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Abstract

A novel partitioning approach for linear switching large-scale systems is presented. We assume that the
modes of the switching system are unknown a priori but can be detected. We propose an online partitioning
scheme that can partition the system when the mode switches, thus adapting the partition to the mode.
Moreover, after the system has been partitioned, we apply a decentralized state-feedback control scheme
to stabilize the system. We also apply a dwell time stability scheme to prove that the closed-loop system
remains stable even after both the mode and partition changes. The proposed approach is illustrated by
means of an automatic generation control problem related to frequency deviation regulation in a large-scale
power network.

Keywords: System partitioning, large-scale systems, decentralized control, switching systems, automatic
generation control

1. Introduction

Large-scale systems (LSSs) are systems in which the number of compositional elements are both large
in number and geographically widespread [1–6]. Examples include water networks [2], traffic networks [3],
and power networks [4]. Moreover, LSSs can also be time-varying, in the sense that some characteristics or
parameters, such as their topologies, could be not constant along time.

Due to the large amount of data and elements in the network, control of LSSs is not a trivial task [7].
Although in small-sized plants a centralized controller can make the closed-loop system achieve a suitable
performance, in LSSs a centralized controller would have to face many issues related to the amount of
data and distance between elements [8, 9]. One of the problems is related to the communication between
elements of the network, since the distance between them might cause problems such as delays and packet
loss [7, 9, 10]. This fact holds in cases in which a centralized controller would have to collect information
about the states from many or all the other nodes, e.g., state feedback control or model predictive control.
Moreover, for some optimization-based control strategies, the computational complexity arising from the
centralized control of the LSS might make the problem too difficult to solve in a limited amount of time.
An idea to overcome these problems is to partition the system into subsystems and apply a non-centralized
controller, which can be either decentralized or distributed. In both cases, some problems of the centralized
scheme could be overcome, since the control input is computed and applied locally. In decentralized control
approaches, controllers do not exchange information amongst themselves and they apply a control input
that does not take directly into account the coupling between different subsystems [8, 11, 12]. As one could
expect, this strategy works better when the coupling between subsystems is weak. On the other hand,
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distributed control strategies consider that a communication infrastructure is present in the system and
thus the different subsystems can exchange information amongst themselves [9, 10]. This information can
be either related to the local state, or the local control action, or to both. Therefore, the local controllers
can include extra information into their control problem. In both cases, the communication flow and the
computational complexity per controller are reduced, since the LSS control problem is split into smaller
control problems among several subsystems.

Prior to applying a non-centralized controller, partitioning or decomposition of the LSS into smaller
subsystems is required. Some early works that propose an automatic system decomposition approach were
published in the 1980s, e.g., [13, 14]. In these articles, the system is described as a graph and the partitioning
objective is to minimize coupling between the resulting subsystems. Moreover, recent papers, e.g. [15–18]
consider system decomposition as a graph partitioning problem. In this regards, the methods that are
proposed in the aforementioned papers, can be classified into three broad classes: global methods, which take
a graph as their input and produce a partition, e.g., spectral bisection methods [15, 16]; local improvement
methods, which refine an initial partition [17]; and multi-step methods, which combine a simple global
method and a local improvement method [18] in order to obtain a compromise between the computational
burden and the quality of the solution.

However, to the best of our knowledge, little or no interest has been given to partitioning of time-varying
systems. In the literature, the partitioning procedures are considered as an offline task that is carried out
only once, before applying a non-centralized control approach. This fact could lead however to instability
when the system under control is time-varying. Indeed, as discussed later in Example 1, since a change in
the dynamics implies, in general, a change in the couplings between subsystems, a control scheme based on a
previous description of the system might not be able to stabilize the system under control after that change.

We consider linear switching LSSs in this paper. We assume that, at certain moments in time, the
description of the current system changes and the dynamics in the state space are described by a new (A,B)
pair. Note that since we assume that we cannot control the switching sequence of the system towards
different modes, we have a switching system, whereas in switched systems one can arbitrarily choose the
switching sequence [19]. When studying stability of switching systems, one has to take directly into account
the switchings of the system and guaranteeing stability of each mode is not enough to guarantee stability
of the overall system [20, 21]. Indeed, as shown in [22], switching between two asymptotically stable modes
might result in a divergent trajectory; on the other hand, switching between two unstable modes can result
in a stabilizing trajectory. Many results have been proposed for proving stability of switching systems [20].
In the current paper, we focus in particular on discrete-time switching systems, and therefore we build upon
the results from [23, 24], which are based on dwell time, i.e., the amount of time during which each mode
is active. These results pertain to switching systems in which the switchings are not so frequent and thus
they are called slowly switching systems [20]. Note that [20] reviews stability and stabilization of switching
systems. More recent results and related work on this topic include [25–27]. The work reported in [25]
discusses stability for continuous-time positive systems with minimum dwell-time constraint; [26] deals with
continuous-time nonlinear systems, in which some modes might be unstable, and uses a T-S fuzzy modeling
approach; [27] discusses switched positive fractional-order systems and proposes state-dependent switching
signals. For what concerns dwell time schemes for discrete time systems, some works, e.g. [28–31], have
been proposed after [23, 24]. However, since we consider linear discrete-time autonomous switching systems
without delays, the results provided in [23, 24] are suitable in our case. For instance, [28] considers minimum
dwell time, instead of average dwell time. In [29] the focus is on identifying a class of discrete-time switched
signals that are globally asymptotically stable, therefore the paper deals with switched systems, and thus
mainly the switching signals, while we consider switching systems. The works [30, 31] focus on input-to-state
stability for nonlinear switching systems but our focus is on linear autonomous switching systems.

In this paper, we deal with decentralized control design of linear switching LSSs and the main contribution
of this paper is twofold. Firstly, we propose an online partitioning method that is suitable for linear switching
LSSs. Furthermore, we also provide convergence guarantees for the proposed partitioning algorithm. The
proposed partitioning approach is inspired by [17, 18] and consists of two steps: an initial partitioning
algorithm and a refining step. Differently from the multi-step method presented in [18], we prespecify the
number of subsystems and already group together highly coupled components in the same subsystem in the
initial partitioning procedure, so that the outcome of the initial partitioning procedure provides a warm start
for the refining step. Secondly, we show that a decentralized state feedback control scheme for LSSs and
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stability results on switching systems under the average dwell time condition can be combined to stabilize the
system. The overall proposed control scheme consists of a central coordinator and decentralized controllers.
The central coordinator adjusts the partition and the decentralized state feedback gains in response to
the switching nature of the system while the decentralized controllers stabilize the overall system via a
decentralized state feedback scheme.

The structure of the paper is as follows. In Section 2, we provide a description of the problem that
we consider. In Section 3, we present our partitioning algorithm. Sections 4 and 5 are devoted to the
adopted decentralized state-feedback control scheme and to the stability analysis, respectively. In Section
6, we explain the overall control scheme and how the online partitioning procedure is carried out. We apply
our proposed approach to an automatic generation control problem in Section 7 and lastly we provide some
concluding remarks in Section 8.

Notation. We use calligraphic letters to denote sets, e.g., P. The set cardinality and the 2-norm operators
are denoted by | · | and ∥ · ∥2, respectively. We use bold math symbols, e.g., x, A, for the centralized
system. By dim(·) we denote the dimension of a vector. Moreover, R>a denotes all real numbers in the
set {b : b > a, b, a ∈ R}. A similar definition can be used for the non-strict inequality case. For vectors
vi with i ∈ L = {l1, . . . , l|L|}, the operator [v⊤i ]i∈L denotes the column-wise concatenation, i.e., [v⊤i ]i∈L =

[v⊤l1 , · · · , v
⊤
l|L|

]. For matrices Mij ∈ Rni×nj with L = {l1, . . . , l|L|} and (i, j) ∈ L × L, the operator

[Mij ](i,j)∈L×L denotes the matrix-wise concatenation, i.e.,

[Mij ](i,j)∈L×L =

 Ml1l1 · · · Ml1l|L|
...

. . .
...

Ml|L|l1 · · · Ml|L|l|L|

 .

Finally, discrete-time instants are denoted by k.

2. Problem Statement

Consider a linear switching LSS that can be represented as a directed graph G(k) = (V, E(k)), where
V = {1, 2, . . . , |V|} denotes the set of components (vertices) and E(k) ⊆ V × V denotes the set of edges
that describes the interaction of the components among each other, i.e., edge (j, i) ∈ E(k) indicates that
component j influences the dynamics of component i. Furthermore, the components of the network can be
divided into two sets, which are denoted by Vx and Vu, i.e., V = Vx ∪ Vu and Vx ∩ Vu = ∅. The set Vu
contains all the input components, while Vx consists of all components that have dynamics as follows:

xi(k + 1) =
∑
j∈Vx

Aij(k)xj(k) +
∑
j∈Vu

Bij(k)uj(k), ∀i ∈ Vx, (1)

where xi ∈ Rni , denotes the state vector of component i and uj ∈ Rmj , denotes the input from the
components in Vu. Additionally, for each i ∈ Vx, Aij ∈ Rni×nj , and Bij ∈ Rni×mj , are the state-space
matrices, where ∥Aij∥2 ̸= 0, if and only if (i, j) ∈ E(k), i.e. if and only if there is an edge between vertices
i and j, and, similarly, ∥Bij∥2 ̸= 0, if and only if (i, j) ∈ E(k). Therefore, the dynamics of the overall
system can be written as follows:

x(k + 1) = A(k)x(k) +B(k)u(k), (2)

where x(k) =
[
x⊤
i (k)

]⊤
i∈Vx

∈ Rn is the state of the overall system, u(k) =
[
u⊤
i (k)

]⊤
i∈Vu

∈ Rm is the input of

the overall system, A(k) = [Aij(k)](i,j)∈Vx×Vx
∈ Rn×n, B(k) = [Bij(k)](i,j)∈Vx×Vu

∈ Rn×m, n =
∑

i∈Vx
ni,

and m =
∑

i∈Vu
mi. An example can be found in Figure 1.

We assume that the system represented by (2) belongs to the class of linear switching systems.

Definition 1. A linear switching system is a system with dynamics given by

x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k),

where σ(k) is a piecewise constant function called switching signal that takes discrete values and associates
to each time step k a different mode. ♢
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Figure 1: An illustration of a system with |V| = 10. The set Vu = {1, 2, 3, 4} and Vx = {5, 6, 7, 8, 9, 10}. The dots represent the
components and the arrows represent the edges.

Remark 1. Note that since we consider the class of switching systems, i.e., those under arbitrary switching
signals, the paper does not concern the design of the switching signals σ(k). ♢

Although all the (A(k),B(k)) pairs of the system are unknown a priori, we assume that a change in the
pair can be detected instantly. Note that the detection method is out of scope of this paper. Moreover, we
assume that each mode is not active only once but it has a recurrent behavior.

In this paper, we address the problem of stabilizing such systems with a decentralized state feedback
control approach. Consider the discrete-time process described in (2). The state-feedback control law is
obtained by applying the input u(k) = −K(k)x(k) to the system, where K(k) ∈ Rm×n is a time-varying
gain matrix, obtaining the overall law x(k+1) = (A(k)−B(k)K(k))x(k). The matrix A(k) might not have
asymptotically stable eigenvalues, but K(k) can be computed such that the final matrix A(k)−B(k)K(k)
is asymptotically stable for all k.

In a decentralized control scheme, the system must be partitioned into several subsystems, to which local
controllers are assigned. In this regard, the system must be partitioned such that the coupling between
subsystems is minimized. Since the system is time-varying, the partition must also be adapted so that
a stabilizing decentralized state-feedback controller can be designed. Example 1 shows the importance of
changing partition when the mode of the system changes.

Example 1. Consider a simple switching LTI system with two states (x1, x2 ∈ R), two inputs (u1, u2 ∈ R),
and two modes (denoted by M1 and M2). The system has the following dynamics:[

x1(k + 1)
x2(k + 1)

]
=

[
a 0
0 a

] [
x1(k)
x2(k)

]
+B(k)

[
u1(k)
u2(k)

]
,

where the matrix A(k) is constant with a ∈ R>1, while the matrix B(k) =

[
1 b
b 1

]
, for mode M1, and

B(k) =

[
0 1
1 0

]
for mode M2, where 0 < b < 1/a. Furthermore, consider that when 0 ≤ k ≤ k1, mode

M1 is active and the system is partitioned into two subsystems (denoted by subsystem i and j) as follows:
subsystem i consists of x1 and u1 and its dynamics are x1(k+1) = ax1(k)+u1(k)+ bu2(k), while subsystem
j consists of x2 and u2 and its dynamics are x2(k + 1) = ax2(k) + bu1(k) + u2(k). Thus, by considering
decentralized state-feedback gains Ki(k),Kj(k) ∈ R for subsystem i and j, respectively, i.e., the control laws
are u1(k) = −Ki(k)x1(k) and u2(k) = −Kj(k)x2(k), the resulting centralized closed-loop system is[

x1(k + 1)
x2(k + 1)

]
=

[
a−Ki(k) −bKj(k)
−bKi(k) a−Kj(k)

] [
x1(k)
x2(k)

]
,

where Ki(k) and Kj(k) can be chosen such that the closed-loop matrix is asymptotically stable, e.g., Ki(k) =
Kj(k) = a. Now, consider that the system switches to mode M2, at k = k1+1. If we keep the same partition,
implying the same control laws, the centralized closed-loop system becomes[

x1(k + 1)
x2(k + 1)

]
=

[
a −Kj(k)

−Ki(k) a

] [
x1(k)
x2(k)

]
,

which is not asymptotically stable for any Ki(k),Kj(k) ∈ R since a > 1, which implies one of the eigenvalues
will be outside the unit circle. Therefore, the system is not stabilizable due to its structure and due to the
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control law that we selected. However, if we change the partition such that subsystem i consists of x1 and
u2 and its control law is u2(k) = −Ki(k)x1(k), while subsystem j consists of x2 and u1 and its control law
is u1(k) = −Kj(k)x2(k), the centralized closed-loop system becomes[

x1(k + 1)
x2(k + 1)

]
=

[
a−Ki(k) 0

0 a−Kj(k)

] [
x1(k)
x2(k)

]
,

implying that it is stabilizable by the decentralized state-feedback gains Ki(k),Kj(k), e.g., the gains can be
set to Ki(k) = Kj(k) = c, where a− 1 < c < a+ 1, to obtain an asymptotically stable system. ♢

3. System Partitioning

In this section, a time-varying partitioning approach is proposed such that a decentralized state feedback
control scheme can be designed for the LSS.

3.1. Formulation of the Partitioning Problem

The system is partitioned into p non-overlapping subsystems and the objectives of the partitioning are to
minimize the coupling among subsystems and to balance the number of inputs and states in each subsystem.
Minimal coupling among subsystems is desirable for decentralized control structures, as reported in [11, 14]
and shown before in Example 1. Furthermore, the computational burden would be equally distributed among
the local controllers when the number of inputs and states of all subsystems are similar.

We consider system partitioning as a graph partitioning problem [17, 18]. Let P(k) = {V1(k),V2(k), . . . ,Vp(k)}
be the partition of G(k), where Vℓ(k), for each ℓ ∈ {1, 2, . . . , p}, indicates the set of vertices of subsystem ℓ.
The partitioning problem at time step k can be stated as follows:

minimize
P(k)

p∑
ℓ=1

fc(Vℓ(k)) (3a)

subject to

p⋃
ℓ=1

Vℓ(k) = V, (3b)

Vℓ(k) ∩ Vj(k) = ∅, ℓ ̸= j, ∀ℓ, j ∈ {1, . . . , p}, (3c)

where the cost function fc(Vℓ(k)), ∀ℓ ∈ {1, . . . , p} is formulated according to the partitioning objectives, i.e.,

fc(Vℓ(k)) = α1fwc(Vℓ(k)) + α2fim(Vℓ(k)), (4)

where fwc(Vℓ(k)) denotes the weighted cut cost, i.e., the sum of the weights (wij(k)) of the edges that connect
subsystem ℓ and other subsystems, as follows:

fwc(Vℓ(k)) =
∑

i∈Vℓ(k)

∑
j∈V\Vℓ(k)

(wij(k) + wji(k)) ,

and fim(Vℓ(k)) denotes the internal imbalance cost, i.e., the cost imposed to ensure that the number of
inputs and states in every subsystem is nearly the same, as follows:

fim(Vℓ(k)) =
∣∣∣∣|Vu,ℓ(k)| − |Vu|p

∣∣∣∣+ ∣∣∣∣|Vx,ℓ(k)| − |Vx|p
∣∣∣∣ ,

in which Vu,ℓ(k) = Vℓ(k) ∩ Vu and Vx,ℓ(k) = Vℓ(k) ∩ Vx. Note that the weight of the edge wij(k) ∈ R≥0, is
defined as

wij(k) =


∥Ai,j(k)∥2/∥A(k)∥2, if i, j ∈ Vx,
∥Bi,j(k)∥2/∥B(k)∥2, if i ∈ Vx, j ∈ Vu,
0, otherwise.

Moreover, α1, α2 ∈ R>0 in (4), are tuning parameters that measure the importance of the objectives. Problem
(3) is a combinatorial optimization problem that must be solved online. We propose a multi-step heuristic
method that is able to find a local minimum of such a problem. The method is deeply explained in the next
subsection.
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3.2. Partitioning Algorithm

The partitioning algorithm is divided into two main steps. In the first step, an initial partition is obtained,
and it is refined in the second step. In the initial partitioning, vertices that are highly coupled are grouped
together, while maintaining a balanced number of vertices in each subsystem. The refining algorithm is a
variation of the Kernighan-Lin algorithm [32] and similar to the method presented in [33, 34]. However,
differently from our proposed approach, the method in [33, 34] considers balancing number of vertices as
a constraint and is not particularly suitable for a system partitioning problem. Furthermore, while in [18]
there are different steps taken for the two objectives, in our approach both objectives are merged in a single
cost function that we minimize. Additionally, unlike the method in [17] and as explained later in Proposition
1, by considering only one vertex at each iteration, we can ensure that the total cost is non-increasing among
two consecutive iterations.

Initial partitioning algorithm. The number of subsystems, p, is determined such that p ≤ |Vu| in order to
ensure that at least one input is assigned to every subsystem. In this step, we want to have an initial

partition P(0)(k) = {V(0)
1 (k), . . . ,V(0)

p (k)}. To this end, the following algorithm is proposed:

1. Calculate the sum of the edge weights of all input vertices, as follows:

ws,i(k) =
∑

j∈Ni(k)

wji(k), ∀i ∈ Vu,

where Ni(k) is the set of neighbors of vertex i, i.e., Ni(k) = {j : j ̸= i, (i, j) ∈ E(k)}.
2. Choose the centers of the subsystems, cℓ, for all ℓ ∈ {1, 2, . . . , p}, as the p input vertices that have the

largest weight ws,i(k), and order them according to ws,i(k). At the end of this step, each subsystem
has one input vertex.

3. Sequentially, starting from subsystem 1, find a vertex that is not assigned and has the highest coupling
with one of the vertices in the evaluated subsystem, i.e., for subsystem ℓ,

θℓ ∈ argmax
θ

{
wiθ(k) + wθi(k)

∣∣∣∣∣θ ∈ V\
(

p⋃
ℓ=1

V(0)
ℓ (k)

)}
,

for all i ∈ V(0)
ℓ (k). The vertex θℓ is randomly selected from the set of maximizers. Then, update

V(0)
ℓ (k) ← V(0)

ℓ (k) ∪ {θℓ}. After θℓ has been assigned to subsystem ℓ, we consider subsystem ℓ+ 1. If
we reach subsystem p but there are still unassigned nodes, we go back to subsystem 1. Repeat this
step until all of the vertices are assigned to a subsystem.

The complexity of the initial partitioning algorithm is polynomial, i.e., O((n+m)2). Although the resulting
partition has a balanced number of vertices at each subsystem, it is possible that the number of inputs and
the number of states are not balanced. Furthermore, the weighted cut cost might also still be improved.

Refining algorithm. Consider the partition obtained from the initial partitioning algorithm, P(0)(k). In the
refining step, we improve the partition by moving one vertex at a time among subsystems. Denote subsystem
ℓ as the subsystem that is selected to provide a proposal, i.e., one of its vertices that is considered to be
moved to another subsystem. Furthermore, let V̂ℓ(k) be the set of all vertices that belong to subsystem ℓ
and that have at least an edge with a vertex that belongs to a different subsystem, i.e., V̂ℓ(k) = {i : (i, j) ∈
E(k), i ∈ Vℓ(k), j ∈ V\Vℓ(k)}. Moreover, denote the iteration index by the superscript (r). The refining
algorithm at the rth iteration works as follows:

1. In order to select the subsystem ℓ, all subsystems are sorted in a descending order based on their
costs, i.e., fc(Vj(k)), for all j ∈ {1, 2, . . . , p}. Then, the subsystem that has the highest cost is selected.
Furthermore, once selected, it is discarded from the sorted list and when the sorted list is finally empty,
a new sorted list is created using the same procedure.

2. Subsystem ℓ computes its current local cost f
(r)
c (Vℓ(k)) according to (4) and a proposal, i.e., a vertex

that is offered to be moved to one of its neighbors, as follows:

θℓ ∈ arg min
θ∈V̂ℓ(k)

fc(Vℓ(k)\{θ}). (5)
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The vertex θℓ is randomly selected from the set of minimizers according to (5). Notice that the set of

minimizers in (5) might be empty, implying that f
(r)
c (Vℓ(k)) < fc(Vℓ(k)\{θℓ}). This means that no

vertex is moved and the algorithm jumps to the next iteration. Otherwise, subsystem ℓ computes the
expected local cost difference as follows:

∆f
(r)
c,ℓ (k) = fc(Vℓ(k)\{θℓ})− f (r)

c (Vℓ(k)). (6)

Finally, it shares θℓ and ∆f
(r)
c,ℓ (k) with its neighbor subsystems, i.e. with all j ∈ NP,ℓ(k), where

NP,ℓ(k) = {j : (i, θℓ) ∈ E(k), i ∈ Vj(k), j ̸= ℓ, j = 1, 2, . . . , p}.
3. All the neighbors, i.e. all j ∈ NP,ℓ(k), compute the updated cost fc(Vℓ(k) ∪ {θℓ}) if θℓ is moved to

them, according to (4). Then, the neighbors compute ∆f
(r)
ct,j(k) as follows:

∆f
(r)
ct,j(k) = fc (Vℓ(k) ∪ {θℓ})− f (r)

c (Vj(k)) + ∆f
(r)
c,ℓ (k), (7)

where f
(r)
c (Vj(k)) is the current cost, computed according to (4). Note that ∆f

(r)
ct,j(k) indicates the

total cost difference when θℓ moves from Vℓ(k) to Vj(k). Finally, the neighbors send ∆f
(r)
ct,j(k) to

subsystem ℓ.

4. Subsystem ℓ decides to which subsystem it will send θℓ as follows:

j⋆ ∈ arg min
j∈NP,ℓ

∆f
(r)
ct,j(k). (8)

If ∆f
(r)
ct,j⋆(k) > 0, the algorithm jumps to the next iteration. Otherwise, the subsystem j⋆ is randomly

selected from the set of minimizers according to (8).

5. The partition is updated as follows:

Vℓ(k)← Vℓ(k)\{θℓ}, (9)

Vj⋆(k)← Vj⋆(k) ∪ {θℓ}. (10)

The refining procedure, which is a polynomial time algorithm with respect to the number of vertices, i.e.,
O((n + m)3), is summarized in Algorithm 1, where Θ denotes an auxiliary set that contains vertices that
have at least one edge with a vertex in another subsystem, but that do not improve the total cost if they are
moved. Furthermore, Vso denotes an auxiliary ordered set that is used to select subsystem ℓ and cst denotes
the variable used to determine the stopping condition. Lastly, Vso[1] denotes the first element of Vso.

Proposition 1. The solution of the refining algorithm (Algorithm 1) converges to a local minimum. Fur-
thermore, Algorithm 1 stops when a local minimum is reached. ♢

Proof. In order to show the convergence, we will show that the total cost, denoted by F (r)(k) =
∑p

ℓ=1 f
(r)
c (Vℓ(k)),

is non-increasing. Denote the initial partition at the rth refining iteration by V(r)
ℓ , for all ℓ ∈ {1, 2, . . . , p}.

At the end of the rth iteration, suppose that vertex θℓ is moved from subsystem ℓ to subsystem j⋆. Thus,
we have

∆F (k) =F (r+1)(k)− F (r)(k)

=fc(V(r+1)
j⋆ (k))− f (r)

c (V(r)
j⋆ (k)) + fc(V(r+1)

ℓ (k))− f (r)
c (V(r)

ℓ (k))

=∆f
(r)
ct,j⋆(k) ≤ 0.

The second equality follows from the fact that only the cost of subsystems ℓ and j⋆ changes when vertex θℓ
is moved. The last inequality follows from the condition imposed in Step 3, in which vertex θℓ is not moved
if ∆fct,j⋆(k) > 0. Note that when no vertex is moved, F (r+1)(k)− F (r)(k) = 0.

The proof of the second claim is as follows. Algorithm 1 stops if cst = 2p− 1. Furthermore, the counter
cst only increases if

f (r)
c (Vℓ(k)) < fc(Vℓ(k)\{θℓ}) (11)
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holds (see lines 10, 22, and 23). Moreover, if (11) is not satisfied, then cst is reset to 0 (see line 12). Therefore,
the algorithm only stops if (11) holds for at least 2p − 1 consecutive iterations. Note that if (11) holds for
all ℓ ∈ {1, . . . , p}, then a local minimum is reached since no more vertex from any subsystem is moved.

First, we show that condition (11) can be satisfied. Condition (11) holds if moving any vertex from V̂ℓ,
defined in line 8, leads to the increasing of local cost f

(r)
c (Vℓ(k)) or if V̂ℓ is empty. Furthermore, notice that

θℓ, which improves the local cost and is selected in line 9, might not be moved to a different subsystem
because moving it might increase the total cost. In this case, to ensure the algorithm does not have an
infinite loop, θℓ will not be considered anymore for some iterations in the future (see lines 17 and 8). It also
implies that, when a subsystem selects a potential vertex to be moved, it disregards vertices that have been
identified in such a way that, if moved at the current iteration, the total cost will increase. Thus, line 8
might yield an empty V̂ℓ.

Now, we need to show that if the condition (11) holds for at least 2p− 1 consecutive iterations, then we
guarantee that (11) holds for all subsystems. This is a consequence of the way in which we select subsystem
ℓ, i.e., lines 4 and 6. In the worst possible case, 2p − 1 consecutive iterations are required to ensure all

subsystems have been selected to propose θℓ. Consider that at iteration r1, V(r1)
so is generated to select the

subsystems for the next p iterations, starting from r1. Suppose that subsystem p has the highest cost and,
thus, is selected at r1. Now, suppose that at iteration r1 + 1, condition (11) is satisfied for the first time.
Furthermore, (11) also holds for r = r1 + 2, . . . , r1 + p − 1. Note that at r1 + p − 1, all subsystems, but
subsystem p, have been selected and have satisfied (11). At iteration r1 + p, suppose that subsystem p has
the lowest local cost and a new ordered set of Vso is generated. Therefore, subsystem p will only be selected
at iteration r1 +2p− 1, implying the necessity to evaluate 2p− 1 consecutive iterations. For any other case,
(11) must only hold for a number of consecutive iterations that is fewer than 2p− 1.

Remark 2. The number of iterations can be upper bounded by a constant rmax defined by the user. This
condition is useful when the available time to compute the partition is limited. ♢

Remark 3. The main design parameters in the partitioning approach are α1 and α2, which determine
the trade-off between two partitioning objectives: 1) minimum coupling among subsystems and 2) balanced
number of components per subsystem. Therefore, since these parameters affect the outcome of the partitioning
process, i.e., the structure of the subsystems (A and B matrices of the subsystems), they shape the block of
the state-feedback gain K, which determines the performance of the controlled system. Since a decentralized
control scheme takes advantage from minimal coupling, it is better to prioritize objective 1 such that stabilizing
controllers can be achieved. This can be done by setting α1 ≫ α2. However, one might also want to set
α2 ≫ α1 as long as stabilizing controllers can still be designed so that the communication and computational
burden are evenly distributed across subsystems.

In this paper, the proposed partitioning method is applied along with a decentralized state feedback
control scheme, which will be explained in Section 4. However, the application of the partitioning approach
is not limited only to this type of controllers and can also be applied to design other types of decentralized or
distributed controllers, e.g., Model Predictive Control [35, 36]. Furthermore, different partitioning objectives,
depending on the system or control requirements, can also be considered by substituting the cost function
(4) with the desired cost function.

4. Decentralized State Feedback Control

4.1. Decentralized State Feedback Control Scheme

Consider now a set of all partitions that have been computed until time instant k using the partitioning
approach described in Section 3, i.e., P = {P(κ), κ = 0, . . . , k} and consider a given partition I. Note that
here we drop the time dependency of the matrices on k, since we are considering a single partition I. We
indicate the dynamics of subsystem i of partition I using the expression

xI,i(k + 1) = AI,iixI,i(k) +BI,iiuI,i(k) +
∑

j∈NI,i

(AI,ijxI,j(k) +BI,ijuI,j(k)) , (12)

8



Algorithm 1 Refining Procedure

1: Input: P(0)(k)
2: Initialize r ← 0, cst ← 0, and Θℓ ← ∅, ∀ℓ ∈ {1, 2, . . . , p}
3: while cst < 2p− 1 do
4: Sort the indices of the subsystems based on the descending order of their local cost in Vso
5: for h = 1 to p do
6: ℓ← Vso[1]
7: Vso ← Vso\{Vso[1]}
8: Compute V̂ℓ, i.e., V̂ℓ = {i : (i, j) ∈ E(k), i ∈ Vℓ(k), j ∈ V\Vℓ(k)}\Θℓ

9: Compute f
(r)
c (Vℓ(k)) and solve (5)

10: if f
(r)
c (Vℓ(k)) ≥ fc(Vℓ(k)\{θℓ}) then

11: θ
(r)
ℓ is selected

12: cst ← 0
13: Compute ∆f

(r)
c,ℓ (k) according to (6)

14: Compute ∆f
(r)
ct,j(k) according to (7) for all j ∈ NP,ℓ(k)

15: Decide the subsystem j⋆ that will receive θℓ according to (8)

16: if ∆f
(r)
ct,j⋆(k) > 0 then

17: Θℓ ← Θℓ ∪ {θℓ}
18: else
19: Θj ← ∅, ∀j ∈ NP,ℓ(k) ∪ {ℓ}
20: Move θℓ from subsystem ℓ to subsystem j⋆, i.e., the partition is updated according to

(9)-(10)
21: end if
22: else
23: cst ← cst + 1
24: end if
25: r ← r + 1
26: end for
27: end while
28: Output: P(k)

9



where xI,i ∈ RnI,i denotes the state vector of partition I, subsystem i, and the matrices AI,ij ∈ RnI,i×nI,j ,
BI,ij ∈ RnI,ij×mI,j , for all j ∈ NI,i

⋃
{i}, are respectively the state matrices and the input matrices of the

dynamics of partition I, subsystem i. The state vectors xI,j ∈ RnI,j with j ∈ NI,i are the state vectors of
the neighbors of subsystem i in partition I. Similarly, the inputs uI,i ∈ RmI,i are the inputs to subsystem
i of partition I, while uI,j ∈ RmI,j with j ∈ NI,i are the inputs of the neighbors of subsystem i in
partition I.

It is possible to describe the dynamics of the centralized system of a single partition I as

xI(k + 1) = AIxI(k) +BIuI(k), (13)

where the state vector is xI = [x⊤
I,1 · · ·x⊤

I,p]
⊤ ∈ Rn, the input vector is uI = [u⊤

I,1 · · ·u⊤
I,p]

⊤ ∈ Rm, the state

matrix isAI = [AI,ij ](i,j)∈{1,··· ,p}×{1,··· ,p} ∈ Rn×n, and the input matrix isBI = [BI,ij ](i,j)∈{1,··· ,p}×{1,··· ,p} ∈
Rn×m.

Let us now apply to (12) a decentralized static state feedback scheme. For each input uI,i, we apply the
control law uI,i = −KI,ixI,i, where KI,i ∈ RmI,i×nI,i is a gain matrix. We can then combine (13) with the
decentralized state feedback control law and obtain

xI(k + 1) = (AI −BIKI)xI(k), (14)

where KI = diag(KI,1, . . . ,KI,p) is the centralized gain matrix of partition I. The decentralized gain
matrices KI,i, ∀i ∈ {1, . . . , p}, are designed such that for each partition the closed-loop centralized matrices
(AI −BIKI), ∀I ∈ P, are Schur stable.

Although the closed-loop matrix of each partition, i.e. AI −BIKI , is Schur stable, due to the switching
nature of the system under consideration, stability of the overall system is not guaranteed. Indeed, as
explained in Section 1, stability might arise from the switching between two different asymptotically stable
modes. Thus, the continuous change in time of the system dynamics and its partition must be taken directly
in account in the stability analysis. In Section 5, we provide a stability analysis using concepts from switching
systems theory and directly taking into account the switchings between different dynamics. Before doing
that, we make the following assumption:

Assumption 1. For every partition I ∈ P, it is possible to obtain a state feedback gain matrix KI such
that the closed-loop system (14) is Schur stable. ♢

Assumption 1 is needed to prove Proposition 2 but it is not a limiting assumption, since there exist many
methods that can provide the matrices KI , as explained in the next subsection.

4.2. Computational Issues

The gain matrices KI , ∀I ∈ P, can be computed in a centralized fashion with the LMI method proposed
in [37, 38] (see Appendix B). With this method, we can obtainKI matrices that stabilize both the centralized
system and the single decentralized subsystems. Moreover, the problem can be solved efficiently using an
LMI solver.

When the size of the system is large, a centralized solution could be computationally inefficient. In this
case, we have to look for other approaches that can compute the gain matrices KI in a non-centralized
fashion. As explained in [39], one idea could be to apply the concepts from [11], adapted to the discrete-time
case. With this strategy, we first stabilize each subsystem separately and then we check the stability of the
centralized system in a distributed fashion using a small-gain like condition. As one would expect and as it
is highlighted in [11], this method works better when the subsystems are weakly coupled.

5. Stability of the Time-Varying Partition Scheme

In this section, we study the stability of the proposed time-varying partitioning scheme. Before proceeding
with the proposition, we present some properties, definitions, and assumptions needed to illustrate the
stability of our system.
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5.1. Preliminaries

Suppose now that the system dynamics (2) are controlled with a decentralized state feedback strategy,
as explained in Section 4. Here, we would like to represent the evolution of the centralized system with a
single expression. However, note that the state components in each partition might be grouped differently.
In other words, when we consider different partitions, the state components in the centralized state vectors
will not be in the same order, in general. To make this concept clearer, let us consider a simple example.

Example 2. Consider a 5-state component system partitioned into two subsystems, one of them with two
state components and the other one with three. Suppose also that the B matrices are all null. There
are two partitions and they are denoted by I and J . Then, let us define the centralized state vector as

x =
[
x1 x2 x3 x4 x5

]⊤ ∈ R5, where x1, x2, x3, x4, and x5 are the state components, and the
partitions are

I :


{
xI,1(k + 1) = AI,1xI,1(k),{
xI,2(k + 1) = AI,2xI,2(k),

J :


{
xJ ,1(k + 1) = AJ ,1xJ ,1(k),{
xJ ,2(k + 1) = AJ ,2xJ ,2(k),

where xI,1 =
[
x1 x2 x3

]⊤
, xI,2 =

[
x4 x5

]⊤
, xJ ,1 =

[
x1 x3 x5

]⊤
, xJ ,2 =

[
x2 x4

]⊤
. Then, xI =[

x⊤
I,1 x⊤

I,2
]⊤

=
[
x1 x2 x3 x4 x5

]⊤
and xJ =

[
x⊤
J ,1 x⊤

J ,2

]⊤
=
[
x1 x3 x5 x2 x4

]⊤
. As can be

seen, vectors xI and xJ have the same components, but they are ordered differently. ♢

Although the centralized state vectors - and thus the closed-loop matrices - are ordered differently, we
can still express the equations of the centralized system in a compact form. We can indeed obtain the same
order in the state components by applying a permutation transformation with matrices TI to the closed-loop
matrices AI−BIKI , ∀I ∈ P. After this transformation is applied, we obtain a common order of the state
components for all the different partitions. The closed-loop matrix after the transformation would then be
AI = T−1

I (AI −BIKI)TI . Note that permutation transformations applied to a matrix do not change its
eigenvalues. This means that if AI −BIKI is Schur, then AI is Schur too. We can then finally express
the centralized dynamics as

x(k + 1) = A(k)x(k), (15)

where A(k) is the AI matrix and partition I is the active partition at time step k, i.e., I = P(k).
We can now present the proof on exponential stability of the time-varying partitioning scheme of Section

3, which is given in the next subsection. Before proceeding with the proof, let us introduce some useful
properties, assumptions, and definitions.

Property 1 ([40, 41, Th. 3.5]). If A is a Schur matrix, then ∃h ∈ R≥1, ∃λ1 ∈ (0, 1) :, ∀k ∈ N,
∥Ak∥2 ≤ hλk

1 .

Property 2. Suppose xsub is a sub-vector of x, so that dim(xsub) < dim(x). Then, ∥xsub∥2 ≤ ∥x∥2 since
components of xsub are included in x. Furthermore, if x and xsub are finite and such that when ∥xsub∥2 = 0
it also holds that ∥x∥2 = 0, then it is always possible to find a scalar d ∈ R>0 such that ∥x∥2 ≤ d∥xsub∥2.

Proof. It is enough to set d = ∥x∥2

∥xsub∥2
and the inequality holds. If both ∥x∥2 and ∥xsub∥2 are 0, then any

d ∈ R>0 will let the inequality hold.

Definition 2 ([23, 24]). Consider the discrete-time switching scheme (15). Recall σ(k) from Definition 1.
Each time there is a switch, the dynamics of the system change. Let the number of mode switches between
the time steps 0 and k be denoted by Nσ(0, k). We define τa ∈ R>0 as a constant called average dwell time
for all the signals σ(k) if, for a given N0 ≥ 0,

Nσ(0, k) ≤ N0 +
k

τa
. (16)
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Definition 3. We denote with λM the minimum constant such that Property 1 holds for all matrices AI ,
∀I ∈ P. Moreover, hmax is the maximum of all h constants in Property 1 for matrices AI , ∀I ∈ P, i.e., if
∥Ak

I∥2 ≤ hIλ
k
M, ∀I ∈ P and k ∈ N, then hmax = max

I∈P
hI .

Assumption 2. The average mode dwell time τ∗a of the scheme (15) is lower bounded, i.e., τ∗a > − log hmax

log λM
.

Assumption 3. The initial state of each subsystem is such that ∥xI,i(0)∥2 ̸= 0, ∀i ∈ {1, . . . , p}, ∀I ∈ P.

Remark 4. In the framework of slow switching, it is reasonable to suppose that the average dwell time τ∗a
should be higher than a certain lower bound [20, 23, 24, 42].

Remark 5. As explained later in Remark 7, Assumption 3 is needed to prove Proposition 2. Assumption 3
can be easily checked by looking at the initial values of the state vectors of every subsystem. Moreover, it is
still reasonable to assume that, at the initial time instant, none of the state vectors is already at the origin.
Nevertheless, in Remark 7 we analyze the case in which Assumption 3 is not satisfied.

5.2. Stability Analysis

Here, the stability of system (15) is presented in the following proposition.

Proposition 2. Assume that system (15) follows scheme (16) in which N0 is given, and that Assumptions
1-3 hold. Then, the time-varying partitioned system (15) is globally exponentially stable for any average
dwell time τa ≥ τ∗a .

Proof. We follow the proof from [23, 24] using matricesAI , ∀I ∈ P, that we know to be Schur by Assumption
1. In particular, we define ki, i = 1, 2, . . . as the time steps at which a mode change occurs, i.e., k0 = 0 <
. . . < ki < ki+1 < . . . . Let Ai be the matrix A(k) in (15) for k between the time steps ki−1 and ki. Then,
for any k satisfying ki ≤ k < ki+1, we can write the overall state vector x(k) at time step k as

x(k) = Ak−ki
i+1 A

ki−ki−1

i ...Ak1
1 x(0).

Applying to both sides the norm operator, we get

∥x(k)∥2 ≤ ∥Ak−ki
i+1 ∥2 · ∥A

ki−ki−1

i ∥2...∥Ak1
1 ∥2 · ∥x(0)∥2. (17)

Consider now Property 1 and let us apply it to all the matrices Ai in (17). Let hi be the constant h in
Property 1 associated to Ai and let λM ∈ (0, 1) be the constant defined in Definition 3. We can then replace

every matrix norm ∥Ai∥ in (17) by hiλ
ki−ki−1

M , yielding

∥x(k)∥2 ≤ hi+1hi...h1λ
k
M∥x(0)∥2 =

i+1∏
j=1

hj

λk
M∥x(0)∥2.

Let hmax be as in Assumption 2. Then,

∥x(k)∥2 ≤

i+1∏
j=1

hj

λk
M∥x(0)∥2 ≤ chNσ(0,k)

max λk
M∥x(0)∥2, (18)

where c = hmax and Nσ(0, k) is defined in Definition 2. Since hmax ≥ 1, we define h0 = hN0
max and from

Assumption 2 we can define a λ ∈ (λM, 1) such that λ = λMh
1
τa
max. From (16) we then obtain

hNσ(0,k)
max ≤ hN0

maxh
k
τa
max = h0h

k
τa
max = h0

(
λ

λM

)k

. (19)

We apply (19) to (18) to get
∥x(k)∥2 ≤ ch0λ

k∥x(0)∥2. (20)
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Lastly, we apply Assumption 3 and Property 2 and get

∥xI,i(k)∥2 ≤ ∥x(k)∥2 ≤ ch0λ
k∥x(0)∥2 ≤ cdh0λ

k∥xI,i(0)∥2, (21)

∀i ∈ {1, . . . , p}, ∀I ∈ P. Thus, each subsystem in P is globally exponentially stable for any average dwell
time τa ≥ τ∗a . Since (21) holds for each possible subsystem in each partition of P, it holds simultaneously for
all the subsystems in all the partitions. Therefore, each subsystem of the closed-loop system is exponentially
stable.

Remark 6. Although the first part of the proof of Proposition 2 has already appeared in [23, 24], here we
add the extra step (21) in order to adapt the proof to our case since [23, 24] do not consider a decentralized
control scheme.

Remark 7. Without Assumption 3, we cannot apply the second part of Property 2 to (20). However, we can
still guarantee (simple) exponential stability, since for (21) we can write ∥x(k)∥2 ≤ cλk∥x(0)∥2 ≤ cλ∥x(0)∥2
and choosing c1 = cλ∥x(0)∥2 we get ∥xI,i∥2 ≤ ∥x(k)∥2 ≤ c1, ∀i ∈ {1, . . . , p}, ∀I ∈ P. Then, the state xI,i
is simply stable as in [43] with c1 as specified before and ∀c2 > 0.

Remark 8. According to Proposition 2, stability is not guaranteed if the time-varying partitioning scheme
switches faster than τ∗a . This result is related to the slow switching systems, in which stability is guaranteed
only if the average dwell time is higher than a certain lower bound [20].

6. Overall Scheme

In this section we explain the overall partitioning and control scheme of our approach. Moreover, we also
explain how to update the average dwell time τ∗a that guarantees exponential stability in view of Proposition
2.

6.1. Controller Structure

The overall control scheme is shown in Figure 2. The controller has a hierarchical structure and it is
divided in two different parts: a centralized one, the coordinator, and decentralized controllers. The tasks of
the coordinator are to detect changes in the system, to update the partition, and to compute the decentralized
state-feedback gains and the bound of the average dwell time. These updates are only carried out when a
mode switch is detected. Once the updates have been communicated to the decentralized controllers and
subsystems have been created, then there is no further task for the coordinator, except for checking for
changes in the system at each time step. Indeed, if there is no change in either the mode or the partition of
the controlled system, then the system can be controlled only by the decentralized state feedback controller,
which can stabilize the overall system in view of the result of Proposition 2. In addition, it is assumed that
the time required for the coordinator to perform its tasks is smaller than the sampling time. It implies that
the partition, state feedback gains, and the bound of the average dwell time are updated at the same time
instant as the one at which the switch is detected. In practice, the satisfaction of this assumption depends
on the computational power of the coordinator and the instrumentation of the system.

6.2. Updating Scheme

For the purpose of updating the partition and the decentralized state feedback gains, the coordinator
records the modes and their corresponding partition and state feedback gains in a library. The advantage of
this approach is to speed up the updating process. This approach is particularly effective for systems that
have periodical behavior, i.e., the modes of the system appear periodically. Therefore, when the coordinator
detects a switch, it firstly checks its library. If the current mode has been recorded, it can immediately
provide a suitable partition and stabilizing state feedback gains to the decentralized controllers. Otherwise,
it will perform the partitioning method proposed in Section 3. Afterwards, the coordinator will compute
the new decentralized gain matrix. The new mode, partition, and gain matrix will then be recorded in the
library.

If a new mode appears in the system, we have to update the value of τ∗a , because it depends on the
characteristics of the current matrices ĀI . Moreover, the update of the value of τ∗a is needed since, as
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Figure 2: Overall control scheme, with a centralized coordinator, the system, and its subsystems. The dashed arrows represent
the exchange of information. The solid arrows represent the coupling between subsystems.

explained in Section 2, the modes have a recurrent behavior, i.e., they might be active again after some time
during which other modes were active. Therefore, when updating the value of τ∗a , we need to consider the
inactive modes. We then present the following procedure for updating τ∗a :

1. For each new mode, we consider the closed-loop matrix ĀI and we compute the h and λ1 constants
associated to this matrix as in Property 1;

2. We check whether h > hmax and in case this is true, we update hmax as hmax = h. We also check
whether λ1 > λM and if the answer is true, we update λM as λM = λ1. If no updates are carried out
at this step, we skip the next step;

3. We update the value of τ∗a as

τ∗a =
ln(hmax)

ln(1− ε)− ln(λM)
, (22)

where ε is a small positive constant.

Remark 9. Note that in Step 3 of the above procedure, we have updated τ∗a following Assumption 2 and
maximizing the value of λ, which is set to 1− ε. By doing so, we choose the least conservative value for τ∗a
while still satisfying Assumption 2.

7. Case Study

We consider the problem of controlling a power network consisting of 30 areas (vertices) that are connected
by tie-lines as shown in Figure 3 through automatic generation control, inspired by [44]. Each area has a
thermal turbine as the generator and load perturbations. Since the areas are interconnected, electrical power
may flow between them. The control objective is to stabilize the frequency and tie-line power deviation of
each area. For modeling each area, we follow the dynamical model provided in [45]. The state vector of
area i ∈ Vx is x⊤

i =
[
∆fi ∆PGi

∆PRi
XEi

∆Prefi ∆Ptiei

]
, where the state components represent

respectively the deviation with respect to the nominal value in frequency, turbine output power, mechanical
power during steam reheat, governor valve position, variable achieving integral control, and the tie-line
power. Furthermore, dynamical coupling is present in the model, since the dynamics of the states of one
area are influenced by the states of some of the neighboring areas. The state space matrices used in the
numerical simulations are provided in the appendix.

In this network, there are some vulnerable links that might be temporarily broken during the operation
of the system. Since these faults may arise in the system, the system has switching behavior. Moreover,
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Figure 3: The network topology considered. Vertices represent areas and edges represent couplings between the areas. In mode
1, all links are working correctly, while in the other two modes some links are broken. A red ‘×’ marker indicates the broken
links in mode 2, while a red ‘⃝’ marker indicates the broken links in mode 3.

since we assume the faults do not happen so fastly, we are in the framework of slow switching systems. We
design a decentralized state feedback controller for this network as explained in Section 4.

In our simulation, we consider 3 different modes. Mode 1 represents the normal operation, while the other
modes represent the network with physical faults, i.e., broken links as shown in Figure 3, but we consider
that nodes can still communicate with each other. Furthermore, we assume that we have five decentralized
controllers, implying that the system must be partitioned into five subsystems. The scenario of the simulation
is as follows: For k ≤ 26, the system operates normally, i.e., in mode 1. At k = 27, the system switches to
mode 2, and at k = 134, the system switches to mode 3. Following the proposed approach, the system is
partitioned with the algorithm proposed in Section 3 and stabilizing decentralized state-feedback gains are
computed by using the method proposed in [37] at k = 0, 27, 134, when the system switches its mode. The
partitioning results of all modes are shown in Figure 4. With the three different topologies, the partitioning
algorithm produces also three different partitioning topologies; thus the partition is adapted to the mode.

In this simulation, the sampling time is T = 1 s and the closed-loop system is simulated for 200 time

steps. The initial state of each area i ∈ Vx is xi(0) =
[
1 0 0 0 0 0

]⊤
, which represents an impulse

disturbance in the frequency deviation. The value of τ∗a for the first mode and the first partition is 23.76
and then it is updated to 24.05 at k = 27 and finally it is updated again to 26.63 at k = 124. Since the
average dwell time of the system is 80.5, which is larger than τ∗a , the stability of the system is guaranteed.

The frequency deviation ∆f and the power ∆Ptie at some areas are shown in Figure 5. It is possible to
observe that the time-varying partitioned closed-loop system is asymptotically stable, even after the system
switches to other modes, as expected from Proposition 2. Moreover, Figure 6 shows that the system becomes
unstable if the partition and the decentralized state-feedback gains are not switched after the mode changes,
i.e., the system switches to different modes but the partition and the gain matrices of mode 1 are kept for the
whole simulation. This behavior was also presented in Example 1. It is also interesting to notice in Figure
6, between time steps 27 and 134, that, although partitioning topologies 1 and 2 do not differ too much,
instability arises if the partitioning topology of mode 1 is applied to mode 2. This is therefore a further
motivation for the time-varying partitioning approach proposed in this article. Note that in this case study,
we have compared the online partitioning approach with the static one since, to the best of our knowledge,
there is no other online system partitioning algorithm proposed yet.

8. Conclusions

This article has presented a novel multi-step graph-based partitioning method for a class of large-scale
linear switching systems. The proposed algorithm is computationally inexpensive and can be applied online
when a change in the system occurs. Moreover, a decentralized state-feedback controller is applied to the
obtained subsystems in order to stabilize the subsystem. A further analysis of the closed-loop system,
modeled as an autonomous switching system, is provided. The stability of the system is guaranteed if
the average dwell time of the system is larger than a lower bound. Additionally, a case study of automatic
generation control of multi-area power network, in which some link failures might happen, has been discussed.
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a. Partitioning result of mode 1.
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b. Partitioning result of mode 2.
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c. Partitioning result of mode 3.

Figure 4: The partitioning results of all modes. Vertices in subsystem 1 are indicated by •, vertices in subsystem 2 are indicated
by ◦, vertices in subsystem 3 are indicated by □, vertices in subsystem 4 are indicated by ■, and vertices in subsystem 5 are
indicated by ×, while the edges that couple different subsystems are indicated by dashed-dotted lines.
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Figure 5: The deviation in frequency and tie-line power of areas 10 and 21 in the case in which the partition is changed together
with the modes. The time steps at which the switches occur are indicated by a vertical dashed black line.
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Figure 6: The deviation of frequency and tie-line power of areas 10 and 21 in the case in which both the partitioning topology
and the gain matrix related to mode 1 are kept for the whole simulation, even after a mode switch. The time steps at which
the switches occur are indicated by a vertical dashed black line.
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The results show that the proposed method can stabilize the closed-loop system while, if not applied, the
system might become unstable.

As future work, the proposed method can be extended by considering a dynamic partitioning, i.e. a
method in which nodes are moved dynamically between subsystems, rather than computing a whole new
partition. Moreover, another interesting related work is to apply other types of control algorithms to the
system, e.g. distributed or decentralized model predictive control. In that case, different sets of tools are
required to show the stability of the closed-loop systems. In addition, we also consider to extend our approach
to switching systems in which some of the modes are not stabilizable.

Appendix A. Parameters of the simulations

The state-space matrices of each area, which are adapted from [44], are as follows:

Aii =


−0.05 6 0 0 0 −6

0 −0.1 −1.01 1.11 0 0
0 0 −3.33 3.33 0 0

−2.08 0 0 −5 5 0
−0.0255 0 0 0 0 −0.06

γi 0 0 0 0 0

 ,

Bii =
[
0 0 0 5 0 0

]⊤
, where γi =

∑|Ni|
j=1 0.056.

Furthermore, for all the couplings (i, j) ∈ {(5, 1), (1, 2), (4, 3), (8, 4), (9, 5), (2, 6), (5, 6), (7, 6), (3, 7),
(4, 7), (1, 9), (13, 9), (6, 10), (9, 10), (6, 11), (10, 11), (13, 12), (10, 13), (18, 13), (10, 14), (13, 14), (15, 14),
(11, 15), (15, 16), (19, 16), (18, 17), (15, 18), (19, 18), (22, 18), (23, 19), (16, 20), (19, 20), (17, 21), (25, 21),
(21, 22), (27, 23), (20, 24), (23, 24), (12, 25), (29, 25), (25, 26), (29, 26), (22, 27), (28, 27), (24, 28), (27, 29),
(29, 30)}, the coupling state space matrices are the following:

Aij =

[
05×1 05×5

−0.055 01×5

]
, Aji =

 04×1 04×4 04×1

0 01×4 0.06
−0.055 01×4 0

 .

Appendix B. LMI method for Decentralized State-Feedback Control Design [37, 38]

In order to find the gain matrices K for decentralized state-feedback control of a system that consists of
p subsystems, the problem of finding a gain matrix K and a matrix P ≻ 0 such that{

P ≻ 0

(A+BK)⊤P (A+BK)− P ≺ 0
(B.1)

is solved using an LMI procedure. We define two matrices S and Y such that K = Y S−1 and S = P−1

and we solve with respect to S and Y the following LMI procedure:[
S SA⊤ + Y ⊤B⊤

AS +BY S

]
≻ 0 (B.2)

[
Sii SiiA

⊤
ii + Y ⊤

ii B
⊤
ii

AiiSii +BiiYii Sii

]
≻ 0 (B.3)

subject to
Sij = 0,Yij = 0, ∀i, j = 1, . . . , p, (i ̸= j) (B.4)

and where for i, j = 1, . . . , p, Sij ∈ Rni×nj , Yij ∈ Rmi×nj are the block entries of the matrices S and Y .
The LMI (B.2) guarantees the stability of the centralized system, while (B.3) stabilizes each subsystem. A
more detailed procedure can be found in [38].
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[13] M. Sezer, D. Šiljak, On structural decomposition and stabilization of large-scale control systems, IEEE
Transactions on Automatic Control 26 (2) (1981) 439–444.
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