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Abstract—In this paper, distributed optimization approaches
are developed for the planning of maintenance operations of
large-scale railway infrastructure formulated as a Mixed-Integer
Linear Programming (MILP) problem. The proposed planning
problem is solved using three different distributed optimization
schemes: Parallel Augmented Lagrangian Relaxation (PALR),
Alternating Direction Method of Multipliers (ADMM), and Dis-
tributed Robust Safe But Knowledgeable (DRSBK). The original
distributed algorithms are modified to handle the non-convex
nature of the optimization problem and to improve the solution
quality. The results of large-scale test instances show that DRSBK
can outperform the other distributed approaches, by providing
the closest-to-optimum solution while requiring the lowest com-
putation time.

Keywords—track maintenance planning, railway engineering,
mixed-integer programming, distributed optimization

I. INTRODUCTION

Railway infrastructure consists of different assets, compris-
ing rails, sleepers, fastenings, welds, ballast, and so forth, as
depicted in Figure 1. All assets are interconnected and work
together. Among them, the ballast is a vital component as it is
used to support the track level and to regulate the alignment
at the designated positions [1]. Due to regular usage of tracks,
the quality of ballast degrades over time. In order to control
the degradation, ballast must be maintained so that its per-
formance can always meet the technical and safety standards.
Maintenance actions for ballast, such as tamping, cleaning, or
renewal must be decided by infrastructure managers, including
the time, location, and type of intervention.

Maintenance schedules are not always easy to obtain
systematically. Cost and track performance should have to
be optimized subject to multiple constraints. In the literature,
decision support systems have been proposed to process dif-
ferent sources of railway track condition data and to determine
(near) optimal schedules. In [2], the planning of tamping
operations over a whole railway track is developed. The goal is
to minimize the total tamping costs. In [3], renewal operations
are considered alongside tamping. A maintenance model is

Fig. 1: Components of a railway track

used in [4] to take into account different construction works
in a large-scale railway infrastructure.

It is crucial for the real-life deployment of a decision
support system to acknowledge that a railway track consists
of a large number of sections. Moreover, in the case of ballast
maintenance, the railway industry requires decisions tailored
to specific locations, meaning that local track section models
should be less aggregated over space than current available
models in the literature, moving from models for 1km, 100m
towards 10m of track. If each track section has independent
dynamics, optimal railway track maintenance decision making
will result in a large-scale optimization problem with a huge
number of decision variables. In the literature, approaches
are mostly based on centralized optimization schemes, where
the information processing and computation of all decision
variables are conducted in a single centralized node [2, 3,
4, 5, 6]. From a computational perspective, the scheme is
unattractive when the number of track sections and thus also
the number of decision variables increase as a linear increase
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in the number of decision variables in such maintenance
optimization problems implies an exponential increase in the
required computation time [7].

In [8], a multi-level optimization scheme is proposed for
railway maintenance. The proposed approach is split over
high-level, middle-level, and low-level optimizers, allowing
to separate the computation process at different levels. A
hierarchical-based optimization for railway maintenance of
different components has also been proposed in [9]. However,
the hierarchical schemes are highly dependent on the primary
structure of their respective problems and thus they become
less flexible to solve large-scale problems.

In general, optimization of maintenance planning can be
formulated as a mixed-integer programming (MIP) problem. In
the literature, various Lagrangian-based distributed approaches
were successfully developed to solve nonlinear real-valued
problems and then applied to mixed-integer problems, such as
the augmented Lagrangian method and Alternating Direction
Method of Multipliers (ADMM). For instance, results in [10,
11] demonstrate their performance. In [12], a continuous relax-
ation technique for the binary variables is used. The resulting
solution yields a bound to the original objective function and
provides a warm start of the optimization of the mixed-integer
programming problem. Apart from Lagrangian-based methods,
an algorithm called Distributed Robust Safe But Knowledge-
able (DRSBK) [13] also has been applied to a mixed-integer
programming problem with hard non-convex coupling. This
algorithm utilizes a coupling tightening approach when solving
one subproblem. In this way, the couplings can be decomposed
and solved individually. The distributed approaches discussed
can be seen as heuristic methods to solve the MIP problem
because there is no guarantee for convergence toward the
global optimum [14].

In this paper, the main contribution is in applying dis-
tributed optimization approaches to address large-scale railway
track maintenance operation planning problems. The focus is
on reducing the computation time and increasing the scalability
of the optimization method to handle large-scale instances
while obtaining good solutions. To that end, two Lagrangian-
based decomposition approaches and a constraint tightening
distributed optimization approach (DRSBK) are implemented.
The centralized formulation and solution of the problem was
proposed in [3]. In this paper the focus is on the distributed
optimization approaches.

This paper is organized as follows. The maintenance op-
timization problem is firstly described in Section II. Section
III addresses the development of distributed optimization ap-
proaches. Then, two case studies are discussed in Section IV.
Finally, Section V provides the conclusions and future work
of this research.

II. PROBLEM DEFINITION

The formulation is based on the centralized approach
we proposed in [3]. Besides, some constraints are added to
the optimization problem to incorporate practical issues such
as maintenance closure times, budget limitations, and early
renewal prevention. When it is installed for the first time, the
ballast has sharp-edged stones that form a rigid foundation
for the rail. As the tracks are regularly used by rolling stock,

the ballast is misplaced gradually, and its condition deterio-
rates over time. In the railway industry, regular maintenance
interventions are performed to improve the track performance,
including tamping and renewal.

Tamping is performed to regulate the track alignment so
that the track performance is improved to a certain level.
When tamping is no longer effective, a renewal operation is
undertaken to completely replace the old ballast. The dynamics
of ballast degradation and the corresponding maintenance
options can be mathematically modeled as follows:

x1,i(k + 1) = a1,ix1,i(k) + f1,i(xi(k), ui(k))

x2,i(k + 1) = a2,ix2,i(k) + f2,i(xi(k), ui(k))
(1)

xi(k) =
[
x1,i(k) x2,i(k)

]T
where the state variables x1,i(k) and x2,i(k) are the track
performance level and the degradation memory at time step
k for track section i, respectively. Memory is a variable
considered to account for the fact that maintenance actions will
not be able to reach a track condition as in the case of newly
installed/replaced track. Moreover, a1,i is the track degradation
rate and a2,i is the memory evolution rate. The degradation
process is largely determined by these parameters and their
values can be different for each track section. The railway
track is a distributed parameter system that changes over time
and over space. The functions f1,i and f2,i are discontinuous
functions defined as:

f1,i(xi(k), ui(k)) =


0, if ui(k) = 1
−a1,ix1,i(k)+

a2,ix2,i(k) + α,
if ui(k) = 2

−a1,ix1,i(k) + hmin, if ui(k) = 3

and

f2,i(xi(k), ui(k)) =


0, if ui(k) = 1

α, if ui(k) = 2

−a2,ix2,i(k) + hmin, if ui(k) = 3

where α and hmin are the tamping offset and minimum
degradation threshold. This system has three types of inputs to
decide at each time step: no maintenance ui(k) = 1, tamping
ui(k) = 2, or renewal ui(k) = 3. Note that the model proposed
here has slight differences from the one in [3]. First, the
memory variable is set to have a rate a2,i. The memory is
assumed to evolve exponentially over time. This assumption
is different from [3], where a linear evolution of the memory
was considered.

Due to the use of integer inputs, this system is basically
non-linear. One way to incorporate integer maintenance de-
cisions into the degradation dynamics is by using the Mixed
Logical Dynamical (MLD) framework. Three options of main-
tenance input can be represented by two binary variables
δ1,i(k) and δ2,i(k) for renewal and tamping respectively at
track section i. The conversion table is given in Table I.

TABLE I: Conversion of system input and binary variables

ui(k) δ1,i(k) δ2,i(k)
1 0 0
2 0 1
3 1 0
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The option to perform both tamping and renewal at the
same time step k for the same section i is eliminated by using
the following constraint:

δ1,i(k) + δ2,i(k) ≤ 1 (2)

By taking into account the binary variables, the non-linear
model is then formulated as follows:

x1,i(k + 1) = a1,ix1,i(k) + δ1,i(k)(−a1,ix1,i(k) + hmin)+

δ2,i(k)(−a1,ix1,i(k) + a2,ix2,i(k) + α)

x2,i(k + 1) = a2,ix2,i(k) + δ2,i(k)α+ δ1,i(k)(−a2,ix2,i(k)+

hmin)

Auxiliary variables are introduced and the model for track
section i can then be written in the following linear matrix
form:[
x1,i(k + 1)
x2,i(k + 1)

]
=

[
a1,i 0
0 a2,i

] [
x1,i(k)
x2,i(k)

]
+

[
hmin α
hmin α

] [
δ1,i(k)
δ2,i(k)

]
+

[
−a1,i −a1,i a2,i 0
0 0 0 −a2,i

]
z1,i(k)
z2,i(k)
z3,i(k)
z4,i(k)


(3)

where the auxiliary variables are defined as:

z1,i(k) = δ1,i(k)x1,i(k) z2,i(k) = δ2,i(k)x1,i(k)

z3,i(k) = δ2,i(k)x2,i(k) z4,i(k) = δ1,i(k)x2,i(k)
(4)

and the auxiliary vector can be defined as zi(k) =[
z1,i(k) z2,i(k) z3,i(k) z4,i(k)

]T
. The conditions (4) can

be reformulated using the following four linear constraints
[15]:

zp,i(k) ≤ hmaxδl,i(k)

zp,i(k) ≥ hminδl,i(k)

zp,i(k) ≤ xj,i(k)− hmin(1− δl,i(k))

zp,i(k) ≥ xj,i(k)− hmax(1− δl,i(k))

(5)

for p ∈ {1, 2, 3, 4} and l ∈ {1, 2} where hmax is the maximum
degradation threshold. In this way, there will be sixteen linear
equations for each track section.

Let Vi(k) contain the following binary and auxiliary vari-
ables:

Vi(k) =
[
δ1,i(k) δ2,i(k) zi(k)

]T
.

Hence, the reformulated state space model is of the form:

xi(k + 1) = Aixi(k) +BiVi(k) (6)

where Ai and Bi are matrices that can be obtained from [3].

The initial condition and degradation rate for each track
section are defined according to various case studies to capture
the distributed dynamics of the railway tracks. The degradation
rate is assumed to be constant. The corresponding constraints
include the initial condition:

x1,i(0) = x1
i,0, x2,i(0) = x2

i,0 (7)

where x1
i,0 and x2

i,0 are the initial values taken from measure-
ments for state variable degradation level and offset memory,

respectively. Next, the following constraint is essential to en-
sure that the track performance is always within an acceptable
range:

hmin ≤ x1,i(k) ≤ hmax, hmin ≤ x2,i(k) ≤ hmax (8)

A renewal operation can be allowed only once the offset mem-
ory is considered high. This leads to the following conditional
constraint:

x2,i(k)− hr ≥ (ri − 1)hmax (9)
ri − δ1(k) ≥ 0 (10)

where ri and hr are the switching binary indicator at track
section i and prevention threshold for allowing renewal oper-
ation, respectively. Another constraint is that the maintenance
budget is limited [16]. The following constraints consider that
the number of interventions, both tamping and renewal, over
the prediction horizon is restricted by the thresholds:

T∑
k=1

δ2,i(k) ≤ gt (11)

T∑
k=1

δ1,i(k) ≤ gr (12)

where gt and gr are the maximum numbers of allowed tamping
and renewal operations over the prediction horizon T , respec-
tively.

The previously defined constraints can be categorized as
individual constraints, which only affect their respective track
section i. Alongside them, coupling constraints, which in-
fluence multiple track sections, exist. One of them involves
the maintenance closure time. In densely used railways, the
maintenance time slot is usually less than 7 hours and the
maintenance operations are only allowed during night time at
weekends [1]. The maximum allowed closure time is hence
denoted as tmax. This constraint applies for both tamping and
renewal, respectively. Based on [5], [8], this constraint can be
written as follows:

Σ
i∈P (k)

tt1δ2,i(k) + tt2(1− δ2,i(k)) + ttbItb,i + ttaIta,i ≤ tmax (13)

Σ
i∈P (k)

tr1δ1,i(k) + tr2(1− δ1,i(k)) + trbIrb,i + traIra,i ≤ tmax (14)

where tt1 and tt2 are maintenance operation time and traveling
time for the tamping machines to reach the track section i
from a certain position, respectively. The set P (k) is the set
of track sections that the machines (for tamping and renewal)
will maintain or pass over during maintenance operation at
time step k. The same representations also hold for tr1 and tr2
for renewal, with different time values. Moreover, it is assumed
that the machines move in one direction at each time step, from
a starting point toward an endpoint at the other end of the
track. Since constraints (13) and (14) affect the maintenance
schedule across multiple track sections, they can be considered
as coupling constraints.

The optimal state variables X̄ and decision variables V̄ for
all track sections over the prediction horizon can be obtained
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through minimizing the following objective function:

J(X̄, V̄ ) =

N∑
i=1

T∑
k=1

Qxi(k) + λRVi(k)

=

N∑
i=1

Jind(X̃i, Ṽi)

(15)

where Q and R are matrices with only non-negative entries,
and X̃i and Ṽi are state and input variables over the prediction
horizon for the track section i. The state variables xi(k) in
(15) can be substituted using the same technique as in [3],
leaving the Vi(k) as the only decision variable. Furthermore,
the optimization problem can be written in the following form:

minimize
V̄

J(V̄ ) =

N∑
i=1

Jind(Ṽi) (16)

subject to EV̄ ≤ gind
N∑
i=1

FiṼi ≤ gcoup
(17)

where E and gind are the parameter matrix and vector asso-
ciated with all individual constraints, respectively, while Fi

and gcoup are the parameter matrix and vector associated with
the coupling constraints. This explicit separation is useful for
the implementation of distributed approaches. Moreover, there
is no coupling variable between subproblems in the objec-
tive function. Besides, it is noteworthy that the optimization
problem can be categorized as NP-hard, Mixed-Integer Linear
Programming (MILP) due to the use of both continuous and
discrete variables.

III. DISTRIBUTED OPTIMIZATION

Three distributed optimization approaches are imple-
mented in this work: Parallel Augmented Lagrangian Relax-
ation (PALR), Alternating Direction Method of Multipliers
(ADMM), and Distributed Robust Safe But Knowledgeable
(DRSBK). Further explanations about each approach are given
below.

A. Parallel Augmented Lagrangian Relaxation (PALR)

In order to cope with the requirement for implementing
PALR, the centralized problem in (16) and (17) has to be
transformed into an augmented Lagrangian form [17]. Another
requirement is that any inequality coupling constraint in the
proposed problem must be converted into the equality form
[12]. Thus, a vector S̄ is defined as a slack variable for the
couplings, for both tamping and renewal, over the prediction
horizon. The augmented Lagrangian can be written as follows:

L(V̄ , S̄, γ) =

N∑
i=1

Jind(Ṽi) +

T∑
k=1

s(k)+

γ

 N∑
i=1

FiṼi +

T∑
k=1

Fss(k)− gcoup

+

ρ

2

∥∥∥∥∥∥
N∑
i=1

FiṼi +

T∑
k=1

Fss(k)− gcoup

∥∥∥∥∥∥
2

2

(18)

subject to EV̄ ≤ gind (19)

where Fi and Fs are the parameter matrices of the cou-
pling constraints for the input and slack variables. Moreover,
s(k) is a slack vector for the time step k and so S̄ =[
sT (1) ... sT (T )

]T
. Furthermore, the Lagrangian equation

for the dual problem can be written as:

q(γ) = inf
V̄ ,S̄

(
L(V̄ , S̄, γ)

)
(20)

Then, the dual variables can be updated by solving the max-
imization problem of the above function [18]. A subgradient
method is in practice used to perform the dual update.

In each iteration, all subproblems can be solved in paral-
lel. Once all subproblems have been solved, the results are
collected by a coordinator to be included in the update of the
dual variable. The presence of the coordinator also implies that
one dual variable γ is used to determine the common price for
all subproblems.

B. Alternating Direction Method of Multipliers (ADMM)

Basically, ADMM shares the augmented Lagrangian equa-
tion with PALR. The difference is in the way of decomposing
the quadratic terms of the Lagrangian equation. Instead of
linearizing these quadratic terms, ADMM uses the so-called
alternating technique. This technique enables the separation of
the quadratic terms to be determined individually by fixing
the decisions coming from the other subproblems [19]. This
also implies that the approach runs in sequence. In this
way, ADMM can exploit the latest decisions from the other
subproblems. The unscaled form of ADMM [14] is chosen for
the ease of implementation.

C. Modifications for the Lagrangian-based approaches

To deal with the proposed problem, some modifications
of the original PALR and ADMM approaches are required.
The non-convex non-smooth nature of coupling constraints
(13) and (14) is due to all the discrete decision variables
involved in the constraints. Recursive gradient-based methods
will be alternatingly jumping between these discrete points.
Consequently, the subgradient dual update iterations might be
unable to converge or even drive toward a feasible region.
One way to solve this problem is by applying a continuous
relaxation technique to the binary decision variables, such that
the MILP becomes a less complex Linear Programming (LP)
problem [10]. On top of that, the objective function value
obtained from solving the LP problem can be used as a lower
bound for the MILP optimization in the next step:

Jind(Ṽ
LP
i ) ≤ Jind(Ṽi)

where Ṽ LP
i is the LP form of the decision vector. The decision

variables can also be used as a warm start vector. This two-
step process is performed in each iteration, in both PALR and
ADMM.

Since the convergence of the primal residual cannot be
guaranteed, the implemented algorithm obtains the best ob-
jective value found during the whole iteration procedure.
Furthermore, to terminate the iterations, two requirements must
be fulfilled. First, the residual vector of couplings is checked
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in each iteration j to assess whether the feasibility conditions
have been reached [12]. The residual vector at iteration j, r(j),
is defined as follows:

r(j) = gcoup −

 N∑
i=1

FiṼi
(j)

+

T∑
k=1

Fss(k)
(j)

 .

The feasibility conditions are indicated by non-positive values
on the entire rows of the vector or r(j) ≤ 0. Therefore, the
maximum closure times over the prediction horizon are always
satisfied. Next, if the difference between the objective function
value of current iteration and the best found objective function
value is below the threshold, the iteration is terminated.

D. Distributed Robust Safe but Knowledgeable (DRSBK)

In [20], DRSBK is applied to the distributed optimization
of multi-vehicle or multi-agent coordination. This algorithm
is originally devoted to MILP problems. The concept is as
follows: instead of including the coupling constraints into
the Lagrangian form objective function, this algorithm applies
tightening resource allocation in the coupling constraints for
each subproblem. This can be illustrated by the following
expressions:

min
Ṽi

Jind(Ṽi) (21)

subject to (19)

FiṼi ≤ gcoup −
N−1∑

j=1,j ̸=i

Fj Ṽj
(22)

where Ṽi contains the decision variables for track section i
over the prediction horizon. The second set of constraints
in (22) are the couplings with reduced resources, which are
the remaining available maintenance closure times over the
prediction horizon. The reduction process can be done by
fixing the decisions from other subproblems. In this way, the
coupling constraints can be decoupled and so the problem
can be solved individually in a sequential and non-iterative
way. One advantage of assigning the couplings into individual
constraints is that the feasible solutions are much easier to
retrieve.

Moreover, unlike the coordinator in Lagrangian-based
methods, the task of the coordinator in DRSBK is only
checking the feasibility of the generated solution.

E. Random Sequence Generator and Stopping Criterion

The solution of the original non-iterative version of
DRSBK might get stuck in a local optimum or even become
infeasible without any chance of updating the solution. Hence,
the algorithm is modified in such a way that the sequence
of subproblems to be processed in each iteration is generated
randomly. If the output from the solver indicates that the result
from an iteration is not feasible, the sequence is generated
again randomly. The feasibility checking technique is different
from the Lagrangian-based algorithms, in the sense that it sums
up the individual feasible indicators given by all subproblems.
The result is feasible if the total indicator value is equal to the
number of sections. Moreover, the stopping criterion is similar
to that of the Lagrangian-based algorithms.

IV. CASE STUDIES

In this section, three distributed optimization approaches
(PALR, ADMM, and DRSBK) are compared and analyzed.
All simulations in this research are conducted on a general
purpose computer with an Intel Core-i5 processor and 8GB of
RAM. All the LP and MILP problems are solved by the Gurobi
optimizer 7.5, called from MATLAB R2017a. Moreover, the
following assumptions and general settings are considered:

• The time step for maintenance intervention is one
month. The control horizon corresponds to consecu-
tive six months, according to the Dutch railway case
study. The prediction horizon is set to be nine months.

• Parameters (initial condition and degradation rate)
for each track section can be different, according
to corresponding scenarios. One scenario typically
presents different parameters for each track section,
which is randomly generated as a Gaussian distribu-
tion over locations. In this way, the spatial correlation
between different track sections is included while also
considering that some track sections have faster rates
than others [21, 5]. Furthermore, different scenarios
are simulated by using non-uniform various Gaussian
settings, with µ ∈ [1.012, 1.050] and σ ∈ [0.07, 0.08].
Also, the degradation rate is assumed to be known and
constant within the simulation horizon.

• The model is deterministic, meaning that no stochas-
ticity or any perturbation from, for instance, reac-
tive maintenance is involved. Moreover, the trade-off
weight in (15) is chosen to be λ = 10.

• Maintenance machines and personnel are assumed to
be always available. The case study involves a single
railway track, consisting of a number of track sections.
Each track section length is 200 m. The layout is
depicted in Figure 2.

A. Experiment 1: Test on a 150 track sections case

In this experiment, each approach is tested on a case with
150 track sections. In this case, the number of variables is
considered large enough to make the centralized approach to
be no longer tractable. The comparison for each approach is
presented in Table II. The table presents the average values
from ten different scenarios.

Among the distributed approaches, DRSBK is the fastest.
This is due to the modification of the resource allocation
instead of the augmented Lagrangian. Additionally, its solu-
tions are closer to the global optimum compared to PALR and
ADMM. Consequently, the solutions given by the Lagrangian-
based algorithms are suboptimal as no convergence guarantee
to the solutions of the non-convex problem. The gap from
each approach with respect to the global optimum can be
further observed in Table II. Furthermore, DRSBK suggests
more tamping operations than the centralized approach. The
same number of renewal operations is suggested. On the other
hand, the two Lagrangian-based approaches suggest a higher
number of tamping and renewal operations than the central-
ized approach, which is not preferable from an economical
perspective.
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Fig. 2: Illustration of track sections

The evolution of one track degradation curve and the deci-
sion plots generated by all approaches are depicted in Figure
3. The first remark is that all approaches successfully maintain
the degradation level within the safety bounds. However, they
suggest different numbers of tamping operations at different
times. This can be seen by the decisions given by PALR
and ADMM, as they perform the first tamping earlier than in
the centralized approach. Moreover, DRSBK suggests in the
example the same maintenance decisions for the shown track
section as the centralized approach.

All distributed approaches have a significantly faster pro-
cessing time than the centralized approach. To conclude,
DRSBK outperforms PALR and ADMM, both from the main-
tenance performance operational case and computational point
of view.

B. Experiment 2: Gradual increase in the number of track
sections

The second experiment presents a comparison with a
gradual increase in the number of track sections. Once a com-
putation time reaches the threshold for the centralized approach
(in this experiment, it is 1100 seconds), the corresponding
approach is no longer considered.

The simulation results of the first criterion (computation
time) against the number of track sections are depicted in Fig-
ure 4a. It can be observed that the computation time increases
with the number of track sections. This issue is experienced
not only by the centralized approach but also the distributed
approaches. However, the curve of the centralized approach
is exponential, which can be expected for such an NP-hard
problem. The centralized approach stops the experiment earlier
than the other algorithms, at N = 150. PALR can continue to
perform computationally reasonably up to 400 track sections.
ADMM can prolong until around 900 track sections. ADMM
outperforms PALR possibly due to the use of the newest
instead of the previous iteration data. On top of that, DRSBK
can deal with up to 1300 track sections. Thus, DRSBK is the
most scalable approach.

Furthermore, Figure 4b indicates that the DRSBK solu-
tions are better compared to the other two Lagrangian-based
approaches solutions with increasing number of sections test.

V. CONCLUSIONS

Three different distributed optimization approaches have
been tested for large-scale railway track maintenance oper-
ations planning. The first two distributed optimization ap-
proaches work based on Lagrangian duality theory: Parallel
Augmented Lagrangian Relaxation (PALR) and Alternating
Direction Method of Multipliers (ADMM). To drive the itera-
tions toward feasible regions, PALR and ADMM are modified

using a two-step process (LP and MILP). Alongside the
Lagrangian-based approaches, Distributed Robust Safe But
Knowledgeable (DRSBK) is implemented. To avoid infeasible
solutions and to obtain more optimal solutions while maintain-
ing simplicity, the algorithm is extended to be iterative, and
the sequence of processed subproblems is generated randomly.

In the case studies, it is shown that the distributed optimiza-
tion approaches can solve the proposed problem quicker than
the centralized approach with the number of track sections
above 150. DRSBK is the fastest approach, and it is also
able to generate the closest solution to the centralized one.
Furthermore, ADMM is quicker than PALR.

As part of further research, the use of real-life data to
include stochastic degradation behavior into the model can also
be utilized to consider uncertainties in railway maintenance
operations. Additionally, the current scheme can be extended
into a distributed hierarchical one to facilitate different time
scales in maintenance planning.

REFERENCES

[1] C. Esveld. Modern Railway Track. MRT-Productions,
2001.

[2] M. Wen, R. Li, and K.B. Salling. “Optimization of pre-
ventive condition-based tamping for railway tracks”. Eu-
ropean Journal of Operational Research 252.2 (2016),
pp. 455–465.
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TABLE II: Performance comparison for N = 150

Parameter / algorithm Centralized PALR ADMM DRSBK
Total performance 36200.18 54137.37 45174 36205.13
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Number of tamping operations 493.00 688.00 946.00 493.5
Number of renewal operations 43.5 94.78 58.30 43.5
Track performance 18220.18 18824.03 15300.91 18220.13
Normalized performance - -52.00% -29.00% -0.02%
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