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Abstract

We study the integration of real-time traffic management and train control by using mixed-integer nonlinear
programming (MINLP) and mixed-integer linear programming (MILP) approaches. In Part 1 of the paper,
three integrated optimization problems, namely the PNLP problem (NLP: nonlinear programming), the
PPWA problem (PWA: piecewise affine), and the PTSPO problem (TSPO: train speed profile option), have
been developed for real-time traffic management that inherently include train control. A two-level approach
and a custom-designed two-step approach have been proposed to solve these optimization problems. In
Part 2 of the paper, aiming at energy-efficient train operation, we extend the three proposed optimization
problems by introducing energy-related formulations. We first evaluate the energy consumption of a train
motion. A set of nonlinear constraints is first proposed to calculate the energy consumption, which is further
reformulated as a set of linear constraints for the PTSPO problem and approximated by using a piecewise
constant function for the PNLP and PPWA problems. Moreover, we consider the option of regenerative
braking and present linear formulations to calculate the utilization of the regenerative energy obtained
through braking trains. We focus on two objectives, i.e., delay recovery and energy efficiency, through using
a weighted-sum formulation and an ε-constraint formulation. With these energy-related extensions, the
nature of the three optimization problems remains same to Part 1. In numerical experiments conducted
based on the Dutch test case, we consider the PNLP approach and the PTSPO approach only and compare
their performance with the inclusion of the energy-related aspects; the PPWA approach is neglected due to
its bad performance, as evaluated in Part 1. According to the experimental results, the PTSPO approach
still yields a better performance within the required computation time. The trade-off between train delay
and energy consumption is investigated. The results show the possibility of reducing train delay and saving
energy at the same time through managing train speed, by up to 4.0% and 5.6% respectively. In our case
study, applying regenerative braking leads to a 22.9% reduction of the total energy consumption.

Keywords: Real-time traffic management, Train control, Integrated optimization, Energy efficient train
operation, Regenerative braking

1. Introduction

Railway transport systems are of crucial importance for the competitiveness of national or regional
economy as well as for the mobility of people and goods. To maintain the environmental advantage and
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business benefits of railway sectors, targets have been set by the International Union of Railways (UIC 2012)
to reduce the carbon dioxide (CO2) emissions and energy consumption from train operations by 50% and
30% respectively in 2030, compared to 1990. Such policies reflect an increasing concern for sustainability
and energy efficiency. Consequently, energy-efficient train operation is attracting more and more attention,
which is seen as the most important measure to reduce the environmental impacts and the costs used to
power trains.

In railway transport systems, the energy efficiency is greatly influenced by the train operation strategy,
which consists of the operational train timetables and the applied driving actions. The former relates
to the real-time traffic management problem, i.e., (re-)scheduling train routes, orders, and passing times at
stations, aiming at adjusting the impacted schedules from perturbations and reducing negative consequences.
The latter concerns the train control problem, i.e., optimizing the sequence of driving regimes (maximum
acceleration, cruising, coasting, and maximum braking) and the switching points between the regimes, with
the aim of minimizing energy consumption. As discussed in Part 1 of this paper, the two problems are
closely related to each other. In order to achieve energy-efficient train operation, one of the most promising
options is to jointly consider the two problems, i.e., (re-)constructing a timetable in a way that not only
allows different driving actions, but enables eco-driving actions (resulting in better energy performance).
This comes from, e.g., avoiding unneeded accelerating and braking actions, which do not only lead to trains
delays, but also unnecessary waste of energy. Another promising option is to incorporate regenerative
braking, so that the energy generated by braking trains can be further utilized for accelerating trains, and
then the overall energy consumption of train operations decreases. As a result, to compute the energy-
efficient train trajectory and further achieve the energy efficiency of train operations, the focus on only train
delay is not enough; approaches that not only include train delays but also evaluate energy consumption
and consider regenerativ energy utilization are desired.

In most studies of the real-time traffic management problem, train delay is a commonly used objective,
and any dynamics-related objective, such as energy consumption, cannot be directly considered, due to
the disregard of train dynamics, However, the objective of energy consumption is considered only in train
control studies. In Part 1 of this paper, the integration of the two problems has been addressed, and three
integrated optimization approaches have been developed to consider both traffic-related properties (i.e., a
set of times, orders, routes to be followed by trains) and train-related properties (i.e., speed trajectories)
at the same time, focusing on only delay recovery. These integrated optimization approaches build up a
good foundation and enable us to introduce energy-related formulations and to focus on delay recovery and
energy efficiency at the same time.

In this part of the paper, we focus on the train control part of the integrated optimization approaches
while including energy-related formulations. We first introduce the evaluation of energy consumption into
the integrated optimization problems. To calculate the energy consumption, a set of linear constraints is
proposed for the PTSPO problem; for the PNLP and PPWA problems, the resistance function with a quadratic
term of train speed is approximated with a piecewise constant function, in order to maintain the nature of
these two optimization approaches. In addition, we consider the option of regenerative braking and present
linear formulations to calculate the utilization of the energy obtained through regenerative braking. With
the inclusion of the energy-related formulations, we consider two objectives, i.e., delay recovery and energy
efficiency, by using a weighted-sum formulation and an ε-constraint formulation. We use the Dutch test case
to conduct experiments, just as in Part 1. We compare the performance of the optimization approaches and
investigate the trade-off between train delay and energy consumption. By our approaches, train delay and
energy consumption can be reduced at the same time through managing the train speed, by up to 4.0% and
5.6% respectively. This demonstrates the benefit of the integration and shows great potential for energy
efficiency of train operations. Moreover, the benefit of regenerative braking is shown. In our case study,
when applying regenerative braking, up to 53.3% of the kinetic energy can be stored, and up to 46.6% of
the stored energy is re-utilized for train acceleration, which further leads to a 22.9% reduction of the total
energy consumption. In the experiments, the proposed optimization approaches can obtain feasible solutions
(with good quality) of the train delay and energy consumption minimization problem, for a single direction
along a 50 km corridor with 9 stations and 15 trains each hour within a computation time of 3 minutes.

The remainder of this paper is organized as follows. Section 2 provides a literature review on the studies
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of the train control problem, which mostly focus on the minimization of energy consumption, and the
studies focusing on maximizing the utilization of the energy regenerated by braking trains. In Section 3,
after introducing the notations used in the mathematical formulations, we calculate the energy consumption
of the train motion for accelerating trains and for overcoming resistances respectively. Then, formulations
for calculating the utilization of the energy obtained by braking trains are constructed. In Section 4, the
experimental results based on a real-world railway network are given for evaluating the performance of
the optimization approaches, exploring the trade-off between train delay and energy consumption, and
investigating the benefits of regenerative braking. Moreover, we examine the quality of the train speed
trajectories obtained by the proposed integrated optimization approaches, by means of comparing them
with the train speed trajectories obtained by using the detailed nonlinear train models as proposed by
Wang et al. (2013), Liu and Golovitcher (2003), Khmelnitsky (2000). Finally, Section 5 ends the paper with
conclusions and topics for further research.

2. Literature review

In the literature, energy efficiency is mostly ignored in the traffic management problem, but considered
in the train control problem. We review the studies on determining the energy-efficient train trajectory in
Section 2.1 and the studies focusing on optimizing the utilization of the regenerated energy in Section 2.2.
We refer to the review paper by González-Gil et al. (2014), where a general overview of the energy efficiency
related strategies and technologies are given, e.g., energy-efficient driving, regenerative braking, and energy
metering.

In addition to the above two problems, another relevant topic is the interactions of traffic management
and train control. As studies on that topic have been reviewed and discussed in Section 2.2 of Part 1,
we do not elaborate them here. We refer to the review paper by Scheepmaker et al. (2017), where the
energy-efficient train control and timetabling problems are discussed, in terms of mathematical models and
solution approaches.

2.1. Energy-efficient train control: eco-driving strategy

The research on the train control problem for a single train started in the 1960s (Ichikawa 1968, Kokotovic
and Singh 1972). Over the years, many approaches have been proposed to find the optimal train speed
profile, aiming at minimizing the energy consumption. In the following we briefly review some fundamental
theoretical work and the related work on numerical solution methods.

Fundamental theoretical work was established by Howlett (1990), Howlett and Pudney (1995), Howlett
(2000), where the optimal train control strategy (involving four optimal control regimes, i.e., maximum
accelerating, cruising, coasting, and maximum braking) was presented. The authors showed that an optimal
driving strategy must have certain properties., i.e., the optimal speed profile consists of a power-cruise-
coast-brake strategy. Howlett et al. (2009) extended this theoretical work by including steep sections. In a
later work, Albrecht et al. (2013) used perturbation analysis to prove that the optimal switching points are
uniquely defined for each steep section of track and deduced that the global optimal strategy is unique.

Several solution methods in the literature are based on finding optimal switching points to construct
speed profiles, see Cheng et al. (1999), Khmelnitsky (2000), Liu and Golovitcher (2003). Cheng (1997)
studied analytical approaches for dealing with multiple speed limits with continuous speeds. Khmelnitsky
(2000) gave a comprehensive analysis of the optimal trajectory planning problem with a continually varying
gradient and speed restrictions. The maximum principle was applied to obtain optimal operation regimes
and their sequences. Moreover, Liu and Golovitcher (2003) developed an analytical approach that com-
bines Pontryagin’s principle and algebraic equations to obtain the optimal solution. Successful analytical
approaches based on real-time computational algorithms were described by Albrecht et al. (2016a,b), Khmel-
nitsky (2000), Liu and Golovitcher (2003). These approaches derived accurate speed profiles by numerically
solving solutions of equations of motion and calculating optimal switching points.

Some optimization approaches are also available in the literature to address the energy-efficient train
control problem for a single train. Franke et al. (2002) proposed a discrete dynamic programming approach

3



to solve the optimal train control problem, with consideration of multiple speed restrictions, regenerative
braking, and gravitational forces on slopes. Ko et al. (2004) applied a dynamic programming approach to find
the optimal train trajectory. The original train control problem was transformed into a multi-stage decision
process that can be solved in an acceptable time. Furthermore, a number of advanced techniques, such
as ant colony optimization approaches and fuzzy and genetic algorithms, have been proposed to calculate
the optimal train trajectory by, e.g., Han et al. (1999), Chang and Xu (2000), Lu (2011), Su et al. (2014).
Vašak et al. (2009) used a multi-parametric quadratic programming method to optimize the train trajectory
for train operations, where the nonlinear train model with quadratic resistance is approximated by using
a piecewise affine function. Furthermore, Wang et al. (2013) solved the optimal trajectory problem as a
mixed integer linear programming (MILP) problem by approximating the nonlinear terms with piecewise
affine functions.

Some other studies focused on the train control problem for multiple trains. Lu and Feng (2011) con-
sidered the operation of two trains on a single line and optimized the trajectory of the following train
considering the constraints caused by the leading train. A parallel genetic algorithm was proposed to op-
timize the trajectories for the leading train and the following train. A better train control solution with
a lower energy consumption was found. Wang et al. (2014) considered the energy-efficient train control
problem for multiple trains under fixed block signaling systems and moving block signaling systems, where
the resulting nonlinear optimization problem is transformed into an MILP problem and solved by a greedy
approach and a simultaneous approach. In Haahr et al. (2017), a dynamic programming approach based
on a time-space graph formulation was proposed for optimizing train speed profiles with speed restrictions
and passage points. Passage points were handled in a way that requires each train transfer from one block
to the next block within a specified time-window. Yang et al. (2017b) developed an integrated timetable
and speed profile optimization model with multi-phase speed limits to reduce the energy consumption for
a metro line. These studies have more or less interactions with the traffic management problem, which is
mostly addressed in a decomposed manner (see, e.g., D’Ariano et al. 2007, Albrecht et al. 2013), an iterative
manner (see, e.g., Mazzarello and Ottaviani 2007, Lüthi 2009), or a non-optimized manner (see Wang and
Goverde 2016). Since we have had relevant discussions in Section 2.2 of Part 1, we do not repeat these
studies here. Readers could refer to Part 1 of the paper for more information.

2.2. Energy efficiency through applying regenerative braking

Regenerative braking is an energy recovery mechanism to transform train kinetic energy into electricity
during train braking. This technique is recognized as an efficient way to improve energy efficiency of train
operations. In the literature, two kinds of methods are commonly implemented to maximize the utilization
of the regenerated energy: one is to use energy storage systems, either on-board energy storage devices
or wayside energy storage devices, where the regenerated energy can be stored and further re-utilized for
acceleration (Lambert et al. 2010, Ciccarelli et al. 2014); and another one is to schedule trains to coordinate
the acceleration and deceleration of trains as much as possible (Yang et al. 2015).

Miyatake and Ko (2010) applied a dynamic programming approach to calculate the speed profiles for
trains with on-board energy storage devices to enhance the regenerative utilization. Kampeerawat and
Koseki (2017) presented a strategy for utilizing regenerated energy in an urban railway system by joint
consideration of adjusting the train operating schedule and employing wayside energy storage systems.

Nasri et al. (2010) applied genetic algorithms for the train scheduling problem to enhance the utilization
of the regenerated energy through adjusting the headways and reserve times. Peña-Alcaraz et al. (2012)
proposed a train scheduling approach to maximize the utilization of regenerative braking energy by syn-
chronizing the acceleration and deceleration between trains with consideration of the power supply network.
Yang et al. (2013) proposed a cooperative train scheduling approach to coordinate the acceleration and de-
celeration between adjacent trains to maximize the overlapping time, where a genetic algorithm with binary
encoding was designed to solve the resulting integer programming problem. Su et al. (2013) developed a
cooperative train control method for multiple trains to minimize the actual energy consumption (i.e., the
difference between the traction energy consumption and the utilized regeneration energy), considering a
scenario that an accelerating train can reuse the regenerative energy from a braking train on the opposite
direction. Li and Lo (2014) proposed an integrated energy-efficient train operation approach for urban rail
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transit system to optimize the train schedule and speed profiles simultaneously, where the utilization of
regenerative energy between trains in the substations is considered and the resulting problem is solved by
a genetic algorithm. A fuzzy mathematical programming approach is proposed by Cucala et al. (2012) to
jointly optimize the train schedule and the driving strategy, where the uncertainty of delays and the driver’s
behavioral response are considered. The resulting problem is solved by fuzzy mathematical programming
and a genetic algorithm. A bi-objective nonlinear programming approach is proposed by Yang et al. (2017a)
to optimize the energy-efficient train schedules and speed profiles simultaneously with consideration of re-
generative braking. Chen et al. (2014) developed a two-objective integer programming approach to optimize
the overlap time of the accelerating phases and the braking phases for contiguous trains, so as to increase
the utilization of regenerative braking energy.

Most studies on improving the utilization of the regenerated energy focus on the method of scheduling
trains to coordinate the acceleration and deceleration of trains as much as possible, in order to maximize the
utilization of the regenerated energy. Therefore, train blocking times are adjusted to be aggregated, with
the only aim of improving energy efficiency. However, there are no guarantees offered for the traffic-related
performance measures, like train delay and travel time. Only a few studies focus on methods that use energy
storage systems. In theory, the use of energy storage devices could attain a higher utilization rate of the
regenerative energy, as the temporal limits on using the regenerated energy are released.

2.3. Paper contributions

Achieving energy efficiency is the main purpose of the studies on the train control problem and the studies
on regenerative braking. Many approaches (e.g., analytical approaches, optimization-based approaches)
have been proposed to address these problems, as reviewed in Section 2.1 and Section 2.2. Inspirations
from these studies enable us to include energy consumption minimization into the integrated optimization
problem, in order to make a significant contribution towards energy-efficient train operation. One of the
main differences with the previous studies is that we consider the optimization of energy consumption,
not just the evaluation of energy consumption. Moreover, energy consumption is formulated by using the
formulation method proposed in Part 1, with respect to the nature of the integrated optimization problem.
We summarize the main contributions of the current paper as follows:

• This paper introduces explicitly the issue of minimization of energy consumption into the integrated
optimization problems of traffic management and train control (proposed in Part 1), which enables us
to assess and optimize the economic (and environmental) performance (i.e., energy consumption, from
a perspective of train operators) and the punctual performance (i.e., train delay, from a viewpoint of
customers) of train operations simultaneously. Aiming at both delay recovery and energy efficiency,
great potential is shown for energy efficiency of train operations.

• Two optimization approaches with either nonlinear constraints or linearized constraints are developed
in Section 3.2, based on the foundations laid in Part 1. Two formulations, i.e., the weighted-sum
formulation and the ε-constraint formulation, are considered for the optimization problems with the
objectives of train delay and energy consumption. With the framework of the proposed optimization
problems, regenerative braking and coasting can be modeled seamlessly, as discussed in Section 3.3.

• The performance of the proposed approaches is good, as a feasible solution with a good quality can
be obtained efficiently (within 180 seconds), see Section 4.1. In our case study, we demonstrate the
improvement in energy efficiency of train operations, as a trade-off with train delays. Despite the
trade-off, it is proved that train delay and energy consumption can be reduced simultaneously through
managing the train speeds, by up to 4.0% and 5.6% respectively in one of the test instances (see
Section 4.2). Moreover, the benefit of regenerative braking on energy efficiency of train operations is
shown in Section 4.3. The consideration of regenerative braking can provide an extra reduction in the
energy consumption. In our test case, a 46.6% utilization of the regenerated energy results in a 22.9%
reduction of the total energy consumption.
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3. Mathematical formulations

In Section 3.1, we first describe the notations used for formulating, modelling, and optimizing the energy-
related aspects. Section 3.2 discusses and formulates the energy consumption of the train motion for ac-
celerating trains and for overcoming resistances respectively. As incorporating regenerative braking is an
effective way to achieve energy efficiency, in Section 3.3, we consider the possibility of regenerative brak-
ing and provide formulations for calculating the utilization of the regenerative energy obtained by braking
trains. In this paper (Part 2), we still follow the assumptions proposed in Part 1, which are recapitulated
and explained in Appendix A.

3.1. Notations

Table 1 lists the sets, subscripts, input parameters, and decision variables used for formulating the train
energy consumption. Note that the beginning/ending point of a block section or of a main/siding track in
a station, or a point of merging/diverging of tracks on a segment, is represented by a node; a block section
is described as a cell, which connects two nodes. Movement of a train on a block section is considered to
be made up by an incoming phase, (accelerating or braking from a starting speed to a cruising speed), a
cruising phase with the constant cruising speed, and an outgoing phase (accelerating or braking from the
cruising speed to an exit speed of the block section).

Table 1. Sets, subscripts, input parameters, and decision variables

Symbol Description

Sets and subscripts

F set of trains, |F | is the number of trains
V set of nodes, |V | is the number of nodes
E set of cells, i.e., block sections, E ⊆ V × V , |E| is the number of cells
K set of regions, i.e., electric regions, |K| is the number of regions
f train index, f ∈ F
p, i, j, k node index, p, i, j, k ∈ V
(i, j) cell index, (i, j) ∈ E
κ region index, κ ∈ K
Ef set of cells that train f may use, Ef ⊆ E

Yf,i,j
set of options of train speed profile vectors that train f may follow on cell (i, j), |Yf,i,j | is
the number of train speed profile options (TSPOs) for train f on cell (i, j)

b TSPO index, bf,i,j ∈ {1, ..., |Yf,i,j |}
Estop

f set of cells on which train f should stop, Estop
f ⊆ Ef , |Estop

f | is the number of stops of train f

Er
κ set of cells in region κ where trains can utilize regenerative energy

Input parameters

mf mass of train f
vturnf train speed at the switching point of acceleration for train f
Lcell
i,j length of cell (i, j)

Df,i,j planned arrival time of train f on cell (i, j), (i, j) ∈ Estop
f

α1,f,i,j maximum acceleration of train f on cell (i, j), when train speed is not larger than vturnf

α2,f,i,j maximum acceleration of train f on cell (i, j), when train speed is larger than vturnf

βf,i,j maximum deceleration of train f on cell (i, j)
yf,i,j,b bth train speed profile vector, yf,i,j,b ∈ Yf,i,j

yinf,i,j,b, y
cru
f,i,j,b,

youtf,i,j,b

bth incoming, cruising, and outgoing speed of train f on cell (i, j), train speed profile

vector yf,i,j,b =
[
yinf,i,j,b ycruf,i,j,b youtf,i,j,b

]⊤ ∈ Yf,i,j
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Symbol Description

Lin
f,i,j,b,

Lout
f,i,j,b

distance that train f runs over on cell (i, j) in the incoming and outgoing phases in the
bth train speed profile vector yf,i,j,b

ζ1,f,i,j,b, ...,

ζ6.f,i,j,b

logical parameters to indicate the relation of the incoming, cruising, outgoing speed, and
switching speed vturnf in the bth train speed profile vector yf,i,j,b (see Table 2 of Appendix
A)

r1,f,i,j , r2,f,i,j ,
r3,f,i,j

coefficients of the total resistance function for train f on cell (i, j)

ηi,j,p,k
recuperation coefficient for utilizing the regenerative energy between cells (i, j) and (p, k)
depending on the distance between the two cells

Decision variables

af,i,j , df,i,j arrival and departure time of train f at cell (i, j)

aturnf,i,j/d
turn
f,i,j

time point that train f reaches the switching speed vturnf in the incoming/outgoing phase
on cell (i, j)

acruf,i,j/d
cru
f,i,j

time point that train f starts/ends cruising, i.e., the starting/ending time of cruising
phase on cell (i, j)

vinf,i,j , v
cru
f,i,j ,

voutf,i,j

incoming speed, cruising speed, and outgoing speed of train f on cell (i, j)

wf,i,j dwell time of train f on cell (i, j)
Lcru
f,i,j distance that train f runs through on cell (i, j) in the cruising phase

ϑf,i,j,b

binary variables, ϑf,i,j,b = 1 if the corresponding train speed vector yf,i,j,b is used by
train f on cell (i, j), and otherwise ϑf,i,j,b = 0

Jacc in
f,i,j , Jacc out

f,i,j
energy consumption for accelerating train f in the incoming and outgoing phases on cell
(i, j)

J res in
f,i,j , J res cru

f,i,j ,

J res out
f,i,j

energy consumption for overcoming the resistances of train f in the incoming, cruising,
and outgoing phases on cell (i, j)

J reg in
f,i,j , J reg out

f,i,j

regenerative energy obtained by braking train f in the incoming and outgoing phases on
cell (i, j)

uf,f ′,i,j,p,k
energy generated by braking train f on cell (i, j) and further used for accelerating train
f ′ on cell (p, k)

We model train movements over block sections, such that their timing can be determined, and the
energy can be related to the accelerating, cruising, and braking actions happening in the train movements.
Compared to Part 1, some variables for calculating the energy consumption and the regenerative energy
utilization are newly added, e.g., Jacc in

f,i,j , J res in
f,i,j , J reg in

f,i,j , and uf,f ′,i,j,p,k. Basically, these variables are a
consequence of the interactions among the key variables for formulating the traffic and train related decisions
introduced in Part 1, i.e., arrival time variables a, departure time variables d, and train speed variables v,
for all trains in the network, with respect to the work formula, the Newton’s second law of motion, the
formulas of the uniformly accelerating and decelerating motions, and operational requirements.

Note that the maximum acceleration and deceleration depend on the traction and braking force. In
the literature, researchers either consider the tractive force as a well-defined function of speed and control
(Howlett 2000), or assume constant power (then tractive force is a function of speed, e.g., Howlett 2000),
or assume a constant acceleration (Wang et al. 2016). As the goal of this paper (Part 2) is to include
the minimization of the energy consumption into the integrated optimization problems proposed in Part 1
and to compare the integrated optimization approaches in a clear way, we still assume a piecewise constant
acceleration (with a switching point vturnf ) and a constant deceleration for each train category, just as
in Part 1. So a train follows a uniform acceleration and deceleration motion in a given speed interval.
According to the equation q = r + m · α (where q, r, m, and α indicate the tractive force, resistance
force, train mass, and train acceleration respectively), the introduction of resistance would result in a larger
tractive force (compared with the case where the resistance is neglected), which further has impact on energy
consumption. We consider the piecewise constant acceleration for the train motion, and resistance is taken
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into account for determining this piecewise constant acceleration, i.e., ensuring that the tractive force used
for accelerating trains and for overcoming resistance together is technically feasible (not greater than the
maximum tractive force). As such, the speed/time/space profile, which was computed through neglecting
resistance, continues to be a feasible profile, but the resulting energy consumption changes.

3.2. Optimization of energy consumption

Energy is mostly consumed for accelerating trains and for overcoming resistance in a train movement.
In Section 3.2.1 and Section 3.2.2, we discuss and formulate the energy consumption in these two usages
respectively. Thus, the problem of modelling train movements is that we have to relate energy consumption to
resistance and train speed, resistance to train speed, and departure/arrival times (which are the optimization
variables for the traffic management problem) to distance and train speed.

3.2.1. Energy used for accelerating trains

The energy consumption for accelerating a train with a mass of m from speed v1 to speed v2 can be
calculated as m

2 ·(v22−v21), see also Appendix B. Based on the notations in Table 1 and formulations proposed
in Part 1, we add the following constraints to determine the energy consumption used for accelerating trains
in the incoming and outgoing phases respectively:

Jacc in
f,i,j = max

{
0,

1

2
·mf · [(vcruf,i,j)

2 − (vinf,i,j)
2
]

}
, ∀f ∈ F, (i, j) ∈ Ef (1)

Jacc out
f,i,j = max

{
0,

1

2
·mf · [(voutf,i,j)

2 − (vcruf,i,j)
2
]

}
, ∀f ∈ F, (i, j) ∈ Ef . (2)

In the cruising phase, energy is only used for maintaining a constant cruising speed, i.e., overcoming resis-
tance; so no energy is consumed for train acceleration in the cruising phase.

Constraints (1)-(2) contain quadratic terms of the speed variables vinf,i,j , v
cru
f,i,j , and voutf,i,j . These quadratic

terms will not affect the nature of the three optimization problems proposed in Part 1. Therefore, with the
inclusion of (1)-(2), the solution approaches proposed in Section 4 of Part 1 can still be used to solve these
problems.

3.2.2. Energy used for overcoming resistance

The energy used for overcoming resistance while changing the train speed from v1 to v2 can be formulated

as
∫ v2
v1

r(v)·v
α · dv, where r(·) indicates the resistance force as a function of the train speed v and α indicates

the train acceleration; we refer to Appendix B for the explanation of this formulation.
Regarding the resistance force r(·), it is typically assumed that there are two categories of resistances in

the train motion, i.e., the train resistance and the line resistance. Besides the common impact factor of the
infrastructure (train) characteristics, the train resistance only depends on the train driving strategy (i.e.,
the operating speed), and the line resistance is mostly determined by the characteristics of the rail network
(track). In the studies on the train control problem (Davis 1926, Brünger and Dahlhaus 2008, Wang et al.
2013, Hansen et al. 2017), the resistance force r(·) is commonly expressed as a quadratic function of the
speed, i.e., r1,x ·v2+r2,x ·v+r3,x, where rϱ,x for ϱ ∈ {1, 2, 3} are non-negative coefficients that depend on the
train characteristics and the rail network (track) characteristics. We refer to Appendix B for the detailed
formulations and explanations of this resistance force function. We assume that the tracks have piecewise
constant gradients and curve radii, e.g., the slope and curve radius are constant for each cell (block section),
but could be different from one cell to another. The tunnel resistance occurs in the cells inside the tunnels
(even if the cell is partially inside the tunnel) and is equal to zero for the cells completely outside the tunnels.
With this assumption, the coefficients rϱ,x for ϱ ∈ {1, 2, 3} are then constant for each train category on each
cell; thus, they could be rewritten as rϱ,f,i,j for ϱ ∈ {1, 2, 3} for train f on cell (i, j). As a result, we could
express the total resistance of train f on cell (i, j) as rf,i,j(vf,i,j) = r1,f,i,j ·v2f,i,j+r2,f,i,j ·vf,i,j+r3,f,i,j , which
only depends on its running speed vf,i,j . Note that the total resistance is a strictly increasing quadratic
function of the speed.
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Let us define a function Ξ(v) = r1
4 · v4 + r2

3 · v3 + r3
2 · v2, where r(v) · v is the derivative of function Ξ(v),

i.e., [Ξ(v)]
′
= r(v) · v. Then, we could calculate the integral formula

∫ v2
v1

r(v)·v
α · dv as Ξ(v2)−Ξ(v1)

α , which
computes the energy used for overcoming resistance when accelerating a train from speed v1 to speed v2 at
a steady acceleration α. Note that the function Ξ(v) should be train and block section relevant, due to the
train and block section specified coefficients rϱ,f,i,j for ϱ ∈ {1, 2, 3}.

By assuming the piecewise constant acceleration (with a switching point vturnf ) and the constant decel-
eration for each train category, a train follows a uniform acceleration and deceleration motion in a given

speed interval. We apply the formulation Ξ(v2)−Ξ(v1)
α to compute the energy used by train f on cell (i, j)

for overcoming resistance in the incoming phase, meanwhile taking the piecewise constant acceleration into
account; the formulation is given as follows:

J res in
f,i,j =



Ξf,i,j(v
cru
f,i,j)−Ξf,i,j(v

in
f,i,j)

α1,f,i,j
, if vinf,i,j ≤ vcruf,i,j ≤ vturnf

Ξf,i,j(v
cru
f,i,j)−Ξf,i,j(v

in
f,i,j)

α2,f,i,j
, if vturnf ≤ vinf,i,j < vcruf,i,j

Ξf,i,j(v
turn
f )−Ξf,i,j(v

in
f,i,j)

α1,f,i,j
+

Ξf,i,j(v
cru
f,i,j)−Ξf,i,j(v

turn
f )

α2,f,i,j
, if vinf,i,j < vturnf < vcruf,i,j

0, if vinf,i,j > vcruf,i,j

∀f ∈ F, (i, j) ∈ Ef . (3)

A formulation similar to (3) can also be constructed for calculating the energy consumption J res out
f,i,j in the

outgoing phase. For the sake of compactness, we do not report those details here.
In the cruising phase, a train follows a uniform motion at a certain cruising speed; so the resistance

force does not change and can be easily computed by rf,i,j(v
cru
f,i,j). Therefore, based on the work formula

J = r · x (where J , r, and x indicate the work, force, and distance that a train travelled respectively), we
can formulate the energy used by train f on cell (i, j) in the cruising phase as follows:

J res cru
f,i,j = rf,i,j(v

cru
f,i,j) · Lcru

f,i,j = (r1,f,i,j · vcruf,i,j
2 + r2,f,i,j · vcruf,i,j + r3,f,i,j) · Lcru

f,i,j , ∀f ∈ F, (i, j) ∈ Ef . (4)

Constraints (3)-(4) contain either a quartic term of the train speed or a product term of the speed and
distance. The inclusion of these two equations changes the nature of the PNLP problem and the PPWA

problem and leads to difficulties in solving these two problem (i.e., the resulting problems are not able
to be solved directly). However, as a set Yf,i,j of train speed profile options (TSPOs) is pre-defined in a
preprocessing step for the PTSPO problem, that problem is still an MILP problem.

To address the difficulties in solving the PNLP problem and the PPWA problem, we can approximate the
resistance function rf,i,j(·) by using a piecewise constant function with 2 affine parts and with constant values
rcs1,f,i,j and rcs2,f,i,j . The resulting formulations for the PNLP problem and the PPWA problem are presented
in Appendix B. Moreover, in order to help readers understand the unchanged nature of the PTSPO problem,
we also reformulate (3) and (4) for the PTSPO problem in Appendix B.

We consider two objectives: one is for delay recovery, just as in Part 1, i.e., reducing the sum over all
trains of the mean absolute delay time at all visited stations:

Zdelay =
∑
f∈F

∑
(i,j)∈Estop

f

|df,i,j − wf,i,j −Df,i,j |∣∣∣Estop
f

∣∣∣ , (5)

and another one is to achieve energy efficiency, i.e., reducing the total energy consumption for both accel-
erating trains and overcoming resistance:

Zenergy =
∑
f∈F

∑
(i,j)∈Ef

(
Jacc in
f,i,j + Jacc out

f,i,j + J res in
f,i,j + J res cru

f,i,j + J res out
f,i,j

)
, (6)

where Jacc in
f,i,j and Jacc out

f,i,j are computed in (1)-(2), and J res in
f,i,j , J res cru

f,i,j , and J res out
f,i,j are calculated by using

(20)-(21) for the PTSPO problem and by following (22)-(23) for the other two problems.
For multi-objective optimization problems, the weighted-sum formulation and the ε-constraint formula-

tion are commonly used. Therefore, aiming at both delay recovery and energy efficiency, we use the following
two ways:

1) One way is to minimize the weighted sum of the two objectives. Then, the overall objective function can
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be presented as

minZ = ιdelay · Zdelay + ιenergy · Zenergy, (7)

where the weights ιdelay and ιenergy are used to balance their importance, and for normalization as well.

2) Another way is to minimize the energy consumption with respect to a given upper bound Zdelay ub of
the train delay, formulated as

minZenergy (8a)

s.t. Zdelay ≤ Zdelay ub. (8b)

Additionally, in this paper (Part 2), the constraints proposed in Part 1 for the three proposed optimization
problems should also be included.

3.3. Utilization of regenerated energy

An option for further improving the energy efficiency of train operations is to incorporate regenerative
braking, where the kinetic energy of a running train can be converted into electrical energy when the
train brakes. This electrical energy can be fed back to the catenary system for immediately accelerating
other trains or stored in energy storage devices (e.g., batteries, super-capacitors, and flywheels) for train
acceleration when required. Regenerative braking is a mature technology. In practice, it has been used in
urban rail transit systems and also in railway transportation systems (UIC 2002). The use of regenerative
braking decreases the overall energy consumption of the train motion and changes the optimal solution to
the energy-efficient train control (operation) problem. Therefore, in this section, we present formulations
to calculate the regenerative energy and to determine the utilization of the regenerative energy, for railway
and metro systems that are equipped with this technology.

Aiming at maximizing the use of the regenerative energy and to minimizing the need of on-board resistors
(which are used for dissipating the regenerative energy that cannot be used within the system), energy
storage technologies have been well studied in the literature (see the review papers by Khaligh and Li
(2010), González-Gil et al. (2013)) and applied in the railway industry (see the recent review paper by
Ghaviha et al. 2017). Therefore, we consider the use of energy storage systems, and then the regenerative
energy can be used for train acceleration when it is required. Energy storage systems can by divided into
two types, i.e., the on-board energy storage systems and the wayside (or stationary) energy storage systems,
which result in different rules for utilizing the regenerative energy, explained as follows:

• For the on-board energy storage systems, i.e., the storage devices are installed on the trains, a train is
able to temporarily store its own braking energy and re-utilize it in the next acceleration stages. So,
the energy generated by braking a train on a block section can only be further used by the train itself.
This kind of system is operated in some countries, e.g., Portugal (a light rail network in the south of
Lisbon (Meinert 2009)) and Germany (light rail networks in Mannheim (Steiner et al. 2007)).

• For the wayside (or stationary) energy storage systems, where the storage devices are installed along
the track, the surplus regenerated energy could be absorbed and delivered when it is required for other
train acceleration in the same electric region. So, the energy generated by braking a train on a block
section can be further used by other trains on the block sections that are in the same electric region as
the block section where the the energy is generated. In practice, this kind of system is commonly used
in urban rail transit systems, e.g., metro systems in France (Boizumeau et al. 2011), Germany, China,
and Spain (Siemens 2011), and also used or tested for railway transport systems in some countries,
e.g., Spain (Garcia-Tabares et al. 2011) and Japan (Shimada et al. 2010, Ogasa 2010).

The installation of the on-board energy storage devices will greatly increase the train mass and will require a
large space, so it is sometimes used for light rail vehicles and seldom used for railway trains. In comparison,
the wayside energy storage systems have less weight and little influence on operation and maintenance (Su
et al. 2016). Therefore, we consider the wayside energy storage systems to illustrate the construction of
the formulations. Some modifications could be made in the following proposed formulations, in order to be
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make them suited for a case with the on-board energy storage system. We discuss these modifications at
the end of this section (before the remark of train coasting).

Regenerative energy is the energy converted from kinetic energy into electrical energy while braking.
According to the definition of regenerative energy (Scheepmaker and Goverde 2016), we formulate the
energy regenerated by the braking of the train as follows:

J reg in
f,i,j = −min

{
0,

1

2
·mf · [(vcruf,i,j)

2 − (vinf,i,j)
2
]

}
, ∀f ∈ F, (i, j) ∈ Ef , (9)

J reg out
f,i,j = −min

{
0,

1

2
·mf · [(voutf,i,j)

2 − (vcruf,i,j)
2
]

}
, ∀f ∈ F, (i, j) ∈ Ef (10)

i.e., the reduction of the train kinetic energy while braking for the incoming and outgoing phases respectively.
Note that implicitly Jacc in

f,i,j ·J reg in
f,i,j = 0 and Jacc out

f,i,j ·J reg out
f,i,j = 0, as a train cannot accelerate and decelerate

at the same time.
As discussed, the final energy consumption is not just the difference between the energy used for powering

trains and the energy generated by braking trains. We need to consider the rules with regards to the temporal
and spatial limitations for utilizing the regenerative energy that result from the installation position of the
energy storage systems, as well as the efficiency of the regenerative braking system.

We introduce a non-negative variable uf,f ′,i,j,p,k that indicates the amount of the energy generated
by braking train f on cell (i, j) and then used for accelerating train f ′ on cell (p, k); moreover, we let
ηi,j,p,k ∈ [0, 1] be the recuperation coefficient, which determines the efficiency of the regenerative braking
system between cells (i, j) and (p, k), based on the distance between the two cells.

From a temporal perspective, we ensure that the regenerative energy is available when it is used for
powering trains. Therefore, the following constraints is added:

uf,f ′,i,j,p,k ≤ 0, if af,i,j > af ′,p,k, ∀f ∈ F, f ′ ∈ F, (i, j) ∈ Ef , (p, k) ∈ Ef ′ , (11)

for guaranteeing that the energy generated by train f on cell (i, j) cannot be used by train f ′ on cell (p, k), if
train f arrives at cell (i, j) after the arrival of train f ′ at cell (p, k). Constraint (11) is an if-then constraint,
which can be rewritten as a mixed-integer linear constraint by applying the transformation properties in
Bemporad and Morari (1999).

Regarding the spatial limitations, we enforce that the energy generated by braking a train can only be
used by accelerating the trains located in the same electric region. Without loss of generality, we select
|K| regions in the network, where each region corresponds to an electric region. We then assume that the
available energy regenerated in a cell can be used by any trains traveling in the region that the cell belongs
to. We denote the sets of cells in the regions as Er

1, E
r
2, ..., E

r
|K|. We use the following constraint∑

f∈F,f ′∈F

uf,f ′,i,j,p,k ≤ 0, ∀ (i, j) ∈ Ef , (p, k) ∈ Ef ′ , {(i, j), (p, k)} ̸⊂ Er
κ, κ ∈ K (12)

to ensure that the regenerative energy on cell (i, j) (or (p, k)) cannot be utilized by any train on cell (p, k)
(or (i, j)), if the set of the two cells {(i, j), (p, k)} is not a subset of set Er

κ, for any κ ∈ K, i.e., cells (p, k)
and (i, j) are not in the same electric region.

To balance the generation and utilization of the regenerative energy, we have the following constraint∑
f ′∈F,(p,k)∈Ef′

uf,f ′,i,j,p,k

ηi,j,p,k
≤ (J reg in

f,i,j + J reg out
f,i,j ), ∀f ∈ F, (i, j) ∈ Ef , (13)

for ensuring that the total usage of the regenerative energy obtained by braking train f on cell (i, j) and
further used for accelerating all trains f ′ ∈ F on all cells (p, k) ∈ Ef ′ cannot exceed the available amount of
the energy generated by braking train f on cell (i, j). By taking the efficiency of the regenerative braking
system into account, we divide the total usage of the regenerative energy by the non-negative recuperation
coefficient ηi,j,p,k, as presented on the left-hand side of (13). Recall that the coefficient ηi,j,p,k is given based
on the distance between the two cells (i, j) and (p, k).

The amount of the regenerative energy that is further utilized for accelerating trains can be determined
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by

Zenergy reg =
∑
f∈F

∑
(i,j)∈Ef

∑
f ′∈F

∑
(p,k)∈Ef′

uf,f ′,i,j,p,k. (14)

The final energy consumption is then calculated as follows:

Zenergy final = Zenergy − Zenergy reg. (15)

The term Zenergy is computed by using (6), including the energy used for train acceleration and for over-
coming resistance. We can still use the weighted sum formulation and the ε-constraint formulation, i.e.,
minimizing the weighted sum of the train delays and the final energy consumption, as presented in (7)
through replacing Zenergy by Zenergy final, and only minimizing the final energy consumption in (15) with
respect to (8b).

We now discuss the modifications for calculating the regenerative energy in use of the on-board energy
storage system. For implementing the utilization rule, i.e., the regenerative energy can only by utilized by
the same train that generates it through braking, two equivalent ways can be used. The first way consists in
simply requiring

∑
f∈F,f ′∈F :f ̸=f ′ uf,f ′,i,j,p,k = 0 for preventing the regenerative energy utilization between

two different trains. Alternatively, we could re-define the variable uf,f ′,i,j,p,k as uf,i,j,p,k for all f ∈ F ,
(i, j) ∈ Ef , and (p, k) ∈ Ef . Then, in (11), (13), and (14), we remove the condition term f ′ ∈ F and replace
(p, k) ∈ Ef ′ by (p, k) ∈ Ef . No matter which way is used, a common change in this case is to remove (12),
as the spatial limitation is not active. The first way is applicable to both the wayside and on-board energy
storage systems, and it is easier for switching or integrating the two types of energy storage systems, at
the expense of a larger complexity of the optimization problem. In the case with only the on-board energy
storage system, using the second way is a better choice.

Remark (Coasting phase). Coasting phase can be included into the proposed optimization problem by
assuming a piecewise constant deceleration that depends on the cruising speed. In other words, we could
consider a piecewise constant train deceleration; then, the formulation approach stays similar to the approach
that includes the piecewise constant train acceleration. As a similar formulation approach can be followed,
we do not present the formulations for train coasting in this paper.

Moreover, we can use the arrival and departure times of a train along its route in the solutions (which
have no coasting phase) obtained by applying our integrated optimization methods to further generate
an accurate train speed profile option by using train trajectory optimization approaches with the aim of
minimizing the energy consumption.

4. Numerical experiments

We consider the same Dutch railway network and the same 15 trains as in Part 1; we refer to Section 5.1
of Part 1 for the description of the test case. Also same to Part 1, each train is given a randomly generated
primary delay time cprif at its origin, and we consider 10 delay cases of the primary delays following a
3-parameter Weibull distribution. Additionally, we consider 6 electric regions, corresponding to 6 station
areas, as depicted in Fig. 1.

As this paper (Part 2) focuses on the energy-related extensions based on the integrated optimization
approaches proposed in Part 1, the complexity of the optimization problems increases with the inclusion
of energy consumption and regenerative braking. Due to the worst performance of the PPWA approach
evaluated in Section 5.2 of Part 1, we cannot expect this approach to perform better on the extended
optimization problems. Therefore, in the experiments of Part 2, we neglect the PPWA approach and only
test the other two approaches, i.e., the PNLP approach and the PTSPO approach.

In Section 4.1, we compare the results of the PNLP approach and the PTSPO approach, aiming at both
delay recovery and energy efficiency. Section 4.2 explores the trade-off between train delay and energy
consumption, where the possibility of reducing train delay and energy consumption at the same time is
shown. Both the weighted-sum formulation and the ε-constraint formulation are used for representing the
two-objective optimization problem of delay recovery and energy efficiency. We further show the benefits
of regenerative braking by investigating its impact on the energy consumption in Section 4.3. In order
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Fig. 1. Part of the Dutch railway network, with 6 electric regions

to examine the solution quality of the proposed optimization approach from a train control perspective,
Section 4.4 compares the train speed profiles obtained by the proposed integrated optimization approach
with those obtained by using the detailed nonlinear train model as proposed by Wang et al. (2013), Liu
and Golovitcher (2003), Khmelnitsky (2000). In addition to the constraints caused by the speed limits,
maximum acceleration, maximum deceleration, etc., the traffic management problem also presents many
operational constraints (i.e., a train should pass a certain place at a certain time, the passing time at a
non-stopping station), which should be also considered in the train control problem (Wang et al. 2012).
Here we apply a sequential quadratic programming (SQP) approach to solve the resulting nonlinear train
control problem. The details for the solution approach will be introduced in Section 4.4. Note that the
solution approaches proposed in Section 4 of Part 1 are still used to solve the PNLP problem and the PTSPO

problem. Moreover, we additionally report the detailed data about the solutions of this test case in the
online repository (Research Collection ETH Zurich).

We use the SNOPT solver implemented in the MATLAB (R2016a) TOMLAB toolbox to solve the
MINLP problem, i.e., the PNLP problem. We adopt the IBM ILOG CPLEX optimization studio version
12.6.3 with default settings to solve the MILP problem, i.e., the PTSPO problem. The following experiments
are all performed on a computer with an Intel®CoreTM i7 @ 2.00 GHz processor and 16GB RAM.

4.1. Overall performance of the PNLP and PTSPO optimization problems

In this section, the overall performance of the PNLP and PTSPO optimization problems are compared; the
results of the weighted-sum formulation and the ε-constraint formulation are presented in Fig. 2 and Fig. 3
respectively. For the PTSPO optimization problem, the largest set of TSPOs (i.e., Set 1) is considered, which
is generated by using the discrete speed values {0, 40, 60, 80, 90, 100, 110, 120, 130} (km/h) for intercity and
sprinter trains and {0, 20, 30, 40, 50, 60, 70, 80} (km/h) for freight trains, as its solution quality is the best
among the six sets, discussed in Section 5.4, Part 1 of the paper. This set contains 16402 speed profiles
per train per block section, which results in 5.70 × 1050 possibilities of combining the speed profiles for all
train services. For the weighted-sum formulation, we use 10 weights (in the form of [ιdelay, ιenergy], widely
ranged, see the X-axis of Fig. 2) to balance their importance, and for normalization as well. As the weight
of energy consumption ιenergy is always set to be 1, we can also use a single weight, denoted as ι = ιdelay, to
describe the multiple choices of weights. An increase of the single weight ι implies that the importance of
the train delay increases. For the ε-constraint formulation, we consider 5 upper bounds for the train delay,
which stem from the delay time in the initial solution and in the secondary solutions within 180, 300, 600,
and 3600 seconds of computation time (refer to Section 5.4 of Part 1), indicated as Idelayinitial, I

delay
180 , Idelay300 ,

Idelay600 , and Idelay3600 respectively. We consider two computation time limits, i.e., 180 seconds and 3600 seconds,
in the case of using the weighted-sum formulation. When using the ε-constraint formulation, the solution
is almost never improved after 600 seconds; so we consider 600 seconds as the maximum computation time
limit, instead of 3600 seconds.

In Fig. 2 and Fig. 3, each bar indicates an average result of 10 delay cases. In the upper portion of each
figure, the objective values are given, indicated as gray bars for the PNLP problem and as black bars for
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the PTSPO problem; in the lower portion of each figure, each white bar indicates the average improvement,
i.e., PNLP solution−PTSPO solution

PNLP solution × 100%. A positive value means that the PTSPO solution is better; a negative
value implies a better solution quality of the PNLP problem. Note that, in Fig. 2, we present the objective
values, i.e., the real values of the train delay and the energy consumption multiplied by the weights, as
we aim at comparing the overall performance of the two approaches; in all other remaining representations
of the results (i.e., in Fig. 3-Fig. 10), we always present the real values of the delay time and the energy
consumption.
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Fig. 2. Comparison of the PNLP and PTSPO results, in the case of using the weighted-sum formulation

As illustrated in Fig. 2, the PTSPO problem obtains better solutions in almost all instances, achieving
13.4% improvement in the objective value at most. When the train delay is considered very important, the
PNLP solution has a quality that is similar to that of the PTSPO solution within 180 seconds of computation
time in Fig. 2(a); with a larger computation time of 3600 seconds in Fig. 2(b), the PNLP solution is about
1.6% better than the PTSPO solution. From the viewpoints of both solution quality and computational
efficiency, we conclude that the PTSPO problem performs better in the case of using the weighted-sum
formulation.
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Fig. 3. Comparison of the PNLP and PTSPO results, in the case of using the ε-constraint formulation

The results of the two optimization problems by using the ε-constraint formulation are comparatively
given in Fig. 3, which has the same structure as Fig. 2. When considering the ε-constraint formulation,
the performance of the two optimization problems is similar to their performance in the case of using the
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weighted-sum formulation, but the difference of the two problems in solution quality is smaller. In most
instances, the PTSPO problem still has a better performance, achieving up to 4.2% improvement in the energy
consumption. In a few other instances with 600 seconds of computation time, the PNLP problem performs
better, but it has only a small (less than 0.5%) improvement in the energy consumption. Overall, the
PTSPO optimization approach is recognized for having a better performance, by using either the ε-constraint
formulation or the weighted-sum formulation.

4.2. Exploration of the trade-off between train delay and energy consumption

Due to the good performance of the PTSPO approach evaluated in Section 4.1, we apply this approach to
investigate the trade-off between train delay and energy consumption in this section. We present the results
of the weighted-sum formulation in Section 4.2.1. The results of the ε-constraint formulation are analyzed
in Section 4.2.2.

4.2.1. The weighted-sum formulation: minimization of both train delay and energy consumption

Fig. 4(a) and Fig. 4(b) illustrate the deviations of train delay and energy consumption respectively from
the initial solution1, within 180 and 3600 seconds of computation time. The red vertical line (zero line) is the
benchmark, representing the initial solution. Each bar indicates an average result of ten delay cases. The
gray dashed box in Fig. 4(a) is a zoom-in, using the interval [−0.02, 1.00] ×103 of the X-axis. The Y-axis
represents the weights considered. From the bottom to the top of the Y-axis, the importance of the train
delay increases. It should be noted that a negative value in Fig. 4 indicates a reduction (an improvement)
from the initial solution, and a positive value means an increase.
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(a) Total train delay time (unit: 10  second)
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Fig. 4. Deviations of train delay and energy consumption with respect to the initial solution

1The initial solution is obtained by considering a fixed full TSPO (train speed profile option) for each train on each block
section, which is further improved to generate secondary solutions by considering a larger set of multiple TSPOs. We refer to
Section 4 of Part 1 for more details.

15



As shown, compared with the initial solution, the energy consumption is reduced with a decreasing
weight ι, while the total train delay time increases. When the weight ι is not larger than 20, the energy
consumption is significantly reduced, at the expense of larger train delay times (corresponding to the positive
values in Fig. 4(a)). In such cases, trains are required to run slowly for saving energy, and train delay is
not the determining factor. When the weight ι is not less than 50, the train delay and energy consumption
are both reduced with respect to the initial solution. The reduction of the energy consumption becomes
smaller with an increasing weight ι, while the reduction of the train delay becomes larger. The possibility
of reducing train delays and saving energy at once by managing train speed is evident, achieving up to a
4.0% and 5.6% reduction of train delay and energy consumption respectively, demonstrating the benefits of
the integration of traffic management and train control again. Moreover, the extension of the computation
time to 3600 seconds improves the solution quality, but the improvement is not as significant as that at 180
seconds for most cases.

4.2.2. The ε-constraint formulation: energy-saving with respect to an upper bound for train delay

In Fig. 5, we respectively present the train delay and the energy consumption, obtained by using the
ε-constraint formulation (i.e., minimizing the energy consumption with respect to the given upper bound of
the train delay), as a function of the computation time. We consider 5 upper bounds for the train delay,

indicated as Idelayinitial, I
delay
180 , Idelay300 , Idelay600 , and Idelay3600 respectively. We distinguish them by using colors in

Fig. 5. The lighter the color becomes, the stricter the upper bound for the train delay required is, i.e., the
requirement of the train delay becomes stricter in a sequence of Idelayinitial, ..., I

delay
3600 .
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Fig. 5. Evolution of the train delay and the energy consumption as a function of the computation time

In all cases, a reduction of energy consumption can be always achieved within the first 180 seconds of
computation time; however, the energy consumption is almost not reduced anymore after 300 seconds. Since
the train delay is considered as a hard constraint, there is little room for its improvement, i.e., the lines of
the delay time in Fig. 5(a) are almost flat. Moreover, the trade-off between the train delay and the energy
consumption is clearly shown in Fig. 5. A stricter upper bound of the train delay leads to less delays (i.e.,
the lighter line is lower in Fig. 5(a)), more energy consumption (i.e., the lighter line is higher than the darker
line in Fig. 5(b)), and less saved energy (i.e., the gradient of the darker line is larger than that of the lighter
line in Fig. 5(b)).

Overall, the two formulation methods both perform well. However, the ε-constraint formulation requires
an appropriate upper bound for the train delay, which is generally hard to determine. On one hand, a
tighter upper bound for train delay will lead to a worse performance on the energy consumption, which is
reflected in the increase of the energy consumption in Fig. 5(b), and it may even result in infeasibility of the
optimization problem. On the other hand, if we use a looser upper bound, the train delay could be large,
even if there is some room for its reduction; therefore, the performance of the train dispatching problem
cannot be guaranteed. Moreover, we find solutions where the train delay and the energy consumption are
reduced at the same time from the initial solution by using the weighted-sum formulation; however, in the

16



solutions of the ε-constraint formulation, we can only see the reduction of the energy consumption, but no
improvement in the train delay. Based on the above reasons, we conclude that the weighted-sum formulation
is better and more applicable than the ε-constraint formulation.

4.3. Benefits of regenerative braking

This section compares the results with and without regenerative braking. The composition of the energy
consumption in the solutions obtained based on the Dutch test case is illustrated in Fig. 6. The Y-axis
represents the weights considered. From the top to the bottom of the Y-axis, the importance of the train
delay increases. The X-axis represents the energy consumption. For each weight, an average result of 10 delay
cases is provided. Each black (vertical) bar indicates the total energy consumption without regenerative
braking. The light gray and dark gray areas indicate 80% and 60% of this total energy consumption
respectively, given as benchmarks. Each dark blue bar indicates the energy used for overcoming resistance
in acceleration and cruising. As a result, the difference between the total energy consumption and the
energy consumed for overcoming resistance in acceleration and cruising is in fact the energy used for train
acceleration, which is converted into the train kinetic energy, indicated by a light blue line. A small part
of this train kinetic energy is further consumed for overcoming resistance in deceleration, represented by a
light blue bar. By applying regenerative braking, some of this kinetic energy can be stored in energy storage
devices, and we use a light green bar to indicate the energy stored during train braking. Then, a part of
the energy stored is further re-utilized for train acceleration, which results in a reduction of the total energy
consumption from the black bar to the black circle, i.e., the difference between the black bar and the black
circle indicates the energy re-utilized. The energy loss of the regenerated energy due to system efficiency
(i.e., caused by the recuperation coefficient η) is represented by a bar with green border.
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Fig. 6. Composition of the energy consumption

As illustrated in Fig. 6, the total energy consumption decreases with the increase of the importance of
the energy consumption. The percentage of the energy re-utilized is larger when considering the energy
consumption to be more important. Moreover, in our solutions, there is a large amount (around 40%-50%)
of the train kinetic energy that is not stored, indicated by the difference of the lengths between the light blue
line and the light green bar. One reason for this unstored energy is due to the configuration of the electric
regions, i.e., the Den Bosch (Ht) station area is not considered as an electric region of regenerative braking,
so that regenerative braking cannot be applied in this station area, as shown in Fig. 1. Another reason
is that the Den Bosch (Ht) station is the destination for most trains, so that many train braking actions
happen in this area. As regenerative braking cannot be used in the Den Bosch (Ht) station, the train kinetic
energy in these braking actions is all lost. In fact, the composition of the energy consumption strongly
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depends on the test case (e.g., electric regions and train routes) and the computational configurations
(e.g., the estimated system efficiency). For a certain test case, comprehensive experiments could be done to
correct the input parameters (e.g., the recuperation coefficient η for system efficiency) for increasing solution
accuracy, and also to find the best option for making maximum use of the regenerated energy (e.g., locations
of installing energy storage devices). We evaluate the performance indicators with regards to regenerative
braking, including the storage rate of the regenerated energy, the utilization rate of the stored energy, the
percentage of the energy loss due to system efficiency, and the reduction of the total energy consumption
due to regenerative braking, shown in Fig. 7(a)-Fig. 7(d) respectively.
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Fig. 7. Storage rate of the train kinetic energy, utilization rate of the stored energy, energy loss due to
system efficiency, and reduction of the total energy consumption

The results of the performance indicators differ for the different weights considered. Basically, an increase
of the importance of the energy consumption leads to a larger storage rate of the train kinetic energy and a
larger utilization rate of the regenerated energy; as a result, we obtain a larger reduction of the total energy
consumption. The energy loss resulting from system efficiency also becomes larger with the increase of the
storage rate and the utilization rate. In our case study, there is a surplus of the stored energy, i.e., not all of
the stored energy are re-used for train acceleration; therefore, the reduction of the total energy consumption
can increase even if the energy loss increases. Overall, based on the Dutch test case, 41.5%-53.3% of the
train kinetic energy is stored in energy storage devices. About 4.4%-7.2% of this stored energy is lost
due to system efficiency, and 32.7%-46.6% of this stored energy is re-utilized for train acceleration, which
further leads to 13.1%-22.9% reduction of the total energy consumption. According to the experimental
results, regenerative braking can significantly reduce the energy consumption of train operations, and it is
an effective and practical way to achieve energy-efficient train operation. The results based on the Dutch
test case show the effectiveness of the proposed formulations.

4.4. Comparison with the train speed profiles generated by a train trajectory optimization approach

In this section, we assess the results of the PTSPO problem from a train control perspective. We adopt
the nonlinear train speed profile optimization approach proposed by Wang et al. (2013) and apply the SQP
approach to generate a speed profile for each train. The departure times at the origin and arrival times at
the destinations of trains are given as time constraints for the train control problem. Moreover, the passing
times at intermediate non-stopping stations and critical block sections are given as operational constraints,
i.e., the traffic management problem is solved beforehand. For each train, a speed profile is generated with
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the objective of minimizing the energy consumption. For the train control problem, each block section in
the network is divided into 20 subsections and the acceleration or deceleration of trains is assumed to be
a constant for each subsection. Since the SQP approach could result in local minima, we use 10 initial
points for the calculation of the train speed profile for each train, and we select the best solution among the
resulting speed profiles. The SQP approach uses a more accurate and refined model, so it can be seen as a
more accurate approach for obtaining optimal speed profiles. We compare the train speed profiles generated
by the PTSPO approach and the SQP approach, as well as the resulting energy consumption. Note that we
consider the PTSPO approach with the weighted-sum formulation. As we aim at assessing the quality of the
speed profiles generated by the PTSPO problem, we do not consider the option of regenerative braking here
for both the PTSPO approach and the SQP approach.

Fig. 8 shows the speed-space trajectories obtained by the two approaches. For the sake of compactness,
only one representative delay case with 15 trains is provided here. The train speed profiles of the PTSPO

solution and the SQP solution are indicated by solid lines and dashed lines respectively.

0

20

40

60

80

100

120

140

1 2 3 111087654 9 1312 1514 16 1817 2019 21 2322 24 26 2725 3028

0

20

40

60

80

100

120

140

1 2 3 111087654 9 1312 1514 16 1817 2019 21 2322 24 26 2725 3028

29 27 30 31
0

20

40

60

80

100

120

140

1 2 3 111087654 9 1312 1514 16 1817 2019 21 2322 24 26 2725 3028
0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

1 2 3 111087654 9 1312 1514 16 1817 2019 21 2322 24 26 2725 3028

29 27 30 31
0

20

40

60

80

100

120

140

29 27 30 31
0

20

40

60

80

100

120

140

32 33 3 34
0

20

40

60

80

100

120

140

4 35 36 8 109 11 1312 14 37

32 333 111083635344 9 1312 3714 16 1817 2019 21 2322 24 26 2725 3031

29 27 30 31
0

20

40

60

80

100

120

140

32 33 3 344 35 36 8 109 11 1312 14 37
0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

32 333 111083635344 9 1312 3714 16 1817 2019 21 2322 24 26 2725 3031

0

20

40

60

80

100

120

140

38 333 111087654 9 1312 1514 16 1817 2019 21 2322 24 26 2725 30 39

0

20

40

60

80

100

120

140

16 1817 2019 21 2322 24 26 2725 30 3940

38 33 3 111087654 9 1312 4014
0

20

40

60

80

100

120

140

1B35001

1D8001

1D35001

1B160001

1D160001

Solution of the SQP approach 

       for the train trajectory optimization problem

Solution of the PTSPO approach 

        for the integrated optimization problem 

    of tra!c management and train control

1B8001

1BVF11

1OVF11

1RBH40S

1D60001

1B60001

1B36001

1B44001

1D36001

1D44001

space

sp
e

e
d

(k
m

/h
)

Fig. 8. Comparison of the train speed profiles
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It can be seen that the speed profiles generated by the SQP approach are smoother than those of
the PTSPO approach in acceleration and deceleration, as the SQP approach uses the detailed nonlinear
train model. However, for most trains that travel sequentially on nodes 27 → 30 → 28, the driving strategy
obtained by the PTSPO approach is more efficient for energy consumption. Due to the speed limit requirement
for node 27, every train reduces its speed to 60 km/h while passing node 27. In the PTSPO solution, most
trains maintain a speed of 60 km/h after passing node 27 to further approach their destination, e.g., the
1B8001 and 1B16001 trains; a few trains accelerate to their maximum speeds after passing node 27, e.g.,
the 1D8001 train. In the SQP solution, every train that traverses node 27 accelerates after passing node 27
and then decelerates when approaching its destination. This may be caused by the different computational
configurations of the two approaches and the sub-optimal solutions found by the two approaches. The
train acceleration after passing node 27 needs to additionally use energy; therefore, the driving strategy of
not accelerating the train after passing node 27, found by the PTSPO approach, is more efficient in use of
energy. For some trains, the speed profiles of the two approaches are highly coincident, e.g., the 1B36001
and 1BVF11 trains. The quality of the train speed profiles obtained by the PTSPO approach is overall
satisfactory, with regard to the solution found by the SQP approach.

In Fig. 9, we present the energy consumption of each train, computed by the PTSPO approach (indicated
in gray) and the SQP approach (indicated in black). The Y-axis indicates the energy consumption for each
train, and the X-axis represents the train number.
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Fig. 9. Comparison of the energy consumption for one representative delay case

When focusing on each single train, the energy consumption computed by the two approaches is different.
For some trains, e.g., the 1B8001 and 1B35001 trains, the speed profiles found by the PTSPO approach are
better in efficient use of energy, mainly caused by the driving strategy of maintaining a speed of 60 km/h
after passing node 27. For some other trains, e.g., the 1D160001 train, better speed profiles for energy
efficiency are found by the SQP approach. However, the results of the total energy consumption of the
two approaches are very close, i.e., 78.00 × 108(J) and 77.86 × 108(J) for the PTSPO approach and the
SQP approach respectively. The SQP approach overall performs better, as it finds better speed profiles in
efficient use of energy; however, the relative difference of the total energy consumption obtained by the two
approaches is very small, only 0.18%.

According to the comparison of the PTSPO approach and the SQP approach, it is demonstrated that
the control performance of the PTSPO approach is good for both the quality of the speed profiles and the
calculation of the energy consumption.

4.5. Summary of the experimental results

We here summarize the main conclusions, sketched quantitatively in Fig. 10 from the viewpoints of train
delay (X-axis) and energy consumption (Y-axis), clarifying the trade-off between them. The experimental
results reported in Sections 4.1-4.3 are all included in Fig. 10. Fig. 10(b) is a zoom-in of Fig. 10(a), with some
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trend lines. We use symbols to distinguish the computation time limits considered for obtaining the solutions,
i.e., the dot, square, plus, and cross symbols represent the initial solution, and the secondary solutions
obtained within 180, 600, and 3600 seconds of computation time respectively. Each symbol indicates an
average result of 10 delay cases, obtained within the given computation time limit. We use colors to indicate
the multiple combined choices of the optimization approaches (i.e., the PNLP and PTSPO approaches), the
formulation methods (i.e., the weighted-sum formulation and the ε-constraint formulation), and the option
of regenerative braking. The blue and orange colors indicate the PNLP solutions by using the weighted-
sum formulation and the ε-constraint formulation respectively. The purple and gray colors indicate the
PTSPO solutions with the weighted-sum formulation and the ε-constraint formulation respectively. The
green color represents the solution considering regenerative braking, obtained by the PTSPO approach with
the weighted-sum formulation.
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Fig. 10. Overview of all experimental results, from the viewpoints of train delay and energy consumption

According to the experimental results presented in Section 4.1, the performance of the PTSPO approach
is better than the performance of the PNLP approach. This is reflected in Fig. 10 by the lower purple line
when comparing with the blue line in the case of using the weighted-sum formulation, and is also reflected
by the gray line, which is mostly lower than the orange line when applying the ε-constraint formulation.

When using the ε-constraint formulation, the gray and orange trend lines in Fig. 10 go towards a
larger energy consumption with a stricter upper bound on the train delay. Required as the input of the
ε-constraint formulation, the upper bound for the train delay has to be carefully chosen; an inappropriate
upper bound may lead to a bad performance on either train delay or energy consumption, and it may even
cause infeasibility of the optimization problem. For the weighted-sum formulation, the results of the train
delay and the energy consumption are widely ranged, depending on the weights considered, see the blue,
purple, and green trend lines. Overall, for our case, the weighted-sum formulation is more applicable than
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the ε-constraint formulation, as discussed in Section 4.2.
In Section 4.2.1, by using the PTSPO approach with the weighted-sum formulation, we find better so-

lutions, where the delay time and the energy consumption are reduced at the same time, compared with
the initial solution that is obtained by considering a fixed full speed profile for each train on each block
section. This is reflected by the symbols located between the purple dashed lines in Fig. 10; the vertical
and horizontal dashed lines come from the initial solution (indicated by the purple dot symbol), given as
benchmarks. Train delay and energy consumption can be improved simultaneously through managing the
train speed, by up to 4.0% and 5.6% respectively. The simultaneous reduction of the two objectives also
demonstrates the benefit of integrating traffic management and train control and shows great potential for
energy efficiency of train operations.

When regenerative braking is applied, the total energy consumption for train operations is significantly
reduced, indicated by the green lines in Fig. 10, which represent a smaller energy consumption in comparison
with the purple lines. Applying regenerative braking is an effective way to achieve energy-efficient train
operation (as discussed in Section 4.3).

The good quality of the train speed profiles generated by the PTSPO approach is demonstrated in Sec-
tion 4.4, compared with the train speed profiles obtained by the SQP approach, which is a more accurate
approach for computing optimal speed profiles. The relative difference of the total energy consumption of
the PTSPO solution and the SQP solution is very small (only 0.18%), which also demonstrates the good
control performance of the PTSPO approach.

5. Conclusions and future research

In this paper (Part 2), we have considered extensions towards energy-efficient train operation, based
on the integrated optimization approaches proposed in Part 1, where the traffic-related properties (i.e.,
departure times, arrival times, and train orders) and the train-related properties (i.e., train speed trajectory)
are optimized simultaneously. We have first introduced energy evaluation into the integrated optimization
approaches, calculating the energy used for train acceleration and the energy consumed for overcoming
resistance. We have developed a set of linear constraints for the PTSPO problem to compute the energy
consumption. An approximation of the resistance function with a piecewise constant function has been
applied for computing the energy consumption of the PNLP and PPWA problems. In addition, we have
considered the option of regenerative braking and presented linear formulations to calculate the utilization
of the energy obtained through regenerative braking. With the inclusion of the energy-related formulations,
we could focus on two objectives, i.e., delay recovery and energy efficiency, by using the weighted-sum
formulation and the ε-constraint formulation. Experiments have been conducted based on a real-world
dataset adapted from the Dutch railway network (the same as Part 1). According to the experimental
results, the PTSPO approach overall performs better. Aiming at both delay recovery and energy efficiency,
the two objectives can be improved at once (e.g., by up to 4.0% and 5.6% for the train delay and the energy
consumption in one of the solutions) through managing the train speed. Moreover, for the test case, the
application of regenerative braking leads to about 13.1%-22.9% reduction of the total energy consumption.
By comparing with the train speed profiles obtained by the SQP approach, which is a more accurate approach
for computing speed profiles, the good control performance of the PTSPO approach has been demonstrated,
as the speed profiles of the PTSPO approach are similar to those obtained by the SQP approach.

In our future research, we will focus on developing distributed optimization methods and/or heuristic
algorithms to improve the computational efficiency of the proposed optimization approaches and to increase
their applicability to larger-scale networks. Based on the developments of computation efficient algorithms,
a larger set of discrete speed values could be used to generate the possible TSPOs, in order to achieve
an improvement in both accuracy and computational efficiency. Moreover, we can extend the proposed
multi-objective optimization problem to consider some other relevant objectives, such as the cost of train
operations and the passenger travel time. Finally, a decision support tool, embedded with the optimization
approaches, could be developed, for both train dispatcher and train driver, in order to promote the research
into reality.
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Appendix A Assumptions and formulation method introduced in Part 1

We recall the assumptions made in Part 1 as follows: (1) train acceleration is considered as a piecewise
constant function by giving a fixed switching point (breakpoint) of speed (e.g., 60 km/h) for each train
category; (2) train deceleration is constant for a certain train category and differs among train categories;
(3) the speed limit is considered as constant for a certain train category on a certain block section, i.e., the
minimum value of the designed train speed and the designed block section (track) speed, but differs among
train categories and block sections; (4) the beginning/ending point of a block section or of a main/siding
track in a station, or a point of merging/diverging of tracks on a segment, is represented by a node; (5)
a block section is described as a cell, which connects two nodes in a pair; (6) a station is simplified to a
number of main/siding track(s), which can be further modelled as a single cell or a set of cells; (7) for a
double-track railway segment between two stations, each track is modelled as a sequence of directional cells
(i.e., directional block sections), and for a single-track railway segment, the only track between two stations
is modelled as bi-directional cells (i.e., bi-directional block section); (8) the speed of a train on a cell is
divided into three phases, i.e., incoming, cruising, and outgoing phases, refer to Fig. 11, and train coasting
is neglected (however, a coasting phase can be introduced by assuming a piecewise constant deceleration
function of the cruising speed, as remarked in Section 3.3 of this paper); (9) only one train is allowed to
access a cell at any time; (10) the time step (granularity of time) is one second.
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Fig. 11. Speed-time graph of train f on cell (i, j) and cell (j, k) to illustrate the relevant decision variables

We recall and briefly explain the formulation method proposed in Part 1. The trajectory of each train
on each cell is divided into three phases: incoming, cruising, and outgoing phases, as illustrated in Fig. 11,
where train f enters cell (i, j) at time af,i,j with a speed vinf,i,j , and then a sequence of the following actions
is taken on cell (i, j):
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1) in the time interval [af,i,j , a
turn
f,i,j ], the train accelerates from speed vinf,i,j to speed vturnf at a steady accel-

eration α1,f,i,j ;

2) in the time interval [aturnf,i,j , a
cru
f,i,j ], the train accelerates from speed vturnf to speed vcruf,i,j at a steady accel-

eration α2,f,i,j ;

3) in the time interval [acruf,i,j , d
cru
f,i,j ], the train keeps a constant speed vcruf,i,j ;

4) in the time interval [dcruf,i,j , df,i,j − wf,i,j ], the train decelerates from speed vcruf,i,j to speed voutf,i,j (i.e., 0
km/h in this case) at a steady deceleration −βf,i,j ;

5) in the time interval [df,i,j − wf,i,j , df,i,j ], the train dwells in cell (i, j).

Then, train f departs from cell (i, j) at time df,i,j . Meanwhile, train f arrives at cell (j, k) at time af,j,k,

and starts accelerating. As train f does not reach the switching speed vturnf in the incoming phase of cell
(j, k), only one acceleration α1,f,i,j is used. Note that the sequence of the action(s) taken by a train on a
cell do not follow a pre-specified frame (like the one described above); in fact, it is determined by optimizing
the time variables (a/d) and speed variables (v). For instance, a train may take a sequence of actions to
first accelerate and then decelerate on a cell (i.e., vinf,i,j < vcruf,i,j and voutf,i,j < vcruf,i,j), and it may also take only

one action to keep a constant speed traversing the cell (i.e., vinf,i,j = vcruf,i,j = voutf,i,j).

Table 2. Explanation of the speed indicators ζ1,f,i,j,b, ..., ζ6,f,i,j,b for train f on cell (i, j), used in the PTSPO

optimization approach

Incoming phase Outgoing phase

Speed conditions yinf,i,j,b ≤ ycruf,i,j,b vturnf ≤ yinf,i,j,b ycruf,i,j,b ≤ vturnf ycruf,i,j,b ≤ youtf,i,j,b vturnf ≤ ycruf,i,j,b youtf,i,j,b ≤ vturnf

⇕ ⇕ ⇕ ⇕ ⇕ ⇕
Speed indicators ζ1,f,i,j,b = 1 ζ3,f,i,j,b = 1 ζ4,f,i,j,b = 1 ζ2,f,i,j,b = 1 ζ5,f,i,j,b = 1 ζ6,f,i,j,b = 1

To formulate the uniformly accelerating and decelerating motions, six logical speed indicators ζ1,f,i,j,b,
..., ζ6,f,i,j,b are used to indicate the train speeds in the speed profile vector yf,i,j,b. Table 2 gives an overview
of the link between the speed conditions and the speed indicators for the incoming and outgoing phases.
These speed indicators are used to compute the energy J res in

f,i,j , J res cru
f,i,j , and J res out

f,i,j consumed to overcome
resistance in the incoming, cruising, and outgoing phases for the PTSPO approach, formulated as (20)-(21)
in Section 3.2.2.

Appendix B Additional explanations of the formulations in Section 3

In previous studies on the train control problem (Wang et al. 2013, Wang and Goverde 2016), the energy
used for a train that travels from position x1 to position x2 is calculated by using the following equation:

J =

∫ x2

x1

q(x) · dx =

∫ x2

x1

m · α · dx+

∫ x2

x1

rx(x) · dx, (16)

where J indicates the work (energy consumption), q(·) and rx(·) indicate the tractive force and resistance
force respectively, given as a function of the distance x, m is the train mass, and α indicates the train
acceleration. By using the formulas dx = v · dt and dv = α · dt, we can rewrite (16) as follows:

J =

∫ v2

v1

m · v · dv +
∫ v2

v1

r(v) · v
α

· dv, (17)

where the resistance force r(·) is given as a function of the train speed v, and v1 and v2 indicate the train
speeds at the positions x1 and x2 respectively. The first term of (17) in fact indicates the energy used for
accelerating trains, and the second term calculates the energy consumption for overcoming resistance.

With integral calculation, the energy consumption for train acceleration, i.e., the first term of (17), can
be easily calculated as m

2 · (v22 − v21), which is in fact the difference of the train kinetic energy when changing
the train speed from v1 to v2 and applied in (1)-(2) of Section 3.2.1.
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The second term of (17) is used to describe the energy consumed for overcoming resistance in Sec-
tion 3.2.2. We next explain and derive the formulations for calculating the energy used for overcoming
resistance. First, we need to construct a resistance function r(·), which typically includes two categories in
the train motion, i.e., the train resistance and the line resistance.

The train resistance rtrain(·) is the resistance that operates on the train because of movement, including
roll resistance and air resistance, and it is generally considered as a function of the train speed v in the
following form (Davis 1926, Brünger and Dahlhaus 2008):

rtrain(v) = m · ggrav · (r1 · v2 + r2 · v + r3), (18)

with the gravitational acceleration ggrav and non-negative coefficients rϱ ≥ 0, ϱ ∈ {1, 2, 3}, which depend on
the train characteristics.

The line resistance rline(·) is the resistance caused by track grade, curves, and tunnels. According to
Wang et al. (2013) and Hansen et al. (2017), the line resistance rline(·) can be described by

rline(x, v) = rgrade(λx) + rcurve(ϕx) + rtunnel(lx, v),

with


rgrade(λx) = m · ggrav · sin(λx),

rcurve(ϕx) = m · ggrav · Ccurve(ϕx)
ϕx

,

rtunnel(lx, v) = m · ggrav · Ctunnel(lx) · v2,

(19)

where λx, ϕx, and lx are the slope, curve radius, and the tunnel length along the track respectively, Ccurve(·)
is a coefficient that depends on the curve radius, and Ctunnel(·) is a coefficient that depends on many factors,
e.g., the tunnel length.

In the literature on train optimal control, the curve resistance and the tunnel resistance are often ignored
in calculations (which is concluded in the recent survey of Scheepmaker et al. 2017). The curve resistance,
which is the result of the flange of the wheel hitting the rail and thereby increasing resistance, is relatively
low compared to the grade resistance and therefore often ignored (Brünger and Dahlhaus 2008). Tunnel
resistances are also often ignored because of the lack of general formulas that describe this resistance (Scheep-
maker and Goverde 2015). When taking them into account, the curve resistance rcurve(·) and the tunnel
resistance rtunnel(·) in (19) are commonly given by empirical formulas. An example of such an empirical
formula of the curve resistance is Roeckl’s formula (Huerlimann and Nash 2003); for the tunnel resistance,
an empirical formula is given by Vardy and Reinke (1999).

Based on the above formulas to calculate the different resistances, the total resistance force r(·) in a
train motion can be expressed as a quadratic function of the speed, i.e., r(x, v) = rtrain(v) + rline(x, v) =
r1,x · v2 + r2,x · v + r3,x, which is also applied in Section 3.2.2 to formulate the energy consumption for
overcoming resistance.

For the PTSPO problem, we can reformulate (3) and (4) as follows:

J res in
f,i,j =

|Yf,i,j |∑
b=1

ϑf,i,j,b · ζ1,f,i,j,b · ζ4,f,i,j,b ·
Ξf,i,j(y

cru
f,i,j,b)−Ξf,i,j(y

in
f,i,j,b)

α1,f,i,j

+
|Yf,i,j |∑
b=1

ϑf,i,j,b · ζ1,f,i,j,b · ζ3,f,i,j,b ·
Ξf,i,j(y

cru
f,i,j,b)−Ξf,i,j(y

in
f,i,j,b)

α2,f,i,j

+
|Yf,i,j |∑
b=1

ϑf,i,j,b · ζ1,f,i,j,b · (1− ζ3,f,i,j,b) · (1− ζ4,f,i,j,b)

·
[
Ξf,i,j(v

turn
f )−Ξf,i,j(y

in
f,i,j)

α1,f,i,j
+

Ξf,i,j(y
cru
f,i,j)−Ξf,i,j(v

turn
f )

α2,f,i,j

]
∀f ∈ F, (i, j) ∈ Ef . (20)

J res cru
f,i,j =

|Yf,i,j |∑
b=1

ϑf,i,j,b ·
(
Lcell
i,j − Lin

f,i,j,b − Lout
f,i,j,b

)
·
(
r1,f,i,j · ycruf,i,j,b

2 + r2,f,i,j · ycruf,i,j,b + r3,f,i,j

)
, ∀f ∈ F, (i, j) ∈ Ef . (21)

The binary variable ϑf,i,j,b and the input parameters yinf,i,j,b, y
cru
f,i,j,b, y

out
f,i,j,b, L

cell
i,j , etc. have all been introduced

in Part 1, and they are recalled in Table 1. The speed indicators ζ1,f,i,j,b, ..., ζ6,f,i,j,b are used in Part 1 and
explained in Table 2 of Appendix A. A formulation similar to (20) can also be constructed for calculating
the energy consumption J res out

f,i,j in the outgoing phase; we skip the details here for the sake of compactness.
With the inclusion of (20) and (21), the nature of the PTSPO problem will not change.

As discussed in Section 3, we can approximate the resistance function rf,i,j(·) by using a piecewise
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constant function with 2 affine parts and with constant values rcs1,f,i,j and rcs2,f,i,j , for the PNLP problem
and the PPWA problem, in order to address the solving difficulties. As a result, we can use the following
formulations to calculate the energy used by train f on cell (i, j) for overcoming resistance in the incoming
and cruising phases respectively:

J res in
f,i,j =



rcs1,f,i,j
2α1,f,i,j

·
[
(vcruf,i,j)

2 − (vinf,i,j)
2
]
, if vinf,i,j ≤ vcruf,i,j ≤ vturnf

rcs2,f,i,j
2α2,f,i,j

·
[
(vcruf,i,j)

2 − (vinf,i,j)
2
]
, if vturnf ≤ vinf,i,j < vcruf,i,j

rcs1,f,i,j
2α1,f,i,j

·
[
(vturnf,i,j)

2 − (vinf,i,j)
2
]
+

rcs2,f,i,j
2α2,f,i,j

·
[
(vcruf,i,j)

2 − (vturnf,i,j)
2
]
,

if vinf,i,j < vturnf < vcruf,i,j

0, if vinf,i,j > vcruf,i,j

∀f ∈ F, (i, j) ∈ Ef (22)

J res cru
f,i,j =

{
rcs1,f,i,j · Lcru

f,i,j , if vcruf,i,j ≤ vturnf

rcs2,f,i,j · Lcru
f,i,j , if vcruf,i,j > vturnf

, ∀f ∈ F, (i, j) ∈ Ef . (23)

These two equations derive from the work formula J = r ·x, where J and r indicate the energy consumption

and the resistance force and x =
v2
2−v2

1

2α computes the distance travelled by a train for accelerating from
speed v1 to v2 in a uniform acceleration motion. A formulation similar to (22) can also be constructed for
calculating the energy consumption J res out

f,i,j in the outgoing phase. For the sake of compactness, we do not
report those details here.
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