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Stabilizing Controller Design for State-based Switching Bilinear Systems

Shu Lin, Bart De Schutter, and Dewei Li

Abstract— In this paper, controllers are designed for stabi-
lizing state-based switching bilinear systems. The controller
is designed based on the special features of bilinear systems
comparing with linear systems, and is carried out through three
steps: first, deriving the state-based switching linear system
corresponding to the switching bilinear system; then, state-
feedback controllers are designed to asymptotically stabilize
the corresponding switching linear system; finally, stabilizing
controllers are obtained for the original system, the switching
bilinear system. The stability of the controller is proved step by
step through the decreasing of the overall Lyapunov function.

I. INTRODUCTION

Bilinear systems are a kind of special nonlinear system that

have been investigated a lot since 1960s [1], [2], [3], [4], [5],

[6]. They are very simple and close to linear systems, which

makes it possible to extend some of the theory results for

linear systems to be used in nonlinear systems. A bilinear

system is actually the addition of a linear term and a bilinear

term. Due to the existence of the bilinear term, the structure

of the system can be changed compared with the linear

systems. Because of the variable structure of the bilinear

systems, some uncontrollable linear systems may become

controllable by simply adding the bilinear term. It has been

proved that the bilinear system had a better performance

than the linear system in optimal control [7]. In practice,

there are systems that naturally have the term with the states

multiplying the control inputs, such as the field of sociology,

biology, power systems, etc.[1], [8]. Usually, the reason for

the existence of the term is that the influence of the control

input on the system depends on the current system state,

which is normal in reality.

In practice, some complex nonlinear systems can be

approximated by dividing into multiple state-based bilinear

subsystems [9]. On each state region, a bilinear subsystem

is activated, and the bilinear subsystems switch between

each other according to the switching of the state regions.

This results in a state-based switching bilinear system [10].

Developing the theory on stabilizing controllers for the state-

based switching bilinear systems provides a methodology to

design controllers for the systems with complex nonlinear

features in reality.
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In this paper, a method is proposed for designing con-

trollers that stabilize the state-based switching bilinear sys-

tems. Considering about the special features of bilinear

systems, a state-based switching linear system is obtained

corresponding to the switching bilinear system. Instead of

designing controllers for the switching bilinear system di-

rectly, we first proposed a theorem to asymptotically sta-

bilize the corresponding switching linear system based on

multiple Lyapunov functions, and the theorem is further

relaxed through allowing the Lyapunov functions jumping

on the boundary of the neighboring state regions. Then, the

stabilizing controller for switching bilinear systems can be

obtained by checking the feasibilities of the switchings on

some of the boundaries, based on the results yielding from

the corresponding switching linear systems.

II. PROBLEM STATEMENT

Consider a Switching Bilinear System (SBLS)

ẋ = Aix+
mi

∑
j=1

(Gi, jx+bi, j)ui, j, if x ∈ Ωi, i ∈ Λ, (1)

where Ai and Gi, j are [n×n] matrices, bi, j is a [n×1] vector,

Ωi is the corresponding state space polyhedron with i∈Λ the

state space partitions of Ω⊂R
n (∪i∈ΛΩi =Ω,Ωi 6= /0,∀i∈Λ),

j ∈ Mi = {1, . . . ,mi}, and Ui = [ui,1 ui,2 · · ·ui,mi
] ∈ R

mi is an

mi-dimensional control input.

We can also write (1) in the form of

ẋ = Aix+
mi

∑
j=1

bi, j(c
T
i, jx+1)ui, j, if x ∈ Ωi, i ∈ Λ, (2)

if matrix Gi, j can be expressed as the inner product of two

vectors. In particular, if the rank of matrix Gi, j satisfies

rank(Gi, j) = 1, (3)

then matrix Gi, j can be written as

Gi, j = bi, jc
T
i, j, if i ∈ Λ, j ∈ Mi. (4)

In practice, it is easy to find systems with this property, e.g.

if each of the control inputs ui, j( j ∈ Mi, i ∈ Λ) is only related

with a single element xi (i = {1, . . . ,n}) of the system state,

which means the bilinear terms in (1) only exist for the local

control inputs and states having direct correlations (indirect

correlations are taken into consideration through the dynamic

model). This assumption holds for flow dynamic systems,

such as water networks, traffic networks, power networks,

etc.



III. PRELIMINARIES

Based on the features of bilinear systems, specific con-

trollers were designed for bilinear systems [1]. When Λ =
{1} in (2), the system turns into a typical bilinear system.

The mark i for distinguishing subsystems is removed to rep-

resent single bilinear system. According to [3], it is possible

to design a division controller to stabilize the bilinear system.

Define e j(x) = cT
j x+1( j ∈M), and divide the state space into

the following sets:







S+j = {x|e j(x)≥ ε}

S0
j = {x|− ε ≤ e j(x)≤ ε}

S−j = {x|e j(x)≤−ε},
(5)

with ε a small positive value. The division controller can be

designed for the regions as:







u+j =
k+j x+uref

j

e j(x)
, x ∈ S+j

u0
j = 0, x ∈ S0

j

u−j =
k−j x+uref

j

e j(x)
, x ∈ S−j ,

(6)

where k+j and k−j are of [1×n] state-feedback gain vectors,

and uref
j is the input reference to change the equilibrium

point.

The division controller stabilizes the bilinear system to the

predefined equilibrium state.

IV. STABILIZING CONTROLLER DESIGN FOR

SBLS

Consider the switching bilinear system in (2), it is possible

to design stabilizing controller for the SBLS based on the

division controllers above. The controller design can be

carried out through multiple steps:

1) Obtain the corresponding Switching Linear System

(SLS) for the SBLS;

2) Design a stabilizing state-feedback controller for the

derived SLS;

3) Design a stabilizing controller for the SBLS.

A. Corresponding Switching Linear System

For switching bilinear systems, in order to design stabiliz-

ing switching division controllers for each bilinear subsystem

i∈Λ, we need to partition the state-space polyhedron Ωi into

more subregions. If for sub-bilinear system i ∈ Λ, the control

input is u
j
i (i ∈ Λ, j ∈ Mi) where Mi = {1, . . . ,mi}, then for

each control input u
j
i two state-feedback controllers should

be designed separately for two regions as

{
S+i, j = {x|ei, j(x)≥ 0}

S−i, j = {x|ei, j(x)≤ 0},
(7)

with ei, j(x) = cT
i, jx+1 ( j ∈M), and thus there will be at most

2mi state subspace partitions in Ωi. The polyhedral partition

of Ωi (i ∈ Λ) for bilinear subsystem i can be defined as

{Ωi,l}i∈Λ,l∈Γi
, where ∪l∈Γi

Ωi,l = Ωi,Ωi,l 6= /0,Ωi,l1 ∩Ωi,l2 6=
/0,∀l1 6= l2, l1, l2 ∈ Γi.

Based on the polyhedral partition of the state space and

defining the equilibrium as the origin, the controller is

designed for each polyhedron Ωi,l as

Ui,l = [u1
i,l u2

i,l · · ·u
mi

i,l ], i ∈ Λ, l ∈ Γi,Mi = {mi}, (8)

where

u
j
i,l =

k
j
i,lx

ei, j(x)
, if x ∈ Ωi,l , j ∈ Mi, l ∈ Γi, i ∈ Λ. (9)

If we substitute (9) into (2), then the bilinear terms are elim-

inated, and the bilinear system in (2) becomes a switching

linear system, which is the corresponding SLS of the SBLS.

In order to control the SBLS, we can first consider design a

stabilizing state-feedback controller for the following corre-

sponding SLS

ẋ= (Ai+
mi

∑
j=1

bi, jk
j
i,l)x, if x∈Ωi,l , j ∈Mi, l ∈ Γi, i∈Λ. (10)

Define

Bi = [bi,1 bi,2 · · ·bi,mi
],

Ki,l = [(k1
i,l)

T (k2
i,l)

T · · ·(kmi

i,l )
T]T, (11)

then the corresponding SLS system can be written as

ẋ = (Ai +BiKi,l)x, if x ∈ Ωi,l , j ∈ Mi, l ∈ Γi, i ∈ Λ. (12)

B. Stabilizing State-feedback Control for SLS

Now, stabilizing switching state-feedback control laws will

be designed to asymptotically steer the state to the origin for

the SLS in (12) [11], [12], [9]. The method in this paper

follows the theory in [9], but has a larger feasible region by

relaxing the LMI constraints. In addition, this paper aims at

designing stabilizing controller for SBL systems which are

common in flow systems.

Each polyhedral region Ωi,l can be described as a system

of linear inequalities:

[Fi,l fi,l ]
︸ ︷︷ ︸

F̄i,l

[
x

1

]

≥ 0, if x ∈ Ωi,l , (13)

and the boundary hyperplane for two neighboring regions

Ωi,l and Ω
i′,l

′ is characterized by an equality and inequality

as

[Ψ
ii′,ll

′ ψ
ii′,ll

′ ]
︸ ︷︷ ︸

Ψ̄
ii′,ll

′

[
x

1

]

= 0, and [Φ
ii′,ll

′ φ
i′,ll

′ ]
︸ ︷︷ ︸

Φ̄
ii′,ll

′

[
x

1

]

≥ 0,

∀ x ∈ Ωi,l ∩Ω
i′,l

′ . (14)

Lyapunov functions are defined for each polyhedral region

Ωi,l (l ∈ Γi, i ∈ Λ) with the following format

Vi,l(x)=

[
x

1

]T [
Pi,l ⋆

sT
i,l ri,l

]

︸ ︷︷ ︸

P̄i,l

[
x

1

]

︸ ︷︷ ︸

x̄

, ∀ l ∈Γi, i∈Λ,x∈Ωi,l ,

(15)



with x̄ = [x 1]T, Pi,l ∈R
n×n a symmetric matrix, si,l an [n×1]

dimensional vector, and ri,l ∈ R.

The following theorem presents a sufficient condition to

design switched state-feedback control laws for the SLS in

(12) that, to asymptotically bring the state to the origin,

which is the equilibrium for at least one of the subsystems.

Note that in the following theorems we use the augmented

system matrices defined as follows:

Āi =

[
Ai 0

0 0

]

, B̄i =

[
Bi

0

]

. (16)

Theorem 1: Assume there exist positive definite matrices

Q̄i,l , Qi,l , Ri,l , and Mi,l , and matrix Θi,l and scalar λi,l that

satisfy (21)-(26), taking

P̄i,l = Q̄−1
i,l ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 6∈ Ωi,l}, (17)

and

Pi,l = Q−1
i,l ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ∈ Ωi,l}, (18)

for the state-based Lyapunov functions Vi,l = x̄TP̄i,l x̄ and

Vi,l = xTPi,lx respectively, then the state feedback control laws

with gains

K̄i,l =Ni,lQ̄
−1
i,l ∀ (i, l)∈ {(i, l) | i∈Λ, l ∈ Γi,0 6∈Ωi,l}, (19)

and

Ki,l =Ni,lQ
−1
i,l ∀ (i, l)∈ {(i, l) | i∈Λ, l ∈ Γi,0∈Ωi,l}, (20)

asymptotically stabilize the SLS system in (12).

Proof : First, the Schur complement is performed on (21)

with respect to the second row and column. The result is

multiplied from both sides by Q̄−1
i,l = P̄i,l , yielding

P̄i,l − F̄T
i,lR

−1
i,l F̄i,l > 0,

∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 6∈ Ωi,l}, (27)

which guarantees that the Lyapunov function on each state

polyhedron is positive, i.e.

Vi,l > 0, if F̄i,l x̄i,l ≥ 0 and x̄i,l 6= 0,

∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 6∈ Ωi,l}. (28)

Second, the Schur complement is performed on (23)

with respect to the second row and column. The result is

multiplied from both sides by Q̄−1
i,l = P̄i,l , and (19) is used,

then we obtain

P̄i,l(Āi + B̄iK̄i,l)+(Āi + B̄iK̄i,l)
TP̄i,l + F̄T

i,lM
−1
i,l F̄i,l < 0,

∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 6∈ Ωi,l}, (29)

which guarantees that the derivative of Lyapunov function

on each state polyhedron is negative, i.e.

V̇i,l < 0, if F̄i,l x̄i,l ≥ 0 and x̄i,l 6= 0,

∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 6∈ Ωi,l}. (30)

Note that in the case for the subsystem containing the origin,

i.e. for the polyhedron with 0 ∈ Ωi,l , the LMIs in (22) and

(24) are applied to make sure a positive Lyapunov function

and a negative derivative of Lyapunov function on the region.

The same conditions are considered as in (21) and (23), but

only the row and column corresponding to the augmented

variable are removed here, to guarantee that the derivative

of the Lyapunov function V̇i,l would be zero only when the

state x is zero. The augmented Q̄i,l is defined for polyhedron

Ωi,l with the origin in (22) to make it comparable on the

boundary conditions.

At last, we perform the Schur complement on (25) for 3

times, each time with respect to the last row and column.

Similarly, we multiply the result from both sides by Q̄−1
i,l =

P̄i,l , and use (19), then we obtain

P̄i,l − P̄i′,l′ +λ−1
ii′,ll′

Ψ̄T
ii′,ll′Ψ̄ii′,ll′ + Φ̄T

ii′,ll′Θ
−1
ii′,ll′

Φ̄ii′,ll′ ≥ 0,

∀ i, i′ ∈ Λ, l ∈ Γi, l
′ ∈ Γi′ : Ωi,l ∩Ω

i′,l
′ 6= /0. (31)

Define the states on the boundary of polyhedra Ωi,l and Ωi′,l′

can be described by an equality and inequality as

Sii′,ll′ = {x̄ | Ψ̄ii′,ll′ x̄ = 0∧ Φ̄ii′,ll′ x̄ ≥ 0}. (32)

By multiplying the augmented states on both sides, and

applying Finsler’s Lemma [13], we have

Vi,l ≥Vi′,l′ , if x̄ ∈ Sii′,ll′ ,

∀ i, i′ ∈ Λ, l ∈ Γi, l
′ ∈ Γi′ : Ωi,l ∩Ω

i′,l
′ 6= /0. (33)

The same procedure is applied to (26), which yields

P̄i,l − P̄i′,l′ +λ−1
ii′,ll′

Ψ̄T
ii′,ll′Ψ̄ii′,ll′ + Φ̄T

ii′,ll′Θ
−1
ii′,ll′

Φ̄ii′,ll′ ≤ 0,

∀ i, i′ ∈ Λ, l ∈ Γi, l
′ ∈ Γi′ : Ωi,l ∩Ω

i′,l
′ 6= /0. (34)

By multiplying the augmented states on both sides, and

applying Finsler’s Lemma, we obtain

Vi,l ≤Vi′,l′ , if x̄ ∈ Sii′,ll′ ,

∀ i, i′ ∈ Λ, l ∈ Γi, l
′ ∈ Γi′ : Ωi,l ∩Ω

i′,l
′ 6= /0. (35)

According to (33) and (35), the values of the Lyapunov

functions are equal to each other (Vi,l =Vi′,l′) on the boundary

of neighboring polyhedra Ωi,l and Ωi′,l′ .

Consequently, by adopting the state feedback control laws

to all of the polyhedral regions, with

Ui,l = K̄i,l x̄ ∀ x̄ ∈ {x̄ | x ∈ Ωi,l ,0 6∈ Ωi,l , i ∈ Λ, l ∈ Γi}, (36)

and

Ui,l = Ki,lx ∀ x ∈ {x | x ∈ Ωi,l ,0 ∈ Ωi,l , i ∈ Λ, l ∈ Γi}, (37)

a positive decreasing overall Lyapunov function is guaran-

teed with continuous values over the boundaries between the

polyhedral regions and, therefore the SLS system in (12) can

be asymptotically stabilized. �

Considering (25) and (26) could be too conservative: it

may result in infeasible solutions to the inequalities (21)-

(26) due to the tight constraints that require the Lyapunov

functions to be equal on the boundaries of the state regions.

Therefore, the following theorem is proposed in which

constraint (25) and (26) are removed, and a relaxed condition

regarding the reduction of the Lyapunov functions on the

boundaries of the state polyhedra is considered instead.



[
Q̄i,l ⋆

F̄i,lQ̄i,l Ri,l

]

> 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 6∈ Ωi,l}, (21)

[
Qi,l ⋆

Fi,lQi,l Ri,l

]

> 0, Q̄i,l =

[
Qi,l ⋆

0 qi,l

]

> 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ∈ Ωi,l}, (22)

[

ĀiQ̄i,l + Q̄i,lĀi
T
+ B̄iNi,l +NT

i,lB̄i
T

⋆

F̄i,lQ̄i,l −Mi,l

]

< 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 6∈ Ωi,l}, (23)

[
AiQi,l +Qi,lA

T
i +BiNi,l +NT

i,lB
T
i ⋆

Fi,lQ̄i,l −Mi,l

]

< 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ∈ Ωi,l}, (24)







Q̄i,l ⋆ ⋆ ⋆

Q̄i,l Q̄i′,l′ ⋆ ⋆

Ψ̄ii′,ll′Q̄i,l 0 −λii′,ll′ ⋆

Φ̄ii′,ll′Q̄i,l 0 0 −Θii′,ll′






≥ 0, ∀ i, i′ ∈ Λ, l ∈ Γi, l

′ ∈ Γi′ : Ωi,l ∩Ω
i′,l

′ 6= /0 (25)







Q̄i′,l′ ⋆ ⋆ ⋆

Q̄i′,l′ Q̄i,l ⋆ ⋆

Ψ̄ii′,ll′Q̄i′,l′ 0 λii′,ll′ ⋆

Φ̄ii′,ll′Q̄i′,l′ 0 0 Θii′,ll′






≥ 0, ∀ i, i′ ∈ Λ, l ∈ Γi, l

′ ∈ Γi′ : Ωi,l ∩Ω
i′,l

′ 6= /0 (26)

Define xi,l is the point in the state polyhedron Ωi,l that is

closest to the origin, and di,l is the distance from xi,l to the

origin.

Theorem 2: Assume there exist positive definite matrices

Q̄i,l , Qi,l , Ri,l , and Mi,l , and matrix Θi,l and scalar λi,l that

satisfy (21)-(24), and the inequalities in (39) is satisfied, then

taking (17) and (18) as the state-based Lyapunov functions,

the state feedback control laws with gains given in (19) and

(20) asymptotically stabilize the SLS system in (12).

Proof : To prove the conclusion, we first prove that the

smallest Lyapunov function value on a state polyhedron is

on the limited boundaries (i.e. inner boundaries with the

neighboring polyhedra, not the unlimited boundary tending

to infinity) of the polyhedron without origin; then, based on

the inequality constraints on the boundaries of the polyhedra,

we prove that there exists a decreasing sequence of Lyapunov

functions converging to the origin, corresponding to the

sequence of state polyhedral switchings.

First, it is easy to prove that, except for the polyhedron

with origin, the smallest Lyapunov function on a state

polyhedron exists always on the limited boundary of the

polyhedron. Suppose the smallest Lyapunov function exists

inside polyhedron Ωi,l without origin, then there must be

a x∗i,l such that V̇i,l(x
∗
i,l) = 0, which contradicts with the

condition V̇i,l < 0 on Ωi,l . Moreover, if the smallest Lyapunov

function exists on the unlimited boundary of polyhedron Ωi,l ,

since V̇i,l < 0, then Vi,l(x
∗
i,l) |x∗i,l→∞< 0, which contradicts with

the condition Vi,l > 0.

Second, when the boundary condition (39) is satisfied, the

following inequalities are guaranteed:

P̄i,l − P̄i′,l′ +λ−1
ii′,ll′

Ψ̄T
ii′,ll′Ψ̄ii′,ll′ + Φ̄T

ii′,ll′Θ
−1
ii′,ll′

Φ̄ii′,ll′ > 0,

if di, j > di′, j′ , and Ωi,l ∩Ω
i′,l

′ 6= /0,

∀i, i′ ∈ Λ, l ∈ Γi, l
′ ∈ Γi′ , (40)

which ensures that Vi,l ≥Vi′,l′ for all the states x̄ ∈ Sii′,ll′ on

the boundary of Ωi,l and Ωi′,l′ .

Third, since the smallest Lyapunov function exists always

on the limited boundary of a polyhedron without origin,

we can suppose that the smallest Lyapunov function of

polyhedron Ωi,l appears on the boundary of Ωi,l and Ωi′,l′ ,

i.e. x∗i,l ∈ Ωi,l ∩Ω
i′,l

′ . In addition, since we have Vi,l(x) >

Vi′,l′(x) on Sii′,ll′ , then we have Vi,l(x
∗
i,l)>Vi′,l′(x) on Sii′,ll′ .

Moreover, it is obvious that Vi′,l′(x) ≥ Vi′,l′(x
∗
i′,l′

) on Ωi′,l′ .

Therefore, we obtain Vi,l(x
∗
i,l)>Vi′,l′(x

∗
i′,l′

).

Finally, if a feasible solution exists for Theorem 2, there

must exist a sequence of reducing polyhedra distances con-

necting all the polyhedra in Ω to form a path to the origin,

that satisfies

dp ≥ dp−1 ≥ ·· · ≥ d1 ≥ 0, (41)

with p as the number of polyhedron Ωi,l , ∀ i∈Λ, l ∈ Γi in Ω,

which is corresponding to a sequence of decreasing minimal

Lyapunov functions for all the polyhedra as

Vp(x
∗
p)≥Vp−1(x

∗
p−1)≥ ·· · ≥V1(x

∗
1)≥ 0, (42)

that guarantees to steer state asymptotically converging to the

origin, from an initial state x0 within any of the polyhedra

in Ω. �

C. Stabilizing Controller Design for SBLS

For the SBLS, when ei, j(x) = 0 on some of the boundaries

of the subregions, the controller in (9) becomes infinite,

which is not feasible. On the basis of the stabilizing state-

feedback control for the corresponding SLS, we need to

further check the feasibility on the boundaries of the SBLS

to make it stabilized. Therefore, according to Sec. III, we









Q̄i,l ⋆ ⋆ ⋆

Q̄i,l Q̄i′,l′ ⋆ ⋆

Ψ̄ii′,ll′Q̄i,l 0 −λii′,ll′ ⋆

Φ̄ii′,ll′Q̄i,l 0 0 −Θii′,ll′






> 0, if di, j > di′, j′ , and {Ωi,l ∩Ω

i′,l
′} 6= /0, ∀i, i′ ∈ Λ, l ∈ Γi, l

′ ∈ Γi′ (39)

need to adjust the division of the system into







S+i, j = {x|ei, j(x)≥ εi, j}

S0
i, j = {x||ei, j(x)| ≤ εi, j}

S−i, j = {x|ei, j(x)≤ εi, j},
, ∀i ∈ Λ, j ∈ Mi. (43)

where εi, j is a very small positive value. Based on the state

space partition in Sec. IV-A, the controller design for the

SBLS can be written as






u
j
i,l =

k
j
i,l

x

ei, j(x)
, ∀ x ∈ Ωi,l \S0

i, j : l 6= l′, l, l′ ∈ Γi,

j ∈ Mi, i ∈ Λ,

u
j

i,ll′
= 0, ∀ x ∈ (Ωi,l ∩S0

i, j)∪ (Ωi,l′ ∩S0
i, j) :

j ∈ Mi, l 6= l′, l, l′ ∈ Γi, i ∈ Λ,

(44)

where the state-feedback controllers are designed the same

as the controllers for the corresponding SLS within the state

polyhedra, however when ei, j(x) = 0, no control input can

influence the system states, thus only an autonomous system

exists on these boundaries of the bilinear subsystems. If the

movement of the state trajectory for the autonomous system

does not contradict with the converging sequence obtained in

Theorem 2 on these boundaries, then the SBLS is stabilized.

Theorem 3: For a SBLS as in (1), assume it has a corre-

sponding SLS with the form of (12), and the corresponding

SLS system can be stabilized by the state-feedback controller

designed according to Theorem 2, then the SBLS can be

asymptotically stabilized by the controller in (44), if along

the state-based switching sequence, at each switching from

polyhedron Ωi,l to Ωi,l′ for any bilinear subsystem i, when

u
j

i,ll′
= 0, ∀ j ∈ Mi, it holds

eAitx ∈ Ωi,l′ \S0
i, j, ∃ x ∈ (Ωi,l ∩S0

i, j)∪ (Ωi,l′ ∩S0
i, j), (45)

which means there exist initial states on the boundary of Ωi,l

and Ωi,l′ that can reach set Ωi,l′ \S0
i, j without control inputs.

Proof : It is obvious that along the state-based switching

sequence with asymptotically reduced Lyapunov functions

designed for the corresponding SLS, if for all the switching

boundaries with ei, j(x) = 0 inside a bilinear subsystem,

the system state can always transit from the previous state

polyhedron to the next state polyhedron along the switching

sequence to the origin even without control inputs on the

boundaries, then the SBLS is asymptotically stabilized. �

V. EXAMPLE

In this section, an example is presented to evaluate the

performance of the controller designed for a SBLS based on

Theorem 3.

In the example, we use the conditions presented in Theo-

rem 3 to design stabilized control laws. We directly use the

Fig. 1. Illustration for the overall Lyapunov function

SBLS model in (2) with the following vectors and matrices:

A1 =

[
−3 1

−5 −8

]

, b1,1 =

[
1

0

]

, c1,1 =

[
1

0

]

A2 =

[
−1 −3

2 −5

]

, b2,1 =

[
0

−1

]

, c2,1 =

[
0

−1

]

There are 2 bilinear subsystems separated by x1 − x2 = 0.

According to Sec. IV-A, the state space is partitioned into 4

regions with Λ = {1,2} and Γ1 = {1,2},Γ2 = {1,2}. Then,

the parameters for the obtained corresponding SLS with the

format in (12) are with the following parameters:

A1 =

[
−3 1

−5 −8

]

, B1 =

[
1

0

]

,

F1,1 =

[
1 0

−1 −1

]

, F̄1,2 =

[
−1 0 −1

−1 −1 0

]

,

Ψ̄11,12 =
[

1 0 1
]
, Φ̄11,12 =

[
0 −1 1

]
,

A2 =

[
−1 −3

2 −5

]

, B2 =

[
0

−1

]

,

F2,1 =

[
0 −1

1 1

]

, F̄2,2 =

[
0 1 −1

1 1 0

]

,

Ψ̄22,12 =
[

0 −1 1
]
, Φ̄22,12 =

[
1 0 1

]

Using the Yalmip toolbox (with SeDuMi solver) to solve

the feasibility problem (21)-(24) and (39), an decreasing

overall Lyapunov function is obtained as in Fig. 1, where the

Lyapunov functions reduce from polyhedron to polyhedron,

from far away to the vicinity of the origin. As a result, the

controllers are obtained as

U1,1 =
K1,1x

x1 +1
, U1,2 =

K̄1,2x̄

x1 +1
, U1,12 = 0,

U2,1 =
K2,1x

−x2 +1
, U1,2 =

K̄2,2x̄

−x2 +1
, U2,12 = 0,
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Fig. 2. The close-loop trajectories with initial states [2,2] and [−2,−2]
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Fig. 3. The close-loop trajectories with initial states [2,0.5] and [−0.5,−2]

which is able to steer state to the origin for different initial

conditions, as shown in Fig. 2 and 3.

VI. CONCLUSIONS

In practice, there are some complex nonlinear systems

that can be approximated by switching bilinear systems. De-

signing stabilizing controller for switching bilinear systems

makes it possible to better control these complex nonlinear

systems. In this paper, a method is proposed for designing

controllers that stabilize the state-based switching bilinear

systems. Based on the similarity between bilinear systems

and linear systems, the switching bilinear system is first

written into a corresponding switching linear system. Then,

state-feedback controllers are designed to asymptotically

stabilize the derived corresponding switching linear system

by using state-based multiple Lyapunov functions. A re-

laxed condition guaranteeing a decreasing overall Lyapunov

function allowing jumping on the switchings of the state

regions, is proved to be able to asymptotically stabilize the

corresponding switching linear system with more feasibility.

Finally, stabilizing controllers are derived for state-based

switching bilinear systems based on the results from their

corresponding switching linear systems.
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