reasoning

that assumes fixed values for these parameters in time. This

can create major inaccuracies in the simulations when the S-

model is used. Second, simulating the original S-model using

Eq. (4), conservation of the vehicles is not always satisfied,

and some vehicles arriving at the tail of the waiting queue
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TABLE I
FREQUENTLY USED MATHEMATICAL NOTATIONS IN THE PAPER.

(u,d) An urban traffic link in the S-model with upstream
intersection u and downstream intersections d

cd Cycle time of traffic signal at intersection d, which, in
the S-model, is the simulation sampling time of all links
with downstream intersection d

kd Cycle counter of traffic signal at intersection d, which,
in the S-model, is the simulation time step counter of all
links with downstream intersection d

∆cinit
u,d

Initial offset between cycles of traffic signals at upstream
and downstream intersections of link (u,d), i.e., the time
span from kd=0 (start of simulation of link (u,d)) until
beginning of the first upcoming cycle at intersection u

∆cu,d(kd) Offset between cycles of traffic signals at intersections u
and d at simulation time step kd

∆x̃u,d(t) Distance between the entrance of link (u,d) and the tail
of the waiting queue on this link at time instant t (this
distance has been traveled by a vehicle that arrives at the
tail of the waiting queue on link (u,d) at time instant t)

δ̃u,d(t) Travel time (in the continuous-time domain) required for
a vehicle that arrives at the tail of the waiting queue
on link (u,d) at time instant t, to travel the distance
∆x̃u,d(t)

δu,d(kd) Discrete-time version of δ̃u,d(t)

τ̃u,d(t) Quotient of δ̃u,d(t) when divided by cd, described in
the continuous-time domain

τu,d(kd) Discrete-time version of τ̃u,d(t)

γ̃u,d(t) Remainder of δ̃u,d(t) when divided by cd, described in
the continuous-time domain

γu,d(kd) Discrete-time version of γ̃u,d(t)
αarriv

u,d
(kd) Rate of the vehicles that arrive at the tail of the waiting

queue on link (u,d) in the time span [kdcd,(kd+1)cd)
αenter

u,d
(kd) Rate of the vehicles that enter link (u,d) in the time span

[kdcd,(kd+1)cd)
αleave

i,u,d
(kd) Rate of the vehicles that leave link (i,u) towards link

(u,d) in the time span [kdcd,(kd+1)cd)
vfree
u,d

Free-flow speed of vehicles on link (u,d)

vlow
u,d

Idling speed of vehicles in waiting queue on link (u,d)

aacc
u,d

Acceleration rate of the vehicles on link (u,d)

adec
u,d

Deceleration rate of the vehicles on link (u,d)

Cu,d Capacity of link (u,d) (i.e., the maximum number of
vehicles that can be positioned on link (u,d))

q̃u,d(t) Length of the waiting queue on link (u,d) at time instant
t in the continuous-time domain

qu,d(kd) Discrete-time version of q̃u,d(t)
N lane

u,d
Number of lanes on link (u,d)

lveh Average length of vehicles in the urban traffic network
Eacc

θ,i,u,d
(kd) Average emission rate of pollutant θ for vehicle i trav-

eling on link (u,d) within the acceleration time interval
that corresponds to simulation time step kd (i.e., the time
interval of the accelerating behavior that occurs in the
time span [kdcd,(kd+1))cd)

Edec

θ,i,u,d
(kd) Average emission rate of pollutant θ for vehicle i trav-

eling on link (u,d) within the deceleration time interval
that corresponds to simulation time step kd
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may be missed or counted twice. Therefore, we propose to

substitute Eq. (4) of [1] by the following general formulation:

αarriv
u,d (kd)=

|τu,d(kd)+1−τu,d(kd+1)|
∑

i=0

Bu,d,i(kd)·

αenter
u,d

(

kd−max
(

τu,d(kd+1),τu,d(kd)+1
)

+i

)

(4-corrected)

where, in general, for i∈N s.t. i<|τu,d(kd)+1−τu,d(kd+1)|:

Bu,d,i(kd)=1.

Moreover, for i=0 and i=|τu,d(kd)+1−τu,d(kd+1)|:

• In case τu,d(kd)+1>τu,d(kd+1) holds (case 1), then:

Bu,d,0(kd)=
γu,d(kd)

cd
,

Bu,d,|τu,d(kd)+1−τu,d(kd+1)|(kd)=
cd−γu,d(kd+1)

cd
.

• In case τu,d(kd)+1<τu,d(kd+1) holds (case 2), then:

Bu,d,0(kd)=−
γu,d(kd+1)

cd
,

Bu,d,|τu,d(kd)+1−τu,d(kd+1)|(kd)=−
cd−γu,d(kd)

cd
.

• In case τu,d(kd)+1=τu,d(kd+1) holds (case 3 for

γu,d(kd)>γu,d(kd+1), case 4 for γu,d(kd)<γu,d(kd+
1), and case 5 for γu,d(kd)=γu,d(kd+1)), then since

|τu,d(kd)+1−τu,d(kd+1)|=0, the only term that will ap-

pear on the right-hand side of (4-corrected) is Bu,d,0(kd)·
αenter
u,d (kd−τu,d(kd+1)), for which we have

Bu,d,0(kd)=
γu,d(kd)−γu,d(kd+1)

cd
.

The main idea behind (4-corrected) is to find for simulation

time step kd the cumulation of all the inflows of the vehicles

that have entered link (u,d) for simulation time steps prior

to kd, and that reach the tail of the waiting queue on the link

during the time interval [kdcd,(kd+1)cd) (this gives the arrival

rate αarriv
u,d (kd)). For the following two reasons, we should

switch from the discrete-time to the continuous-time domain:

• First, the S-model is a discrete-time model, and all the

states are updated at discrete time steps. Hence, the

computations for the state values for simulation time

step kd should include the dynamics of the urban traffic

network until the next update, i.e., from simulation time

step kd, until simulation time step kd+1, in order to

include all the vehicle inflows that influence αarriv
u,d (kd).

Therefore, we should look at the dynamics of the urban

traffic network within the time interval [kdcd,(kd+1)cd)
in the continuous-time domain.

• Second, for derivation of αarriv
u,d (kd), we should look

backwards in time (for all t∈[kdcd,(kd+1)cd)) to find

the influential time interval I(kd)=[ts(kd),t
e(kd)) (with

the start-point at ts(kd) and the endpoint at te(kd)) for

which ∀t∈I(kd), the time step t/cd+δu,d(kd) lies in the

time interval [kdcd,(kd+1)cd). The time delay δu,d(kd)
is in general a real value composed of an integer quotient

τu,d(kd), and a remainder γu,d(kd) (non-negative real

value), i.e.,

δu,d(kd)=τu,d(kd)cd+γu,d(kd), (1)

where τu,d(kd) is an integer and 0≤γu,d(kd)<cd. Since

the remainder is in general non-zero, moving back-

wards in time from any point in the time interval

[kdcd,(kd+1)cd), the resulting point may lie in between

two consecutive simulation time steps of the S-model.

Next, we will provide the proof of (4-corrected). According

to the S-model, the corresponding continuous-time inflow

function is assumed to be piecewise constant between every

two consecutive discrete time steps kd and kd+1 (correspond-

ing to time instants t and t+cd in the continuous-time domain;

see Figure 1). Correspondingly, the influential inflow ᾱenter
u,d (t)

of the vehicles that contributes to the arriving flow at the tail

of the waiting queue within the time interval [t,t+cd), is the

cumulative inflow of the vehicles in between time instants

t−δ̃u,d(t) and t+cd−δ̃u,d(t+cd). So we have1:

ᾱenter
u,d (t)=

1

cd

∫ t+cd−δ̃u,d(t+cd)

t−δ̃u,d(t)

α̃enter
u,d (θ)dθ, (2)

with α̃enter
u,d (·) the continuous-time inflow function of link

(u,d). Figure 1 shows the corresponding continuous-time in-

flow function of link (u,d) versus time for the five cases given

before for (4-corrected) (i.e., case 1-5), and the corresponding

influential inflow (indicated with a light/yellow colored curve

extended across the influential time interval I(kd) in between

time instants ts(kd) and te(kd)) at time instant t.

For case 1 (see the top plot of Figure 1), Equation (2) can

be expanded as:

ᾱenter
u,d (t)=

1

cd

∫ t−τ̃u,d(t)cd

t−τ̃u,d(t)cd−γ̃u,d(t)

α̃enter
u,d (θ)dθ

+
1

cd

∫ t−τ̃u,d(t)cd+cd

t−τ̃u,d(t)cd

α̃enter
u,d (θ)dθ

+...

+
1

cd

∫ t+cd−τ̃u,d(t+cd)cd−cd

t+cd−τ̃u,d(t+cd)cd−2cd

α̃enter
u,d (θ)dθ

+
1

cd

∫ t+cd−τ̃u,d(t+cd)cd−γ̃u,d(t+cd)

t+cd−τ̃u,d(t+cd)cd−cd

α̃enter
u,d (θ)dθ

=
γ̃u,d(t)

cd
α̃enter
u,d (t−(τ̃u,d(t)+1)cd)

+
1

cd
·cd

τ̃u,d(t)−τ̃u,d(t+cd)
∑

i=1

α̃enter
u,d (t−(τ̃u,d(t)+1)cd+icd)

+
cd−γ̃u,d(t+cd)

cd
α̃enter
u,d (t+cd−τ̃u,d(t+cd)cd−cd).

Substituting t and t+cd by their discrete-time equivalents kd
and kd+1, (4-corrected) is obtained, noting that in this case

max(τu,d(kd+1),τu,d(kd)+1)=τu,d(kd)+1.

1Note that in this paper, we use a tilde symbol for the continuous-time
version of a discrete-time variable/function in the S-model.
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inflow, α̃enter
u,d (t)

inflow, α̃enter
u,d (t)

inflow, α̃enter
u,d (t)

inflow, α̃enter
u,d (t)

inflow, α̃enter
u,d (t)

time

time

time

time

time

γ̃u,d(t)

γ̃u,d(t)

γ̃u,d(t)

γ̃u,d(t)

γ̃u,d(t+cd)

γ̃u,d(t+cd)

γ̃u,d(t+cd)

γ̃u,d(t+cd)

γ̃u,d(t)=γ̃u,d(t+cd)

α̃enter
u,d (t)

α̃enter
u,d (t)

α̃enter
u,d (t)

α̃enter
u,d (t)

α̃enter
u,d (t)

α̃enter
u,d (t+cd)

α̃enter
u,d (t+cd)

α̃enter
u,d (t+cd)

α̃enter
u,d (t+cd)

α̃enter
u,d (t+cd)

α̃enter
u,d (t−τ̃u,d(t)cd)

α̃enter
u,d (t−τ̃u,d(t)cd)

α̃enter
u,d (t−τ̃u,d(t)cd)

α̃enter
u,d (t−τ̃u,d(t)cd)

α̃enter
u,d (t+cd−τ̃u,d(t+cd)cd−cd)

α̃enter
u,d (t+cd−τ̃u,d(t+cd)cd−cd)

α̃enter
u,d (t+cd−τ̃u,d(t+cd)cd)

α̃enter
u,d (t−τ̃u,d(t)cd−cd)

α̃enter
u,d (t−τ̃u,d(t)cd−cd)

α̃enter
u,d (t−τ̃u,d(t)cd−cd)=

α̃enter
u,d (t+cd−τ̃u,d(t+cd)cd−cd)

α̃enter
u,d (t−τ̃u,d(t)cd−cd)=

α̃enter
u,d (t+cd−τ̃u,d(t+cd)cd−cd)

α̃enter
u,d (t−τ̃u,d(t)cd−cd)=

α̃enter
u,d (t+cd−τ̃u,d(t+cd)cd−cd)

∆t=cd

∆t=cd

∆t=cd

∆t=cd

∆t=cd

ts(kd)

ts(kd)

ts(kd)

ts(kd)

te(kd)

te(kd)

te(kd)

te(kd)

ts(kd)=te(kd)

t

t

t

t

t

t+2cd

t+2cd

t+2cd

t+2cd

t+2cd

t+cd

t+cd

t+cd

t+cd

t+cdt+cd−
τ̃u,d(t+cd)cd

t+cd−τ̃u,d(t+cd)cd

t+cd−
τ̃u,d(t+cd)cd−cd

t−τ̃u,d(t)cd=
t+cd−τ̃u,d(t+cd)cd

t−τ̃u,d(t)cd=
t+cd−τ̃u,d(t+cd)cd

t−τ̃u,d(t)cd=
t+cd−τ̃u,d(t+cd)cd

t−τ̃u,d(t)cd

t−τ̃u,d(t)cd−cd

δ̃u,d(t+cd)

δ̃u,d(t+cd)

δ̃u,d(t+cd)

δ̃u,d(t+cd)

δ̃u,d(t+cd)

δ̃u,d(t)

δ̃u,d(t)

δ̃u,d(t)

δ̃u,d(t)

δ̃u,d(t)

Fig. 1. Effective inflow (α̃enter

u,d
(t) within the influential time interval I(kd)=[ts(kd),t

e(kd))) during [t,t+cd) for cases 1-5 from top to bottom respectively.
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Similarly, for case 2 (see the plot in the second row of

Figure 1), we have2:

ᾱenter
u,d (t)=−

1

cd

∫ t+cd−τ̃u,d(t+cd)cd

t+cd−τ̃u,d(t+cd)cd−γ̃u,d(t+cd)

α̃enter
u,d (θ)dθ

−
1

cd

∫ t+cd−τ̃u,d(t+cd)cd+cd

t+cd−τ̃u,d(t+cd)cd

α̃enter
u,d (θ)dθ

−...

−
1

cd

∫ t−τ̃u,d(t)cd−cd

t−τ̃u,d(t)cd−2cd

α̃enter
u,d (θ)dθ

−
1

cd

∫ t−τ̃u,d(t)cd−γ̃u,d(t)

t−τ̃u,d(t)cd−cd

α̃enter
u,d (θ)dθ

=−
γ̃u,d(t+cd)

cd
α̃enter
u,d (t+cd−(τ̃u,d(t+cd)+1)cd)

−
1

cd
·cd

τ̃u,d(t+cd)−
τ̃u,d(t)−2
∑

i=1

α̃enter
u,d (t+cd−(τ̃u,d(t+cd)+1)cd+icd)

−
cd−γu,d(t)

cd
α̃enter
u,d (t−τ̃u,d(t)cd−cd).

The discrete-time equivalent of the above expression is

(4-corrected), as max(τu,d(kd+1),τu,d(kd)+1)=τu,d(kd+1).
For case 3 (see the plot in the third row of Figure 1), Eq. (2)

will be expanded as:

ᾱenter
u,d (t)=

1

cd

∫ t+cd−τ̃u,d(t+cd)cd−γ̃u,d(t+cd)

t−τ̃u,d(t)cd−γ̃u,d(t)

α̃enter
u,d (θ)dθ,

which, since in this case τu,d(kd)+1=τu,d(kd+1), or equiva-

lently τ̃u,d(t)cd+cd=τ̃u,d(t+cd)cd, simplifies to

ᾱenter
u,d (t)=

γu,d(t)−γu,d(t+cd)

cd
α̃enter
u,d (t−τ̃u,d(t)cd−cd). (3)

Similarly, for case 4 (see the plot in the fourth row of

Figure 1), we obtain the same formulation as (3) (noting that

the coefficient (γu,d(t)−γu,d(t+cd))/cd in case 3 is positive,

while in case 4 it is negative.

Finally, for case 5 (see the plot in the last row of Figure 1)

the area below the curve of α̃enter
u,d in between time instants t−

δ̃u,d(t) and t+cd−δ̃u,d(t+cd) is zero, and hence the influential

inflow, using (2), will become zero.

Remark 2: Eq. (4) in [1] is derived based on a method given

in [5]. The assumption in [5], however, in addition to a time-

invariant time delay is that the time delay is less than or equal

to the simulation sampling time cd. Referring to the proof

given above, Eq. (4-corrected) proposed in this short paper is

general and is not based on this restrictive assumption.

B. Corrections to Eq. (5) of [1]

Remark 3: In Eq. (5) of [1], the free-flow speed is defined

per link, while later on the free-flow and idling speeds, and

the acceleration and deceleration rates are considered to be

2Note that for case 2 and case 4, ts(kd)>te(kd) holds (see Figure 1),
which results in a negative value for the integral of (2).

fixed for all the links in the entire urban traffic network. In

this short paper, for consistency and for generalization, we

consider these parameters as functions of links, and use the

notations vfreeu,d , vlowu,d , aaccu,d, and adecu,d , correspondingly.

Eq. (5) in [1] has been derived based on the assumption that

all vehicles enter link (u,d) with the free-flow speed vfreeu,d , and

will reach the tail of the waiting queue with the same speed

(i.e., vehicles follow a uniform speed motion all the time).

However, since the speed of the waiting queue on link (u,d)
is assumed to be equal to the idling speed vlowu,d , the assumption

given in [1] is unrealistic, resulting in errors up to 50% for the

estimated values of δu,d(kd), and hence τu,d(kd) and γu,d(kd).
In reality, vehicles should decelerate at the right time in order

to reach the speed of the waiting queue at the time instant

they arrive at the tail of the queue. Moreover, depending on

the distance ∆x̃u,d(t) that has been traveled by a vehicle that

reaches the tail of the waiting queue at time instant t, there

may be cases where vehicles should enter the link with an

initial speed that is lower than the free-flow speed vfreeu,d .

In order to correct (5) in [1], we propose a different

reasoning: we assume that the kinematics of a vehicle that

arrives at the tail of the waiting queue on link (u,d) at time

instant t, follows either of the three speed-position curves

shown in the first column of Figure 2, and their corresponding

speed-time curves in the second column of the figure. We

define X̄u,d as the distance traveled by a vehicle on link (u,d)
that decelerates with the constant rate adecu,d from the free-flow

speed vfreeu,d to the idling speed vlowu,d . The corresponding travel

time is
(

vlowu,d−vfreeu,d

)

/adecu,d . Therefore,

X̄u,d=
1

2
adecu,d

(

vlowu,d−vfreeu,d

adecu,d

)2

+vfreeu,d

vlowu,d−vfreeu,d

adecu,d

. (4)

• In case ∆x̃u,d(t)>X̄u,d (case A), which is illustrated in

the first row of Figure 2, the position xenter
u,d of the link

entrance and the position xQtail
u,d (t) of the tail of the queue

at time instant t is large enough so that the vehicle first

moves a distance of X free
u,d (t) within T free

u,d (t) time units

with the free-flow speed vfreeu,d , and then switches to a

constant-deceleration movement with adecu,d to travel the

remainder Xdec,1
u,d of the distance within T dec,1

u,d time units.

Note that Xdec,1
u,d in Figure 2 is equal to X̄u,d.

• In case ∆x̃u,d(t)=X̄u,d (case B), which is illustrated in

the second row of Figure 2, immediately after entering

link (u,d), the vehicle should decelerate with adecu,d from

the free-flow speed vfreeu,d so that in T dec,2
u,d time units, when

it reaches the tail of the waiting queue on the link, its

speed has reached vlowu,d . Note that Xdec,2
u,d in Figure 2 is

equal to X̄u,d.

• Finally, in case ∆x̃u,d(t)<X̄u,d (case C), which is illus-

trated in the third row of Figure 2, the vehicle should

enter the link with an initial speed vinitu,d (t) lower than

the free-flow speed, and in T dec,3
u,d (t) time units reaches

the tail of the waiting queue, after traveling a distance of

Xdec,3
u,d (t).
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t

t

t tswitch
u,d (t)

tarrivu,d (t)

tarrivu,d (t)

tarrivu,d (t)speed

speedspeed

speed

speedspeed

time

time

time

position

position

position
X free

u,d (t) Xdec,1
u,d

Xdec,2
u,d

Xdec,3
u,d (t)

T free
u,d (t) T dec,1

u,d

T dec,2
u,d

T dec,3
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Fig. 2. Speed-position and corresponding speed-time curves for a vehicle that enters link (u,d) at time instant t, for cases A-B from top to bottom respectively.

For all these three cases, we have:

∆x̃u,d(t)=
(Cu,d−q̃u,d(t))

N lane
u,d

lveh. (5)

For case A, we can write:

∆x̃u,d(t)=X free
u,d (t)+Xdec,1

u,d

=vfreeu,d T
free
u,d (t)+

1

2
adecu,d

(

T dec,1
u,d

)2

+vfreeu,d T
dec,1
u,d , (6)

with T dec,1
u,d =

(

vlowu,d−vfreeu,d

)

/adecu,d . Moreover, for this case

δ̃u,d(t)=T free
u,d (t)+T dec,1

u,d (where T free
u,d (t) is obtained solving

(6) for this variable). Therefore:

δ̃u,d(t)=
(Cu,d−q̃u,d(t))

N lane
u,d vfreeu,d

lveh−

(

vlowu,d−vfreeu,d

)2

2adecu,dv
free
u,d

. (7)

For case B, T dec,2
u,d =

(

vlowu,d−vfreeu,d

)

/adecu,d . Moreover, for this

case we have δ̃u,d(t)=T dec,2
u,d . Hence,

δ̃u,d(t)=
(

vlowu,d−vfreeu,d

)

/adecu,d. (8)

Finally, for case C, where vinitu,d (t)<vfreeu,d , we obtain

∆x̃u,d(t)=
1

2
adecu,d

(

T dec,3
u,d (t)

)2

+vinitu,d (t)T
dec,3
u,d (t), (9)

where, from the speed-time curve in the last row of Figure 2,

we have vinitu,d (t)=vlowu,d−adecu,dT
dec,3
u,d (t). Therefore, (9) becomes

a quadratic equation that can be solved to determine the

variable T dec,3
u,d (t). Moreover, in this case δ̃u,d(t)=T dec,3

u,d (t).
Therefore,

δ̃u,d(t)=vlowu,d/a
dec
u,d+ (10)

(

(

vlowu,d/a
dec
u,d

)2
−2(Cu,d−q̃u,d(t))l

veh/(adecu,dN
lane
u,d )

)0.5

.

Equations (7), (8), and (10) have been derived considering

the motion of a single vehicle that arrives at the tail of

the waiting queue on link (u,d) at time instant t (i.e., a

microscopic point-of-view). In order to transfer these equa-

tions into macroscopic ones, q̃u,d(t) can be substituted by

qaveu,d(kd), which is the average queue length computed within

the time interval [kdcd,(kd+1)cd). We refer the readers to [3]

for estimation of qaveu,d(kd). Finally, Eq. (5) in [1] should be

corrected correspondingly, using δu,d(kd) obtained for either

of the three given cases, via the discrete-time version of

Equations (7), (8), or (10), where q̃u,d(t) in (7) and (10) has

been substituted by qaveu,d(kd).

Remark 4: The conditions that define cases A-C have been

defined based on the continuous-time variable ∆x̃u,d(t), which

is computed via (5). In order to transfer this continuous-time

variable into its discrete-time version, q̃u,d(t) in (5) should

be substituted by the discrete-time variable qaveu,d(kd) (see the

explanations given above).
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kd+1 kdkd

k−u (kd) k−u (kd)+1 kuk−u (kd+1)

cd

cu

0

0
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α̃enter
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αenter
i,u,d (kd)

αleave
i,u,d (k

−
u (kd))

αleave
i,u,d (k

−
u (kd+1))

∆cinitu,d

Fig. 3. Synchronization of the joint variables for connected links.

C. Corrections and extensions to Eq. (9) of [1]

Eq. (9) in [1] should be corrected as

αenter
i,u,d (kd)=

1

cd

∫ (kd+1)cd

kdcd

α̃leave
i,u,d (t)dt. (9-corrected)

Note that αenter
i,u,d , i.e., the flow rate of the vehicles that enter

link (u,d) (from link (i,u)) is updated at simulation time step

kd. Furthermore, αenter
i,u,d is equivalent to the flow rate αleave

i,u,d of

the vehicles that leave link (i,u) (towards link (u,d)), which

is updated at simulation time step ku. In the S-model, αleave
i,u,d

is first computed (see Eq. (2) in [1]) and αenter
i,u,d is computed

afterwards via αleave
i,u,d (see Eq. (6) in [1]). The main issue is

that, in general, kd and ku may not always be synchronized.

We use the notation ∆cinitu,d for the offset between the cycle

times of the traffic signals at the upstream and downstream

intersections of link (u,d) measured at simulation time step

kd=0 (see Figure 3). More specifically, ∆cinitu,d is the time

span from the start of the simulation of link (u,d) until the

beginning of the first upcoming cycle of link (i,u). Note

that the corresponding simulation time step of link (i,u) is

indicated by ku=0 in Figure 3. Furthermore, we define k−u (kd)
as the most recent simulation time step of link (i,u) prior to

simulation time step kd of link (u,d). We have (see Figure 3):

k−u (kd)cu+∆cinitu,d≤kdcd<
(

k−u (kd)+1
)

cd+∆cinitu,d ⇒

k−u (kd)≤kdcd/cu−∆cinitu,d/cu<k−u (kd)+1 ⇒

k−u (kd)=
⌊

kdcd/cu−∆cinitu,d/cu
⌋

.

If αenter
i,u,d (·) is a piecewise constant function in the

continuous-time domain (see Figure 3), the average entering

flow rate of the vehicles αenter
i,u,d (kd) within [kdcd,(kd+1)cd) is

computed via (9-corrected), which can be simplified as

αenter
i,u,d (kd)=

1

cd
αleave
i,u,d

(

k−u (kd)
)

·
(

min
(

(kd+1)cd,
(

k−u (kd)+1
)

cu+∆cinitu,d

)

−kdcd

)

+

1

cd

∑k−

u (kd+1)−1

ku=k−

u (kd)+1
αleave
i,u,d (ku)·cu+

1

cd
αleave
i,u,d (k

−
u (kd+1))·

(

(kd+1)cd−min
(

(kd+1)cd,k
−
u (kd+1)cu+∆cinitu,d

)

)

.

(11)

The mathematical expression given by (11) has been derived

based on the following reasoning. The first term of the

summation in (11) is 1/cd times the area of the first (from left)

rectangle in the top plot of Figure 3. The right-hand side edge

of this rectangle is positioned at ku=k−u (kd)+1. Therefore, in

case (k−u (kd)+1)cu+∆cinitu,d<(kd+1)cd, then, from Figure 3,

the width of this rectangle is (k−u (kd)+1)cu+∆cinitu,d−kdcd;

otherwise, in case (k−u (kd)+1)cu+∆cinitu,d≥(kd+1)cd, which

indicates that this rectangle covers the entire time interval

[kdcd,(kd+1)cd), then the width of the rectangle is (kd+1)cd−
kdcd. This explains the use of the minimum function in the

first term of the right-hand side expression of (11).

The second term is 1/cd times the summation of the areas

of all those rectangles that entirely lie within [kdcd,(kd+1)cd),
and their left-hand side edge is necessarily positioned at the

right-hand side of the dashed line crossing kd in Figure 3.

Finally, the last term of (11) is 1/cd times the area of the last

rectangle in the top plot of Figure 3. Note that this term is non-

zero only in case ku=k−u (kd+1) lies at the left-hand side of

the dashed line crossing kd+1 in the figure, where the width of

the rectangle equals (kd+1)cd−
(

k−u (kd+1)cu+∆cinitu,d

)

. Oth-

erwise, the area of this rectangle has already been computed

(see the above explanations). This explains the use of the

minimum function in the last term of (11).

Note that in [1], instead of the initial offset ∆cinitu,d of cycles

cd and cu, the offset ∆cu,d(kd) of these cycles at simulation

time step kd is used. Note that ∆cinitu,d is a fixed value, initially

known at kd=0, while ∆cu,d(kd) is time-varying. Therefore,

in addition to correcting the formulation of Eq. (9) in [1] using

(9-corrected), by introducing and using ∆cinitu,d , we have also

eliminated the need for computation of ∆cu,d(kd) at every

simulation time step in order to synchronize αleave
i,u,d and αenter

i,u,d .

D. Corrections to Eq. (13) of [1]

In Eq. (13) in [1], there is a mismatch between the units

on two sides of the equality sign (i.e., the left-hand side of

the equation gives the average emission rate with the unit

[kg/s], while the right-hand side of the equation has the

unit [kg·m/s3])). This issue may originate from a mistake in

substituting the integral’s variable from time to speed. Eq. (13)

in [1] should be substituted by

Edec
θ,i,u,d(kd)=

1

vlowu,d−vfreeu,d

∫ vlow
u,d

vfree
u,d

Eθ,i,u,d

(

v,adecu,d

)

dv.

(13-corrected)
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The reason is given next. Define tfreei,u,d and tlowi,u,d as the time

instants at which the speed of the vehicle i is vfreeu,d and vlowu,d ,

respectively. Since Eθ,i,u,d

(

v,adecu,d

)

denotes the instantaneous

emission rate of vehicle i, the average emission rate of vehi-

cle i within the deceleration time interval
[

tfreei,u,d,t
low
i,u,d

]

that

corresponds to the simulation time step kd (more specifically,

kdcd≤tfreei,u,d≤tlowi,u,d≤(kd+1)cd) is computed by

Edec
θ,i,u,d(kd)=

1

tlowi,u,d−tfreei,u,d

∫ tlowi,u,d

tfree
i,u,d

Eθ,i,u,d

(

vi(t),a
dec
u,d

)

dt,

with vi(t) the speed of vehicle i at time instant t. If the vehicle

decelerates with a constant rate adecu,d from vfreeu,d to vlowu,d , we

have

vi(t)=adecu,d

(

t−tfreei,u,d

)

+vfreeu,d .

Hence, dt= 1
adec
u,d

dv. Substitution of the integral’s limits and the

integral’s variable give (13-corrected).

Remark 5: Since the speeds and the acceleration and de-

celeration rates are link-dependent in this erratum, the average

emission rate is also link-dependent.

E. Corrections to Eq. (14)–(16) of [1]

With a similar reasoning as for (13), we can see that

Eq. (14)–(16) should be substituted by

Eacc
θ,i,u,d(kd)=

1

vfreeu,d −vlowu,d

∫ vfree
u,d

vlow
u,d

Eθ,i,u,d

(

v,aaccu,d

)

dv,

(14-corrected)

Eacc
θ,i,u,d(kd)=

1

vaggu,d−vfreeu,d

∫ v
agg

u,d

vfree
u,d

Eθ,i,u,d

(

v,aaccu,d

)

dv,

(15-corrected)

Edec
θ,i,u,d(kd)=

1

vconu,d−vfreeu,d

∫ vcon
u,d

vfree
u,d

Eθ,i,u,d

(

v,adecu,d

)

dv.

(16-corrected)

F. Further extensions (origin queues)

Further extensions to the S-model have been proposed in

[2] and [3] to allow the S-model to model the origin queues.

With the inclusion of origin queues, those vehicles that intend

to enter an urban traffic network, but cannot do so due to the

fully occupied origin links, are stored in queues at the origins

of the traffic network (instead of being inserted in the link

anyway, as in [1], even if the capacity of the origin links is

reached). For more details, we refer the readers to [2] and [3].
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