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Distributed constraint optimization for
autonomous multi AUV mine counter-measures

Jeroen Fransmana, Joris Sijsa, Henry Dolb, Erik Theunissenc, Bart De Schuttera

Abstract— In this paper, Mine Counter-Measures (MCM)
operations with multiple cooperative Autonomous Underwater
Vehicles (AUVs) are examined within the Distributed Constraint
optimization Problem (DCOP) framework. The goal of an
MCM-operation is to search for mines and mine-like objects
within a predetermined area so that ships can pass the area
through a safe transit corridor. Performance metrics, such as
the expected time of completion and the level of confidence that
all mine-like objects within the area have been detected, are
used to quantify the utility of the operation. The AUVs coordi-
nate their individual search segments in a distributed manner
in order to maximize the global utility. The segmentation is
optimized by the Compression-DPOP (C-DPOP) algorithm,
which allows explicit reasoning by the AUVs about their actions
based on the performance metrics. After initial segmentation
of the mine threat area, subsequent optimizations are triggered
by the AUVs based on the variations in sonar performance.
The performance of the C-DPOP algorithm is compared to
a static segmentation approach and validated using the high-
fidelity Unmanned Underwater Vehicle (UUV) simulation envi-
ronment based on the Gazebo simulator.

Index Terms— AUV, DCOP, C-DPOP, Gazebo, UUV-
simulator, underwater search, mine counter-measures, MCM

I. INTRODUCTION

The operational objective of a naval mine mission is a
reduction of the risk that ships hit a mine while transiting
through a particular body of water. Such risk reduction is
achieved by conducting a Mine Counter-Measures (MCM)
operation. An overview of a multi Autonomous Underwater
Vehicle (AUV) MCM operation can be seen in Figure 1.

As defined in [2], the MCM operation consists of several
sub-tasks:

1) Detection: detect mine-like objects as mine-like echos
(MILECs) by scanning the MCM area with a larger
sonar range yet a lower resolution;

2) Classification: revisiting MILECs and scanning with a
higher resolution yet lower sonar range to classify them
as a mine-like contact (MILCO) or a false positive
(NON MILCO);

3) Identification: revisiting MILCOs to acquire optical
images that are assessed by a human operator to
identify the MILCO as a mine or a false positive;
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Fig. 1. An overview of a multiple Autonomous Underwater Vehicles
(AUVs) Mine Counter-Measures (MCM) operation, adapted1 from [1].
The goal is to clear the transit corridor for shipping traffic by detecting all
mines within the operation area. The AUVs are launched from a support
vessel and afterwards they traverse lawnmower search paths.

4) Disposal: revisiting all mines to perform disposal.
In this work, the focus is on the segmentation of the

MCM area within the detection task for multiple cooper-
ating AUVs. In the near future, the detection task will be
performed by multiple AUVs in an autonomous manner [3].
The segmentation will be performed based on nominal sonar
performance indicators such as the effective sonar range [4].
After the segments are scanned by the AUVs, the results are
assessed at the support vessel [5]. In case of unsatisfactory
results due to variations in the achieved sonar performance,
the operation could be extended to cover the regions that
are not adequately scanned [6]. This process increases the
total operation time considerably. In order to reduce the
required time, the search segments could be adapted during
the operation through feedback from the AUVs.

There exists a wide range of related work involving adap-
tive search for both AUVs and Unmanned Surface Vessels
(USVs). Most works focus on the coverage path planning
problem in which a path needs to be optimally planned for
a sensor to cover a certain area [7]. In the approach of [8],
the search area is discretized based on “equal information
gain” of the discrete segments. USVs are assigned to explore
segments yielding the least amount of cost for the individual
USVs. A similar approach is taken in [9] with multiple AUVs
for optimal resource allocation based on motion costs, uncer-
tainty reduction, and optimization over secondary objectives
such as communication bandwidth and energy consumption.
These approaches require the discretization of the search
area. A common problem of discretization is the exponential



memory requirement when the total survey area increases
[10]. This problem is alleviated in [11] and [12] through
approximation and a dynamic programming [13] approach
based on information gain. These centralized optimization
approaches, where the support vessel optimizes the segmen-
tation of all AUVs in-situ, are considered infeasible due
to communication constraints on both range and bandwidth
[14]. Communication between AUVs is considered viable,
since during the operation their distance is not as extensive.
Furthermore, the AUVs could form a communication net-
work in which messages can be passed between AUVs that
have no direct connection. However, a centralized approach,
where an AUV receives all information and optimizes the
actions of all AUVs, is considered impractical due to the
low processing power of the AUVs.

For these reasons, in this work, the coverage path plan-
ning is modeled and solved in a distributed manner by
the Compression-DPOP (C-DPOP) algorithm [15]. The dis-
tributed approach allows for in-situ adaption of the search
segments through inter-AUV communication without dis-
cretization of the search area. The C-DPOP algorithm is
applied to the MCM problem modeled within the Distributed
Constraint Optimization Problem (DCOP) framework.

The remainder of this paper is outlined as follows. Section
II defines the MCM detection task problem as a coverage
path planning problem. Afterwards, the DCOP framework
and the C-DPOP algorithm are detailed and the detection
problem is modeled as a DCOP in Section III. In Section IV,
the performance of the C-DPOP algorithm is compared to a
static approach within a high fidelity simulation environment.
Finally, the results are discussed in Section V.

II. PROBLEM STATEMENT

The detection task is based on two local performance
metrics of the AUVs:

1) Expected time of Completion (EoC): expected time for
completing the search segment of the agent;

2) Probability of Detection (PoD): the level of confidence
that all mine-like objects within the segment have been
detected as a mine-like echo (MILEC)

The task is completed when the PoD of the search area
is higher than the required PoD (P req) within a maximum
operation time tmax, which are both set by an operator.
The MCM search area is modeled as a monotone rectilinear
polygon, s = (x, y, w, h), where x, y indicate the center of
the area and w, h denotes the width and height, respectively.
The scan segment of AUV i is defined similarly to the MCM
area as si = (xi, yi, wi, hi). The combined segments of all
AUVs is denoted as S =

⋃
i=1,...,n si, where n is the number

of AUVs. An example of segmentation for two and three
AUVs can be seen in Figure 2. The total operation time
defined as T = max

i=1,...,n
Ti, where Ti is the EoC of AUV i.

The AUVs are equipped with a pair of Side Scan Sonars
(SSS) (mounted on the port and starboard side) in order
to scan according to a lawnmower pattern. This pattern is
optimal for rectangular search areas where the turn radius

(a) Segmentation example for two AUVs.

(b) Segmentation example for three AUVs.

Fig. 2. Initial segmentation of an MCM search area. The covered segments
of the AUVs are presented as colored areas. The lawnmower patterns of the
AUVs are shown as contrasting colored lines starting from and finishing in
a colored circle. These circles indicate the initial and rendezvous position,
respectively. The green and red circles mark the start and finish of the
lawnmower pattern.

of the AUV (d turn
i ) is smaller than the distance between

the legs, which is determined by the sonar range (ri) [16].
For AUVs the sonar range is typically several factors higher
than the turn radius, therefore only lawnmower patterns are
considered in this work.

The sonar range is defined as the distance over which the
sonar achieves a particular PoD. It is based on the properties
of the SSS, the environment, and the height over the seabed
during scanning. Sailing close to the seabed results in a short
sonar range and a high PoD since the Signal-to-Noise Ratio
(SNR) of the sonar will be high. An increase in height will
result in an increase of the sonar range, but consequently
decreases the SNR and thereby the PoD. Based on this trade-
off the height over the seabed is fixed during scanning based
on the required PoD for the MCM search area. Additional
AUV properties which are taken into account are the velocity
during travel (v transit

i ), and the velocity during scanning
(v scan

i ).
The EoC for agent i (Ti) is a function of the scan segment

si and the transit time based on the initial position of the
agent,

Ti = t initial
i + t scan

i + t return
i

where t initial
i is the initial transit time towards the scan

segment, t scan
i is the time spend scanning, and t return

i is the
rendezvous time from the scan segment back to the initial



position.
The transit times depend on the Euclidean distance d(·, ·)

and the transit velocity of the AUV as,

t initial
i = d(p initial

i , p start
i )/v transit

i

t return
i = d(p initial

i , p finish
i )/v transit

i

where p initial
i = (x initial

i , y initial
i ), p start

i = (xstart
i , y start

i ), and
p finish
i = (x finish

i , y finish
i ) indicate the position of the initial

location, start of the first leg, and the finish of the final leg,
respectively. Note that, since the depth is considered as a
constant, it is neglected from the notations.

The time spent scanning (t scan
i ) depends on the total length

of the legs and the number of turns within the lawnmower
pattern. In order to minimize the number of turns, the longest
side of the scan segment (d long

i = max(wi, hi)) is taken
as the scan direction of the agent. As a result, the shortest
side (d short

i = min(wi, hi)) is used to determine the number
of required legs li within the lawnmower pattern according
to the sonar range of the agent. The size of the turns is
determined by the turn radius of the AUV (d turn

i ) and the
distance between the legs (d leg

i ). Consequently, the time
spent scanning is defined as

t scan
i =

lid
long
i

v scan
i

+

(
2d turn

i + d leg
i

)
(li − 1)

v scan
i

li =

⌈
d short
i

2ri

⌉
d leg
i =

d short
i

li

where ⌈·⌉ denotes the ceiling function. Note that the number
of legs li depends on the combined range of the two SSS
systems of the AUV.

The global goal function G is defined as the utility relation
between areas covered with sufficient PoD and the EoC,
formalized as a rectangular Gaussian distribution,

G = exp

(
−
(
(R coverage − 1)2

(σ coverage)2

)f coverage

−
(
(R time)2

(σ time)2

)f time)

R coverage = λ(S)/λ(s), R time = T/tmax

where λ(·) denotes the Lebesgue measure [17] indicating
the area of a segment, R coverage is the ratio of the MCM
area that is covered to the required PoD, R time is the
time ratio of the required time over the maximum allowed
time t max. An operator can tune the relative significance
between coverage and required time through the scale factors
σ coverage, σ time, f coverage, and f time. Using these factors, the
relative importance can be indicated between the coverage
and time ratio, as well as the slopes of the utility function
with respect to coverage and required time. A graphical
overview of the global utility is depicted in Figure 3.

The global goal function, as described above, is iteratively
optimized throughout the detection operation. After the ini-
tial optimization, the AUVs start to traverse their lawnmower

Fig. 3. An overview of the global utility function that is based on the
ratio of the area of the covered segment R coverage and the required time
ratio R time with σ coverage = 0.25, σ time = 0.75, f coverage = 0.5, and
f time = 50. Note the steep drop at time ratio equal to 1, indicating that
(almost) no utility is gained when the required time exceeds the maximum
available time.

patterns and, after every leg, their achieved sonar range
is assessed. Due to seabed conditions and environmental
conditions such as current, the achieved sonar range could
deviate from their nominal sonar range. If an AUV detects
a variation from the nominal sonar range ri, it sends a
trigger to all AUVs to reinitialize the optimization. If there
is no variation, it will continue to traverse the remaining
legs without informing the other AUVs. This decreases the
required level of communication, which is beneficial for
communication-constrained underwater search operations.

When the optimization is triggered, the remaining MCM
area is updated by subtracting the segments that have been
sufficiently covered. After the solution is found, the AUVs
resume their search based on the updated solution. This pro-
cess is repeated every time an AUV triggers the optimization.

III. DISTRIBUTED CONSTRAINT OPTIMIZATION
PROBLEM

In this work, the MCM detection operation is modeled as a
Distributed Constraint Optimization Problem (DCOP), which
is a generalization of a Distributed Constraint Satisfaction
Problem (DCSP) [18].

A DCOP is defined by a tuple < A,X,D,F,G > [19]
where;

A is a set of agents
X is a set of decision variables
D is a set of domains for all variables
F is a set of utility functions
G is the global objective function

A DCOP is distributed in the sense that agents only interact
with agents that are coupled through their variables by a
utility function. This allows for the modeling of the problem
as a constraint or function graph, thereby deconstructing
the problem into an ordered pseudo-tree, making it possible
to optimize various subproblems in parallel, such as the
calculation of the EoC for all the AUVs within the MCM



detection task. The nodes of the graph represent the local
actions of the AUVs while edges represent a constraint
or utility relation between the actions. An example of a

Fig. 4. An plot of the conversion of a DCOP problem as a constraint graph
into a pseudo-tree. The nodes represent variables or actions that should be
optimized. The edges represent a constraint or utility relation between the
nodes. Indirect or pseudo-connections are illustrated as dotted edges.

conversion from a constraint graph into a pseudo-tree can
be seen in Figure 4.

This deconstruction makes the DCOP framework espe-
cially suitable for modeling multi-AUV operations, because
the global performance of the AUVs can be described by
the interactions of their local actions. For example, the total
scanned area is the union of all the segments scanned by the
agents.

The goal of a DCOP is to optimize the global utility
function by assigning values for all variables in a distributed
manner. The complete allocation of all variables is denoted
as X =

⋃n
i=1 Xi. The variables can be assigned a value

from within a bounded domain, denoted as the action space
D =

⋃n
i=1 Di. Within the detection task, this indicates

the allocation of segments to the AUVs within the MCM
search area. AUVs coordinate their actions by exchanging
messages about the utility of the interactions between their
variables. The cost (in time) and benefit (in coverage) of the
segmentation are expressed in terms of utility towards the
global goal.

These variables are optimized in situ in collaboration
with all other AUVs by the Compression-DPOP (C-DPOP)
algorithm [15]. C-DPOP is based on the Distributed Pseudo-
Tree Optimization Procedure (DPOP) [20], which is a DCOP
solver that uses dynamic programming elements to com-
municate accumulated information about the global utility.
DPOP requires a fixed number of communication steps
during optimization, which is beneficial for MCM since
underwater communication is subject to severe constraints.

A drawback is that the message size increases expo-
nentially for large domains. This drawback is especially
unfavorable for variables with continuous domains (D cont)
that are discretized to a high resolution, for example, the
subdivision of the search area into a grid of predefined
squares.

C-DPOP eliminates this drawback by iteratively creating
discrete domains (D disc) by sampling the continuous do-
mains. At every iteration DPOP is applied to the discrete
domains and the (local) optimum is used to compress the
continuous domains around this optimum. The compression
decreases the size of the continuous domains, which results

DPOPUniform 
Sampling

Local 
Optimum

Compress cont. 
domain

 

 

Initialize Resolution reached

Fig. 5. An overview of the C-DCOP algorithm, where the discrete domains
of AUV i, D disc

i (t) at time t are iteratively created from the continuous
domains D cont

i (t). After the optimization the (locally) optimally assigned
values of AUV i (X∗

i ) are used to compress the continuous domains. The
algorithm terminates when the resolution of all discrete domains is smaller
than a predefined threshold.

in discrete domains of increasing resolution after every
iteration. The algorithm terminates when the resolution of all
discretized domains is smaller than a predefined threshold.
An overview of the C-DPOP algorithm is given in Figure 5.

The MCM search operation is represented within the
DCOP framework as

A = (a1, . . . , an)

X = (X1, . . . , Xn)

Xi = {si}
D =

(
D cont

1 , . . . , D cont
n

)
D cont

i = {s}
F = {T1, . . . , Tn, λ(s1), . . . , λ(sn)}

G = exp

(
−
(
(R coverage − 1)2

(σ coverage)2

)f coverage

−
(
(R time)2

(σ time)2

)f time)
Note that the domains of the search segments are bounded
by the MCM search area s = (x, y, w, h).

IV. SIMULATION ENVIRONMENT

The performance of the C-DPOP algorithm for the MCM
operations is validated through the high fidelity Unmanned
Underwater Vehicle (UUV) simulation environment [21].
The simulator is based on the Gazebo simulator [22] and
Robotic Operating System (ROS) [23] and includes hydro-
dynamic, (underwater) current, underwater sensor functions,
and various AUV types. In this work, the AUVs are modeled
after the A9-S of the ECA Group [24] as it is designed for
seabed imagery. Figure 6 shows a rendering of the A9-S
AUV as modeled within the UUV simulator [25].

Within the simulation environment, all AUVs are consid-
ered to be identical and therefore share all parameters such
as maximum scan and transit velocities, sonar range, and
turn radius. The parameters are chosen in accordance with
the operational specification of the ECA A9 AUV [24].
The required PoD is set such that the sonar range is equal to
150 m, as defined within the specifications of the ECA A9.
The maximum time is set corresponding to the time a single
AUV would require to cover the entire MCM search area.



Fig. 6. A rendering of the A9-S AUV of the ECA Group [24] as modeled
within the UUV simulator [25].

Two approaches are compared in order to assess the
performance of the dynamic application of the C-DPOP
algorithm. The first is a static approach in which the C-DPOP
algorithm is executed once (at the start of the operation).
The resulting segmentation is not updated during the op-
eration. The second is a dynamic approach in which the
segmentation is updated based on the triggers of the AUVs.

A. Simulation results

The performance of C-DPOP is assessed and compared
to a static segmentation for multiple AUVs based on the
nominal sonar performance. The performance is measured
according to the global utility function based on the achieved
covered area and required operation time. Two scenarios are
evaluated in which the sonar range is less than nominal.
The first scenario involves two AUVs, of which the sonar
performance decreases gradually, and the MCM area covers
2 km × 1 km. The second scenario involves three AUVs, of
which one has severely decreased sonar performance, and the
MCM area covers 4 km × 4 km. In both scenarios the AUVs
start at the rendezvous location to mimic the deployment by
a support vessel.

In the first scenario, the reduction in sonar performance
is not compensated within the static approach, which results
in a loss of coverage over the entire width of the MCM
area. By incorporating the feedback from the AUVs about
the performance decrease, the search segments can be opti-
mized within the dynamic approach based on the remaining
available time to maximize the global utility.

Figure 7 shows the covered segments and trajectories of
both approaches. The results in terms of the global utility,
the time and coverage ratios are shown in Table I.

TABLE I
RESULTS OF THE FIRST SCENARIO.

Approach time ratio coverage ratio global utility

Static 0.58 0.95 0.93
Dynamic 0.83 0.98 0.98

In the second scenario, similar results are achieved for
the dynamic approach as the performance loss of one AUV
is compensated by the others. In the static approach, the
lack of additional optimization leaves large segments not

(a) Results of the static approach.

(b) Results of the dynamic C-DPOP algorithm.

Fig. 7. Example of the results for the first scenario of the static and dynamic
C-DPOP algorithm. The MCM area is indicated by a white rectangle, the
covered segments are color coded based on the individual AUVs. Within
the segments, the lawnmower pattern is shown as lines with contrasting
colors. As can be seen in (a), the static approach leaves several sections
uncovered, while in (b) most of the area is covered by adjusting the search
pattern. Note that during turns the scanned areas are incomplete, indicating
decreased probability of detection.

covered, which increases the risk for undetected mines within
that area. Figure 8 shows the final results for the static and
dynamic approach in terms of the coverage segments and
the trajectories of the AUVs. The results are summarized in
Table II.

TABLE II
RESULTS OF THE SECOND SCENARIO.

Approach time ratio coverage ratio global utility

Static 0.88 0.87 0.83
Dynamic 0.95 0.99 0.99

B. Discussion

In both scenarios, the dynamic C-DPOP approach achieves
a higher global utility. The utility increase depends on the
size of the sonar performance loss during operation and the
maximum available time of the operation. When the perfor-
mance loss is moderate as in the first scenario, only slight
gains can be achieved. However, in the second scenario,
considerable performance loss can be overcome when the
maximum operational time allows for additional legs within
the search segments. When the available remaining time
is limited, this improvement is reduced, since no time is
available for additional searches.

The results of the two scenarios can be extended towards
larger MCM areas without additional computational re-
sources since no discretization of the MCM area is required.



(a) Results of the static approach. (b) Results of the dynamic C-DPOP algorithm.

Fig. 8. Example of the results for the second scenario of the static and dynamic C-DPOP algorithm. The MCM area is indicated by a white rectangle, the
covered segments are color coded based on the individual AUVs. Within the segments, the lawnmower pattern is shown as lines with contrasting colors.
As can be seen in (a), the sonar range of the AUV in the bottom left corner is severely decreased. In (b), the result of the dynamic optimization can be
seen as the AUV decreases the distance between the legs and the other AUVs adjust their trajectories. Note that the dynamic approach covered several
locations multiple times due to the change in orientation of the scan segments.

Furthermore, due to the assumption that the longest edge of
the MCM area is used as scan direction, these results are
analogous to MCM areas with other height to width ratios.
For example, the segmentation for an MCM area of 2 km ×
4 km is similar to the segmentation for an area of 4 km ×
2 km. This assumption does not hold in practice for every
height to width ratio, due to several aspects. Two of the
most important aspects are the environmental properties and
the positional uncertainty of the AUVs. Important environ-
mental properties are underwater currents and bathymetry
since both can severely deteriorate the sonar performance.
Positional uncertainty is defined as the error between the
actual and estimated position. The source of this uncertainty
is due to the attenuation of Global Positioning System (GPS)
signals underwater. AUVs are required to estimate their
position during scanning instead of interpolating from the
GPS signals. The estimation is typically performed through
the use of inertial sensors, however, the position error for
this estimation method is unbounded [26]. Therefore, the
maximum leg length is often restricted based on the growth
of the position error. In order to cope with this increasing
error, the AUVs interrupt the scanning to acquire a GPS-fix
by surfacing when the error crosses a (predefined) threshold.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a method to segment a search area
of multiple cooperative Autonomous Underwater Vehicles
(AUVs) in a distributed manner based on global performance
metrics set by an operator. The application of the Distributed
Constraint Optimization Problem (DCOP) framework is ex-
tended towards autonomous operations of multiple AUVs
without the need for discretization of the Mine Counter-

Measures (MCM) area, which allows for flexible modeling
and optimization. The optimization of scan segments of the
AUVs is initially performed based on nominal sonar perfor-
mance and repeated when an AUV triggers a re-optimization
during the operation. The performance of the C-DPOP algo-
rithm is compared against static segmentation, which is the
defacto standard for current multi-AUV operations. Results
show higher achieved utility for the dynamic approach based
on the Compression-DPOP (C-DPOP) algorithm.

Future work includes adding the position uncertainty of
the AUVs during the operation as this results in significant
operational limitations in practice [26]. Based on the position
uncertainty the scanning trajectories can be adjusted such
that the risk of collision between AUVs is minimized.
Additionally, in order to reduce the position uncertainty the
implementation of cooperative simultaneous localization and
mapping (SLAM) [27] methods will be investigated.

REFERENCES

[1] M. Cramer, “Understanding information uncertainty within the context
of a net-centric data model: A mine warfare example,” Tech. Rep.,
Mine Warfare Environmental Decision Aids Library (MEDAL), 2008.

[2] F. Florin, F. van Zeebroeck, I. Quidu, and N. Le Bouffant, “Classifi-
cation performances of Mine Hunting Sonar: theory practical results
and operational applications,” Undersea Defence Technology (UDT)
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