
Delft University of Technology
Delft Center for Systems and Control

Technical report 18-014

Distributed constraint optimization for
continuous mobile sensor coordination∗

J. Fransman, J. Sijs, H. Dol, E. Theunissen, and B. De Schutter

If you want to cite this report, please use the following reference instead:
J. Fransman, J. Sijs, H. Dol, E. Theunissen, and B. De Schutter, “Distributed constraint
optimization for continuous mobile sensor coordination,” Proceedings of the 2018
European Control Conference, Limassol, Cyprus, pp. 1100–1105, June 2018. doi:10.
23919/ECC.2018.8550486

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/18_014.html

https://doi.org/10.23919/ECC.2018.8550486
https://doi.org/10.23919/ECC.2018.8550486
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/18_014.html

Distributed constraint optimization for
continuous mobile sensor coordination

Jeroen Fransmana, Joris Sijsa, Henry Dolb, Erik Theunissenc, Bart De Schuttera

Abstract— DCOP (Distributed Constraint Optimization
Problem) is a framework for representing distributed multi-
agent problems. However, it only allows discrete values for the
decision variables, which limits its application for real-world
problems. In this paper, an extension of DCOP is investigated
to handle variables with continuous domains. Additionally, an
iterative any-time algorithm Compression-DPOP (C-DPOP) is
presented that is based on the Distributed Pseudo-tree Opti-
mization Procedure (DPOP). C-DPOP iteratively samples the
search space in order to handle problems that are restricted by
time and memory limitations. The performance of the algorithm
is examined through a mobile sensor coordination problem. The
proposed algorithm outperforms DPOP with uniform sampling
regarding both resource requirement and performance.

I. INTRODUCTION
A wide range of real-world problems can be modeled as a

Multi-Agent System (MAS): scheduling problems [1], mo-
bile sensor coordination [2], hierarchical task networks map-
ping [3], and control of modern robotics such as RoboCup
Rescue [4]. Real-world problems often involve agents that
are bound by inter-agent constraints (communication, move-
ment) and by limited resources (memory, processing power).
Likewise, bounded computation time is important to ensure
safety when operating in a (uncertain) dynamic environment,
for example, obstacles can only be avoided when the reaction
is executed in a timely manner. The main challenge of MAS
is to coordinate the actions of the agents by a distributed
process, since a centralized process would become intractable
for large number of agents.

The Distributed Constraint Optimization Problem (DCOP)
framework has been introduced to represent problems that
are naturally distributed [5]. A DCOP is typically represented
as a constraint graph, where nodes represent the variables
of the problem, and edges represent a constraint or utility
relation between the variables. The agents coordinate their
actions by exchanging messages about the utility of their
interactions. The utility values represent the differences in
cost and benefits of the actions for the individual agents.
By using utility, individual goals and internal dynamics
are abstracted and hidden from other agents, which makes
modeling of real-world problems less complex, since not all
interactions need to be modeled in great detail. This results
in modeling versatility and simplicity.

DCOP defines control variables with finite discrete do-
mains, which limits its use for problems with continuous

a Delft Center for Systems and Control, Delft University of Technology,
Delft, The Netherlands, j.e.fransman@tudelft.nl

b Netherlands Organisation for Applied Scientific Research (TNO), The
Hague, The Netherlands

c Netherlands Defence Academy (NLDA), Den Helder, The Netherlands

variables and utility functions. The latter type of problems
are less studied within the DCOP framework [4]. For con-
tinuous path planning and multi-robot coordination/collision
avoidance specific solutions exist. In the work of [6], a set
of rapidly-exploring random trees is used as discrete domain
for the trajectories. An alternative approach is presented in
[7], where the utility functions are approximated as piecewise
linear functions. These methods assume that the utility tables
are readily available or can be computed beforehand. In real-
world situations this is often not the case, and calculation
of these values could be subject to large computational
requirements. A generic solution would be to transform the
continuous domains into discrete domains by sampling up to
a desired resolution. However, this would result in a rapid
growth in the computational complexity. The complexity
growth is due to the exponentially growth of the size of the
search space with respect to the interconnectivity and the
size of the domains of the variables.

Numerous solvers for DCOP have been proposed; for a
detailed overview of the taxonomy of DCOP algorithms,
the reader is referred to [8], [9]. In this paper, the focus
is on the DPOP algorithm, since it requires a fixed number
of communication steps. This property makes it suitable for
real-world problems, since it bounds the interactions between
the agents. DPOP uses dynamic programming elements
to communicate accumulated information among agents,
such that every new message enables a more informed
selection of the optimal control variables. To reduce the
complexity growth DPOP has been extended in numerous
manners. These approaches can be divided into complete
and approximate solvers. Complete solvers are guaranteed
to find the (global) optimal solution, approximate solvers do
not. Optimally solving DPOP is NP-HARD, which makes
providing real-time guarantees unattainable [10]. Therefore,
approximate solutions are considered to be a valid option for
a problem with limited resources.

In local optimal solutions the computational requirements
are reduced in three predominant methods:

1) Reducing the number of interconnections by iteratively
adding interactions and re-evaluating the problem (I-
DCOP [1]) until an acceptable solution is found. This
reduces the maximum size of the message, but could
lead to infeasible solutions when constraints of the
problem are neglected.

2) Restricting the number of variables in the messages by
dropping a set of variables from the message when a
maximum message size is violated. This trades solution
quality against computational complexity (A-DPOP
[11]) based on lower and upper utility bounds. For
memory restricted agents, this could lead to arbitrarily
poor performance.

3) Limit the growth of the messages, by filtering inferior
solutions based on global lower and upper utility
bounds. This method is used to improve DPOP (MB-
DPOP [12]), in combination with the Generalized
Distributive Law [4] or max-sum algorithms [13]. This
method can achieve a major reduction in communica-
tion; however this cannot be guaranteed. The benefits
will depend greatly on the specific problem at hand.

In the current paper a fourth option is explored:
4) Regulating the search space by confining the number

of samples of the continuous domains and iteratively
applying DPOP while contracting the continuous do-
mains around intermediate (local) solutions. Conse-
quently, the search space can be sampled more effec-
tively based on local optima without the need for larger
computational resources.

The remainder of this paper is organized as follows.
First, Section II defines the DCOP model and its extension
towards continuous domains. Then, Section III elaborates
on the DPOP algorithm, which is extended in Section IV
by the proposed algorithm. Next, Section V defines the
continuous mobile sensor coordination problem that is used
to compare the performance and memory and computation
time requirements of DPOP and the proposed algorithm. The
implementation of the mobile sensor coordination problem
is detailed and the results are analyzed. Finally, Section VI
summarizes the results and defines the future work.

II. DCOP DEFINITIONS & NOTATION

A Distributed Constraint Optimization Problem (DCOP)
is defined by a tuple < A,X,D,F,G > [4], where:
A is a set of agents, i.e. A = {a1, a2, . . . , anA

} and
nA ∈ N is the number of agents.

X is a set of decision variables, i.e.
X = {Xi | ∀ai ∈ A}. Xi = {xi,1, . . . , xi,nXi

} is
the set of variables of agent ai, and nXi

∈ N is
its number of variables. The number of elements in
set Xi is also denotes as |Xi|.

D is a set of all domains of all variables, i.e.
D = {Dp | ∀xp ∈ X} and the domain of variable
xp is defined as Dp = {dp,1, dp,2, . . . , dp,nDp

},
where nDp

∈ N defines the number of elements
within in the domain Dp.

F is a set of utility functions, i.e.
F = {fk : S (fk) → R∪ {−∞}}. Hard constraints
are modeled as −∞ utility. Each function fk ∈ F
is defined over a subset S (fk) ∈ X , also referred
to as the scope of the function. The scope of Fi is
similarly defined as S (Fi) = {S (fk)|∀fk ∈ Fi}.

Every agent ai knows the utility functions that
involve its own decision variables Xi.
Formally, agent ai knows the subset Fi ⊆ F ,
Fi = {fk ∈ F | ∃fk such that S (fk) ∩Xi ̸= ∅}.

G the global objective function that captures the ag-
gregated utility of a complete allocation of all
variables, denoted as X. An allocation X maps
each variable x ∈ X to a value in its domain
D, X : X → D. The goal is to find an optimal
allocation X∗ = argmaxX G(X), where G(X) =∑

fk∈F fk(X[S (fk)]). The projection of an alloca-
tion X over a set of variables Xp ⊆ X , written
X[Xp], is a new allocation Xp formed by the values
that X assigns to the variables in Xp.
For example, with f1(x1) = x1

2, S (f1) = {x1},
D1 = {1, 2}, and X1 = {x1 = 2}, then
f1(X1[S (f1)]) = f1(X1[x1]) = f1(2) = 4.
The search space (all possible allocations of the
variables) X =

∏
xp∈X Dp defines each combina-

tion of all elements in the domain for the variables
in set X , where

∏
is the set Cartesian product.

A DCOP is distributed in the sense that agents only
interact through variables coupled by a utility function. The
function set that is shared by agents ai and aj is denoted as
Fi,j = {fk | fk ∈ Fi ∩ Fj}. Likewise, the set of functions
of agent ai that are not shared by other agents is denoted as
F−i = {fk | S (fk) ∩ S (fj) = ∅, ∀ fj ∈ F \ Fi}.

A. THE C-DCOP MODEL

The Continuous DCOP (C-DCOP) model extends the
DCOP model towards variables with continuous domains.
Formally, it is a tuple < A,X,D,F,G >, where:
A,F,G are equal to their definition in DCOP.
X The variable set X = (Xd, Xc), where all

variables with a discrete domain xd belong to
set Xd = {xp | p = 1, 2, . . . , nxd

} and all
variables with a continuous domain xc belong
to set Xc = {xq | q = 1, 2, . . . , nxc}. The
number of discrete variables and continuous
variables is denoted as nxd ∈ N and nxc ∈ N,
respectively.

D The domain set D = (Dd, Dc), where Dd =
{Dd

p | ∀xp ∈ Xd} and Dc = {Dc
q | ∀xq ∈ Xc}.

The continuous domain of variable xq is defined
by its lower and upper bound as Dc

q = (
¯
dcq, d̄

c
q)

indicating the domain over which the variable
xq can take a value.

III. DISTRIBUTED PSEUDO TREE OPTIMIZATION
PROCEDURE (DPOP)

Distributed Pseudo-tree Optimization Procedure (DPOP)
is a solver for the DCOP framework. DPOP operates over a
pseudo tree [14], which is a rooted directed spanning tree,
where connected nodes fall in the same branch. Every edge
of the pseudo tree is represented by a parent/child (direct)
relation or by a backedge for an pseudo parent/pseudo child
(indirect) relation. This representation allows for separating

the main problem into sub-problems (between branches) and
solving these independently before merging into the global
assignment [15]. In order to create a pseudo tree from a con-
straint graph a depth-first search traversal can be executed.
In this paper, the Distributed Depth-First-Search (DFS) al-
gorithm [16] is used, since it performs traversals along
backedges in parallel, thereby reducing the time complexity.
A DFS is defined by assigning the following properties to ev-
ery node/agent ai in the tree: the descendant/ancestor agents
that are directly connected through a tree edge are indicated
by Ci, Pi, respectively. descendant/ancestor agents, that are
indirectly connected through a backedge are indicated by
PCi, PPi, respectively. The set of all connected agents to
agent ai or to its descendants excluding the agent ai itself
is defined as Ji = {∪aj∈Ci

Jj ∪Pi ∪PPi} \ {ai}.
The DPOP algorithm [5] solves DCOP in three phases:

1) Pseudo tree construction: The agents distributively
create the pseudo tree structure, by a distributed pseudo
tree construction algorithm. Each agent ai labels all
its neighbors as either parent, pseudo parent, child, or
pseudo child (Pi,PPi,Ci,PCi, Ji).

2) Bottom-up utility propagation: From the leaves (nodes
without children) of the pseudo tree the agents pass a
utility message U towards their parents.
A utility message U i

j is send by agent aj to agent ai
based on the shared utility function set Fi,j ⊆ F , de-
fined as U i

j ∈ Rn1×n2×···×nk,p , where nk,p ∈ N is the
number of elements in Dp of variable xp ⊂ S (Fi,j).
In words, it is a multidimensional matrix with one
dimension for each variable xp within S (Fi,j). Parents
receive utility matrices U i

j from all their children
indicating the combined utility for coupled variables
between the agents.
All child matrices are combined as U i

Ci
=

⊕
aj∈Ci

U i
j ,

where the messages are combined by a join operator ⊕
as U i

1,2 = U i
1 ⊕U i

2 such that the scope is the union of
both scopes, i.e. S (U i

1,2) = S (U i
1)∪S (U i

2). The value
of the elements of U i

1,2 is the sum of the elements of
U i
1 and U i

2 for all combinations of S (U i
1) and S (U i

2).
For example, U i

1 =
[
1 3

]
, with S (U i

1) = {x1} and
U i
2 =

[
3 4

]
, with S (U i

2) = {x2}. Combining these
matrices results in U i

1,2 = U i
1 ⊕ U i

2 =
[
4 5
6 7

]
with,

S (U i
1,2) = {x1, x2}.

The utility matrices of the children are combined with
the local utility matrix U(F−i) and the utility matrices
of the (pseudo) parents of the agent to form the total
utility matrix U i of agent ai as
U i = U i

Ci
⊕ U(F−i)⊕

(⊕
aj∈{Pi ∪PPi} U

j
i

)
.

The resulting matrix U i is optimized over the local
variables of the agent ai. This operation is defined by
a projection operator ⊥ and assigns the maximal utility
of allocation of the local variable set Xi. The result is
a matrix of lesser cardinality based on Xi, in words,
for all values of Xi the optimal value is chosen with
respect to the allocation Xi.
Formally, U i ⊥ Xi = maxXi∈Xi

U i[Xi], and the

scope S (U i ⊥ Xi) = S (U i) \ Xi. For example,
when U i =

[
4 5
6 7

]
with S (U i) = {x1, x2}, the

resulting projection is U i ⊥ {x1} =
[
6 7

]
and X1 =

{{x1 = 2|x2 = 1}, {x1 = 2|x2 = 2}}.
After the projection, the matrix is sent towards to its
parent, UPi

i = U i ⊥ Xi. After the root agent of the
pseudo tree (agent without parent) has finished this
procedure, the value propagation phase is initiated.

3) Top-down value propagation: The root agent has ac-
cumulated the combined utility values U i and is able
to choose the optimal assignment of its local variable
set Xi, X∗

i = argmaxXi
(U i ⊥ Xi). The allocation

of these values is sent to all the children of the agent.
Based on these values the children allocate their own
variables, X∗

j = argmaxXj
(U j ⊥ X∗

i ⊥ Xj).
Every agents repeats this process until the leaves of
the tree are reached, completing the assignment X∗.

A graphic representation of the DPOP algorithm can be
seen in Figure 1, where a simple problem is shown during
execution of the algorithm.

IV. COMPRESSION DPOP (C-DPOP)

In order to efficiently sample the continuous domains
of the variables within the C-DCOP framework, the
Compression-DPOP (C-DPOP) algorithm is proposed.
C-DPOP is an approximate any-time iterative algorithm that
extends DPOP by dynamically sampling continuous domains
by a fixed number of samples per variable, nsq ∈ N for all
xq ∈ Xc. After every iteration, the width of the domain
of variable xq , wq is decreased according to a compression
factor (0 < cq < 1), which results in an increased domain
resolution rq (sample distance). This process can be stopped
at any time if the allowed computation time has expired.

C-DPOP consists of five phases which are iteratively
executed by all agents:

1) Domain sampling: All continuous domains of agent
ai are sampled based on its upper and lower bound
(d̄q,

¯
dq) so to generate discrete domains. Based on

the number of samples per domain nsq , the domain
is uniformly sampled Dc

q → Dd
q such that,

Dd
q = {dq,1, . . . , dq,nsq

} and dq,r =
¯
dq+(r−1)

wq

nsq−1 .
2) Utility tables creation: Based on the search space of

the discrete domains the utility functions are sampled
to calculate the utility values. Every agent calculates
the local utilities U(F−i), and the utilities of the
(pseudo) parents U j

i ∀j ∈ Pi ∪PPi.
3) Bottom-up utility propagation: After the utility tables

are generated, the leaves of the tree start by sending
their utility matrices to their parents. These matrices
are combined with the local utility matrices, which are
then projected over the local variables before being
sent to the parents. This phase is identical to DPOP.

4) Top-down value propagation: The root of the tree
initiates the value propagation, after which all children
allocate their local variables before sending it to their
children. This phase is identical to DPOP.

Fig. 1. A simple DCOP problem, adapted from [10] Left: a tree representation where the agents A = {a1, a2, a3, a4} are represented as nodes. The
edges represent the utility relations between the variables of the agents F = {f1, f2, f3}. The variables X = {X1, X2, X3, X4}, where Xi = {xi} for
i = 1, 2, 3, 4. All variables have identical domains D = {D1, D2, D3, D4}, where D1 = D2 = D3 = D4 = {a, b, c}. Right: the message flow starts
from the leaves of the tree (a3, a4) based on the projection of their utility matrices over their decision variables. These matrices are combined by agent
a2 by the join operation (⊕) before projecting out x2 and sending the result to agent a1. Afterwards, agent a1 calculates the optimal assignment for x1

and sends it to its child (a2), which assigns the optimal value for x2 before sending the combined assignment to its children (a3 and a4). Lastly, agents
a3 and a4 assign their local values.

5) Domain compression: After a (local) optimal allocation
for the local variables X∗

i is found, the upper and lower
bounds of the domains are updated. This is done by
compressing the width of the domain w+

q = wqcq ,
where wq == d̄q −

¯
dq and centering the domain

around the allocated values X∗
i [xq]. The new domain

is defined as Dc
q = (

¯
dcq, d̄

c
q), ¯

dcq = X∗
i [xq] −

w+
q

2 , and

d̄cq = X∗
i [xq] +

w+
q

2 .
The compression of the domain is a key-part of the algo-

rithm, since it iteratively refines the solution. The proposed
restriction strategy is based on contracting grid search. By
this, the sampling of the continuous domain is focused
around the (local) optimal value (an area with high utility),
while the iteratively compression of the domain reduces the
exploration (of the area around the found optimum). An
overview of the strategy for a one-dimensional domain can
be seen in Figure 2.

For resource constraint problems, C-DPOP can be used
with a limited number of iterations. The maximum number
of iterations is calculated explicitly based on the required
number of memory and computation time. The memory
requirement is a function of the number of samples used
per variable. The total required memory by agent ai can be
calculated as mi = |Xi|m1, where |Xi| is the size of the
search space for all variables in Xi, and m1 is the required
number of bytes to store the utility of a single assignment
(typically 8 bytes for a float). The required time can be
calculated based on the number and execution time of all
function evaluations. The number of evaluations is equal to
the size of the search space of all variables in the scope of

Fig. 2. An overview of the domain compression strategy. Domain Dc
q is

updated over three iterations (A, B, C) by reducing the width of the domain
w+

q = wqcq and centering around the optimal value represented as vertical
arrows. The optimal value is indicated by a star. The domain is represented
as a horizontal black line on which the samples {dq,r}4r=1 are shown.

the function, nefk
= |Xfk |. It is a property of the number

of variables in the scope and the size of their domains, since
Xfk =

∏
xq∈S(fk)

Dq . The evaluation time of a function fk
is a property of that function and is denoted as tfk . This
property is assumed to be known for all functions fk ∈ F .
Based on these two properties the required computation time
for agent ai can be defined as ti =

∑
tfknefk

for all
fk ∈ F−i ∪ Fi,j∀j ∈ Pi ∪PPi. The achievable resolution
riq of agent ai for variable xq can be calculated based on the
chosen compression factor cq , the initial width of the domain
wq , the number of samples nsq , and the number of iterations
nIq ∈ N, as raq = c

nIq−1
q

wq

nsq−1 .

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

iteration: 0 utility: 6.511

(a) Initial domain sampling.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

iteration: 6 utility: 7.356

(b) Intermediate domain sampling.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

iteration: 11 utility: 7.536

(c) Final domain sampling.

Fig. 3. Selecting and compressing of the domain during C-DPOP for a three agent, ten target example. The initial positions of the agents are shown as
red markers, their search space (domains) as blue markers, and their optimal value as green markers. The markers are type coded in order to identify the
different agents (square, plus, pentagon). The targets are indicated as black circles. Snapshots from three iterations are shown. In (a) the domains can be
seen to overlap, seemingly only showing the search space of a single agent. In (b) the domains of the agents are compressed and centered around their
found (local) optima. In (c) the final solution is shown with the sensor ranges of the agents shown as transparent blue circles.

V. SENSOR COORDINATION PROBLEM

A. PROBLEM STATEMENT

A mobile sensor coordination problem is used to evaluate
the performance and computational requirements of the C-
DPOP algorithm. The problem is adapted from [17] where
a team of mobile sensors with limited sensing range need to
coordinate their positions (from initial locations) in order to
minimize the amount of unobserved targets in an area. The
problem is extended for agents with limited memory and
computation time, and the agents are able to select positions
over continuous domains within a two-dimensional plane.

The problem is described within the C-DCOP framework
where the position of agent ai is defined as Xi = {xi, yi}.
The available resources are defined as tmax

i for time and
mmax

i for memory of agent ai. The utility functions of the
problem are defined as F = {FT , FA}. FT = {ft,l}nT

l=1 is
the utility function set for sensing the targets, where nT ∈ N
is the number of targets. A target Tl is defined as a point
(xl, yl). The utility function of target l is described as

ft,l =

{
1 if d(Tl, Xj) ≤ sj

0 if d(Tl, Xj) > sj
,

where sj is the sensing distance of the closest agent (aj), and
d(Tl, Xj) is the Euclidean distance between the location of
the target and the position of the agent. The utility function
set for the movement is represented as FA = {fa,i}nA

i=1,
where fa,i = −d(Xi, Ii) and Ii = (x0

i , y
0
i) is the initial

location of agent ai. Goal function that is the difference be-
tween the utility gain from targets in sensor range subtracted
with the cost of moving to a new location for all agents, i.e.
G(X) =

∑
fk∈F fk(X[S (fk)])

B. IMPLEMENTATION

The performance of the proposed C-DPOP algorithm is
compared to DPOP with uniform sampling of the domains by
considering the achieved utility. The DPOP method samples
the continuous domains only once, while C-DPOP iteratively
refines the domains. An example of the operation of C-DPOP
can be seen in Figure 3. The two methods are compared for

randomly generated mobile sensor coordination problems. In
every problem the initial location of the agents I and location
of the targets T is randomly chosen. The agents can choose
any position within this area and therefore the domains of the
variables are all equal, Dc

x,i = Dc
y,i = (0, 1) for all ai ∈ A.

Since all variables have equal domains and all agents have
similar variables, the agent subscript and variable subscripts
will be neglected for brevity. All agents are assumed to
have an equal amount of available memory and computation
time. Based on these resources, the maximum achievable
number of samples will be limited by either the memory or
the computation time. For DPOP, the maximum amount of
samples achievable within the available resources are used.

The C-DPOP algorithm requires a fixed number of sam-
ples and a compression factor in order to calculate the
allowed number of iterations. The number of samples and
the compression factor can selected based on properties
of the underlying problem. In the case of mobile sensor
coordination, the number of samples can be selected to
correspond to a minimal allowed resolution. In this case, it is
defined with relation to the sensor range (si = 0.2) in order
to achieve overlap within the sensed areas. Based on the area
size, the number of samples for C-DPOP is set at 5. The
compression factor can be chosen in correspondence with
the non-linearity of the underlying problem. A compression
factor close to 0 will compress the domain relatively fast,
excluding large segments of the domain at every iteration.
Thereby, converging to a (local) optimum rapidly, which is
not preferable for (highly) non-linear problems since this
can exclude segments that hold the global optimum. A
compression factor close to 1 will exclude small segments,
therefore being able to escape a (local) optimum more easily
when a new (local) optimum is found. For the problem at
hand the compression factor c = 0.9 is chosen.

A comparison of achieved utility for a three agent, ten
target problem is shown in Figure 4. During evaluation of
the performance of DPOP and C-DPOP, it was found that the
utility was highly dependent on the achievable resolution of
the algorithms. This difference can be attributed to accurate

23 59 13
1

26
6

50
0

time [s]

4E+059E+05
2E+06

4E+06

8E+06

m
em

or
y

[b
yt

es
]

DPOP

23 59 13
1

26
6

50
0

time [s]

C-DPOP

6

7

8

9

10

Fig. 4. A comparison of achieved utility for a three agent, ten target
problem. Left: the utility of the DPOP algorithm, where the increase in
resources (and the number of samples) can be clearly seen to increase the
performance. Right: the utility of the C-DPOP algorithm, where the effect
of the constant number of samples can be seen in the memory indifference.
The performance can be seen to gradually increase when more iterations
are possible within the available time.

positioning, which induces the least amount of movement
cost and achieves higher sensing utility by being able to sense
multiple targets simultaneously.

This property can be clearly seen in Figure 5 where the
computation time and memory requirements to achieve a
certain resolution are compared. Therefore, given the same
amount of resources, C-DPOP is able to achieve a higher
resolution.

0.000 0.025 0.050 0.075 0.100
resolution [-]

106

1011

1016

tim
e

[s
]

DPOP
C-DPOP

0.000 0.025 0.050 0.075 0.100
resolution [-]

107

1012

1017

m
em

or
y

[b
yt

es
] DPOP

C-DPOP

Fig. 5. Required time and memory comparison between DPOP approach
and the C-DPOP algorithm for a three agent, ten target problem. It can be
seen that the time and memory requirements for DPOP grow exponentially
when the required resolution is improved.

VI. CONCLUSION
In this paper, an extension of the Distributed Constraint

Optimization Problem called Continuous DCOP (C-DCOP)
is proposed to represent variables with continuous domains.
The modeling simplicity and versatility of DCOP is thereby
extended to include problems with continuous variables.
Many real-world problems contain inter-agent constraints
and limited resources, such as limited computation time
and memory. Especially in dynamic environments and close
collaboration, these bounds need to be taken into account.
For this reason, a solver for the C-DCOP model has been
proposed that takes these constraints into account explicitly.
The proposed Compression-DPOP (C-DPOP) algorithm is an
extension of Distributed Pseudo-tree Optimization Procedure
(DPOP) that iteratively samples the continuous domains and
dynamically updates the domains after each iteration based
on the found optimum.

A mobile sensor coordination problem was used to demon-
strate the performance of C-DPOP in comparison with
DPOP. Here it was found that the C-DPOP algorithm outper-
forms DPOP for resource-constrained agents. Higher utility

can thus be achieved by using the available resources more
effectively.

In future work the sampling method of the continuous
domains will be extended from uniform to utility-based,
where the utility values of the previous iteration will be used
to estimate regions of high utility. The estimation is then
refined at every iteration by incorporating the gained infor-
mation from the samples. Furthermore, we will compare the
performance between C-DPOP and other approximate DCOP
solvers such as DSA [18]. Additionally, the convergence
properties of the C-DPOP algorithm will to be investigated
with respect to the compression factor.

REFERENCES

[1] D. M. Sato, A. P. Borges, P. Márton, and E. E. Scalabrin, “I-
DCOP: Train Classification Based on an Iterative Process Using
Distributed Constraint Optimization,” Procedia Computer Science,
vol. 51, pp. 2297–2306, 2015.

[2] R. Zivan, T. Parash, and Y. Naveh, “Applying max-sum to asymmet-
ric distributed constraint optimization,” in IJCAI International Joint
Conference on Artificial Intelligence, pp. 432–439, 2015.

[3] E. A. Sultanik, P. J. Modi, and W. W. C. Regli, “On modeling multia-
gent task scheduling as a distributed constraint optimization problem,”
in IJCAI International Joint Conference on Artificial Intelligence,
pp. 247–253, 2007.

[4] M. Pujol-Gonzalez, “Scaling DCOP algorithms for cooperative multi-
agent coordination,” Constraints, vol. 20, no. 4, pp. 496–497, 2015.

[5] A. Petcu and B. Faltings, “DPOP: A Scalable Method for Multiagent
Constraint Optimization,” in IJCAI International Joint Conference on
Artificial Intelligence, pp. 266–271, 2005.

[6] A. Viseras, V. Karolj, and L. Merino, “An asynchronous distributed
constraint optimization approach to multi-robot path planning with
complex constraints,” in SAC Symposium on Applied Computing,
pp. 268–275, 2017.

[7] R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings, “De-
centralised coordination of continuously valued control parameters
using the max-sum algorithm,” AAMAS International Conference on
Autonomous Agents and Multiagent Systems, pp. 601–608, 2009.

[8] J. Cerquides, A. Farinelli, P. Meseguer, and S. D. Ramchurn, “A
tutorial on optimization for multi-agent systems,” The Computer
Journal, vol. 57, no. 6, pp. 799–824, 2014.

[9] A. R. Leite, F. Enembreck, and J.-P. A. Barthès, “Distributed Con-
straint Optimization Problems: Review and perspectives,” Expert Sys-
tems with Applications, vol. 41, no. 11, pp. 5139–5157, 2014.

[10] A. Petcu, A Class of Algorithms for Distributed Constraint Optimiza-
tion. PhD thesis, École Polytechnique Fédérale De Lausanne, 2007.

[11] A. Petcu and B. Faltings, “Approximations in distributed optimiza-
tion,” in International Conference on Principles and Practice of
Constraint Programming, pp. 802–806, 2005.

[12] I. Brito and P. Meseguer, “Improving DPOP with function filtering,”
in AAMAS International Conference on Autonomous Agents and Multi
Agent Systems, pp. 141–148, 2010.

[13] A. Rogers, A. Farinelli, R. Stranders, and N. R. Jennings, “Bounded
approximate decentralised coordination via the max-sum algorithm,”
Artificial Intelligence, vol. 175, no. 2, pp. 730–759, 2011.

[14] E. C. Freuder and M. J. Quinn, “Taking Advantage of Stable Sets of
Variables in Constraint Satisfaction Problems,” in IJCAI International
Joint Conference on Artificial Intelligence, pp. 1076–1078, 1985.

[15] A. Meisels, Distributed Search by Constrained Agents: Algorithms,
Performance, Communication (Advanced Information and Knowledge
Processing). Springer Science & Business Media, 2007.

[16] B. Awerbuch, “A new distributed Depth-First-Search algorithm,” In-
formation Processing Letters, vol. 20, pp. 147–150, Apr. 1985.

[17] R. Zivan, H. Yedidsion, S. Okamoto, R. Glinton, and K. Sycara,
“Distributed constraint optimization for teams of mobile sensing
agents,” Autonomous Agents and Multi-Agent Systems, vol. 29, no. 3,
pp. 495–536, 2015.

[18] S. Fitzpatrick and L. Meertens, “Distributed Coordination through
Anarchic Optimization,” in Distributed Sensor Networks, pp. 257–295,
Springer, 2003.

