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Comparison of Bounds for Optimal PMU
Placement for State Estimation in Distribution Grids

Miguel Picallo, Adolfo Anta and Bart De Schutter, Fellow, IEEE

Abstract—The lack of measurements in distribution grids poses
a severe challenge for their monitoring: since there may not be
enough sensors to achieve numerical observability, load forecasts
(pseudo-measurements) are typically used, and thus an accurate
state estimation is not guaranteed. However, an estimation is
required to control distribution grids given the increasing amount
of distributed generation. Therefore, we consider the problem
of optimal sensor placement to improve the state estimation
accuracy in large-scale, 3-phase coupled, unbalanced distribution
grids. This is a combinatorial optimization problem whose
optimal solution is unpractical to obtain for large networks.
We explore the properties of different metrics in the context
of optimal experimental design, like convexity and modularity,
to propose and compare several tight lower and upper bounds on
the performance of the optimal solution. Moreover, we show how
to use these bounds to choose near-optimal solutions. We test the
method on two IEEE benchmark test feeders, the 123-bus and
the 8500-node feeders, to show the effectiveness of the approach.

Index Terms—optimal sensor placement, phasor measurement
units, distribution grid state estimation, submodular maximiza-
tion, projected gradient descent, optimal design of experiments

I. INTRODUCTION

The operation of a power network requires accurate mon-
itoring of its state: bus voltages, line currents, consumption
and generation, to efficiently manage its controllable elements.
State Estimation (SE) serves that purpose by estimating a
minimum representation of the network state, for example
the bus voltage phasors. Taking several measurements and the
admittance matrix of the network as parameters, SE typically
solves a weighted least-squares problem using an iterative
approach like Newton-Raphson [1], [2]. In transmission net-
works, SE is fundamental, since the volatile and distributed
generation, which injects power in different locations of the
network, causes fast-changing bidirectional power flows. In
contrast, SE has not been so necessary in distribution grids
until recently, since these grids used to have a simple radial
structure with a single source bus injecting power. But this
situation is changing due to the increasing penetration of
distributed generation like PV panels, batteries, etc. [3].

The introduction of Phasor Measurement Units (PMUs)
improves the monitoring of electrical networks. Some work in
the literature is focused on using PMUs to achieve topological
observability [4], which can be solved using integer linear
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programming [5]. Although cheap PMUs [6] are becoming
available for mass deployment, their operational and network
communication costs [7] may still prevent installing the re-
quired minimum number of sensors to achieve topological
observability based only on PMUs, especially in distribution
grids. If topological observability is not possible, neither is
numerical observability ensured, which is required to solve
the SE [4]. As a result, conventional Supervisory Control
And Data Acquisition (SCADA) measurements need to be
combined with PMUs to solve the SE problem [8]. Therefore,
authors of recent work [9], [10] formulate the problem of
optimal PMU placement in terms of maximizing the SE
accuracy. This accuracy is typically measured through some
metric in the context of optimal design of experiments [11],
applied to the covariance matrix of the SE error caused by
noisy measurements and unreliable forecasts. As a result,
the optimal PMU placement problem is a combinatorial op-
timization problem with a nonlinear objective function, the
SE accuracy metric, and thus cannot be solved using linear
programming. Moreover, as the size of the network increases,
the optimal solution becomes unpractical to obtain given the
number of possible combinations of measurements [9].

In distribution grids, one of the major limitations for SE
is the lack of sufficient real-time measurements to achieve
observability, even using SCADA, and thus SE algorithms
need to rely on pseudo-measurements, such as load forecasts.
These pseudo-measurements have typically a large relative
noise associated (approximately 50% [12]), which causes a
high uncertainty in the SE estimates [13]. As a result, there is
a growing interest in using PMUs in distribution grids [14],
and some recent work proposes algorithms to place sensors
to satisfy a desired performance, like algorithms using greedy
and random combinations of sensors [15], [16] or evolutionary
algorithms [17], [18]. However, these approaches have no
optimality guarantees. Since optimal solutions are unpractical
in large networks, [19] uses the results in [9] to derive lower
bounds for the values of the optimal solution.

Our contribution consists in proposing and comparing sev-
eral bounds for the optimal solution of the PMU placement
problem in distribution grids, and extending these bounds
to large-scale grids. With these bounds, we will be able to
check the gap between any given suboptimal solution and the
optimal solution. First, we prove properties like convexity and
supermodularity for some metrics in [11]; then, we use these
properties to derive a combination of bounds based on convex
optimization as in [10], and bounds based on supermodular
minimization similar to [9]. These bounds allow us to obtain a
close bound for the performance of the optimal solution of the
problem under a cardinality constraint, as well as under a bud-
get constraint and sensors with different costs. Additionally,
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we show how these bounds scale to large networks by using
a projected gradient descent algorithm. Moreover, we show
through two examples of test feeders, one of them large-scale,
how bounds based on the supermodularity property perform
better than those based on convexity if the number of sensors
to deploy is small, as in distribution networks.

The rest of the paper is structured as follows. Section II
contains the nomenclature for the most relevant symbols. Sec-
tion III-A presents some background about power networks.
Section III-B discusses the different types of measurements.
Section III-C summarizes the newly proposed methodology
for SE [13]. Section IV presents the metrics considered
for the problem and their properties. Section V states the
optimal sensor placement problem and derives the lower and
higher bounds for each optimum value. Section VI shows the
effectiveness of the bounds on a test case. Finally, Section
VII presents the conclusions. For clarity purposes, proofs can
be found in the Appendices A and B. Appendices C and D
describe the methods to extend the approach to large grids.

II. NOMENCLATURE
variables:
V, I, S Vectors of bus voltages, currents and

apparent power
Vsrc, Isrc, Ssrc Vectors of bus voltages, currents and

apparent power at the source bus
Y Admittance matrix
N Number of nodes
Nmeas Number of measurements
σpsd Variance of the pseudo-measurements noise
σmag, σang Variance of the magnitude and angle noise

of the real-time measurements
zmeas,Σmeas Vector and covariance of measurements
Cmeas, C̃meas Matrices mapping state to measurements
Vprior, Vpost Prior and posterior voltage estimation
F Subspace of the feasible voltage solutions
Σprior,ΣF,prior Covariance of prior estimation
Σpost,ΣF,post Covariance of posterior estimation
fA(x), fD(x) Covariance metrics on the vector space
f̃A(X), f̃D(X) Covariance metrics on the set space
xopt, fopt Optimal solution and value of the original

PMU allocation problems (13), (20)
xconvex, fconvex Optimal solution and value of the problems

with convex relaxations (14), (21)
xfeas, ffeas Feasible solution and value of (15), (22)
xgreedy, fgreedy Greedy solution and value of (16) and

Algorithm 1
symbols:
|·| Magnitude of a complex number
(̄.), (·)∗ Complex conjugate and conjugate transpose
diag(·) Diagonal operator: vector to diagonal matrix
(·)i Element i of a vector
(·)i,j Element in row i and column j of a matrix
(·)ε Elements of a vector at indices in ε
(·)j,•, (·)ε,• Row j or rows with indices ε of matrix
tr(·),det(·) Trace and determinant of a matrix
∇f Gradient of f
{·} Set of elements
(·)(K) Value at iteration K
ΠX (·) Projection onto the set X

III. STATE ESTIMATION IN DISTRIBUTION GRIDS

A. Distribution Grid Model

A distribution grid consists of buses, where power is injected
or consumed, and branches, each connecting two buses. This
system can be modeled as a graph G = (V, E ,W) with nodes
V = {1, ..., Nbus} representing the buses, edges E = {(vi, vj) |
vi, vj ∈ V} representing the branches, and edge weights
W = {wi,j | (vi, vj) ∈ E} representing the admittance of
the branches, which are determined by the length and type
of the line cables. In 3-phase networks buses may have up
to 3 phases, so that the voltage at bus i is Vbus,i ∈ Cnϕ,i ,
where nϕ,i ≤ 3 (and the edge weights wi,j ∈ Cnϕ,i×nϕ,j ).
The state of the network is then typically represented by the
vector bus voltages Vbus = [V T

src, V T ]T ∈ CN+3, where
Vsrc ∈ C3 denotes the known voltage of the 3 phases at the
source bus, and V ∈ CN the voltages in the non-source buses,
where N depends on the number of buses and phases per bus.
Then, using the Laplacian matrix Y ∈ C(N+3)×(N+3) of the
weighted graph G, called admittance matrix [1], the power
flow equations to compute the currents I and the power loads
S are: [

Isrc
I

]
= Y

[
Vsrc
V

]
, S = diag(Ī)V (1)

B. Measurements

As explained in [13], several different sources of informa-
tion can be available to solve the SE problem:

1) Pseudo-measurements, i.e., load estimations Spsd based
on predictions and/or known installed load capacity at
every bus. Since these pseudo-measurements are estima-
tions rather than actual measurements, we model their
uncertainty using a Gaussian noise with a relative large
standard deviation (a typical value can be σpsd ≈ 50%
[12]).

2) Virtual measurements, i.e., buses with zero-injections, no
loads connected. They can be represented as physical
constraints for the voltage states by defining the set of
indices of zero-injection buses ε = {i, · · · , j}:

(S)ε = 0, (I)ε = 0 (2)
3) Real-time PMU measurements, i.e., voltage and current

GPS-synchronized measurements of magnitude and phase
angle. According to the IEEE standard for PMU [20], these
measurements may have a small error. Again, we model
this uncertainty using a Gaussian noise with a low standard
deviation for the magnitude and the angle, σmag ≈ 1% and
σang ≈ 0.01 rad respectively. They can be expressed using
a linear approximation [13] with magnitude and angle noise
due to the measurements and imperfect synchronization.
For a number of Nmeas measurements zmeas ∈ CNmeas we
have

zmeas ≈ CmeasV + diag(CmeasV )(ωmag + jωang) (3)
where ωmag, ωang are the Gaussian noises with mean 0
and standard deviation σmag, σang respectively: ωmag ∼
N (0, σmagId,Nmeas), ωang∼N (0, σangId,Nmeas), with Id,n de-
noting the identity matrix of dimension n, and where the
matrix Cmeas maps state voltages to measurements; it relates
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the values of the measurements to values of state voltages.
Then, for measurement j at phase l of bus i we have
(CmeasV )j = (Cmeas)j,•V =
Vil for a voltage measurement
(Y )il,•V for a current measurement
(Y )il,ml

(Vil − Vml
) for a branch-current i→ m

measurement

(4)

Since the measurement noises in (3) are small according
to the PMUs standard [20], their covariance matrices can
be approximated using the measurements:

Σmeas = (σ2
mag + σ2

ang)diag(|CmeasV |2)
≈ (σ2

mag + σ2
ang)diag(|zmeas|2)

C. State Estimation
Typically, SE consists in finding the voltages that best match

the measurements by solving a weighted least-squares problem
[1]. As proposed in [13], SE can be decomposed in two parts:
First, using the pseudo-measurement estimations or predictions
for the loads Spsd, we solve the power flow offline to obtain
a prior estimate Vprior:

Vprior = PowerFlow(Spsd) (5)
Then, using the real-time PMU measurements zmeas, a poste-
rior solution Vpost can be derived using a linear filter:

Vpost = Vprior +K(zmeas − CmeasVprior) (6)
where the gain matrix K is obtained by minimizing the error
covariance Σpost = E[(Vpost − V )∗(Vpost − V )]:

Σpost =Σprior +K(Σmeas + CmeasΣpriorC
∗
meas)K

∗

−KCmeasΣprior − ΣpriorC
∗
measK

∗

K = argminK tr(Σpost)

= ΣpriorC
∗
meas(CmeasΣpriorC

∗
meas +Σmeas)

−1

(7)

where Σprior and Σmeas are the expected error covariance of the
prior estimate Vprior and the measurements zmeas respectively.

Remark 1. Extra non-synchronized real-time measurements,
like magnitude measurements from SCADA, can be included
in the posterior update (6) for a greater improvement of the
posterior estimate Vpost by using the first-order approximation
of the measurement function [13]. If a multi-stage PMU
deployment is considered [21], prior installed PMUs can be
also considered as extra measurements in the same manner.

Remark 2. As shown in [8], splitting the problem in two
steps yields the same first-order approximation as solving
the problem in one step. Moreover, the posterior minimum-
variance estimator using the linear update (6), is equal to the
maximum-likelihood using a weighted least-squares approach
[13]. Therefore, we can conclude that for an SE method that
assumes Gaussian noises and performs a maximum likelihood
estimation, the posterior covariance will be approximately the
one in (7), and thus the method developed here for optimal
sensor placement can be also extended for other SE techniques
satisfying these conditions.

Since Vpost in (6) is an unbiased estimator, SE accuracy can
be defined as a function of the posterior covariance matrix
Σpost in (7), which needs to be minimized to improve the
SE accuracy. This motivates a deeper analysis of Σpost: if
there are zero-injection buses at indices ε when solving (5),

then Σprior will not be of full rank and thus will not be in-
vertible. For convenience, we consider the restricted subspace
{V | (Y )ε,•V = 0} and the linear transformation proposed in
[13] to represent the space of feasible solutions: V = Fx+V0

with x ∈ CN−|ε|, where |ε| is the cardinality of ε and F is the
null space of (Y )ε,•: F = ker((Y )ε,•) ∈ CN×N−|ε|, so that
F ∗F = Id, and V0 denotes the voltage under zero loads. Then
we have Σprior = FΣF,priorF

∗, where ΣF,prior is the covariance
of x. After some manipulations of (7), the resulting error
covariance Σpost (ΣF,post in this subspace) for the posterior
estimation Vpost can be expressed as

Σpost = F (Σ−1
F,prior + (CmeasF )∗Σ−1

measCmeasF )−1F ∗

ΣF,post = (Σ−1
F,prior + (CmeasF )∗Σ−1

measCmeasF )−1
(8)

In the presence of zero-injection buses, |ε| > 0, and then
Σpost ∈ CN×N is not full rank: rank(Σpost) = N −|ε|. It has
the same rank as ΣF,post ∈ C(N−|ε|)×(N−|ε|), which is full rank
since ΣF,prior is full rank. Moreover, the eigenvalues of ΣF,post
are all eigenvalues of Σpost, because for any eigenvector v of
ΣF,post, Fv is an eigenvector of Σpost with the same eigenvalue,
since F ∗F = Id. Consequently, we can analyze ΣF,post
instead of Σpost. These eigenvalues represent the lengths of
the axes of the confidence ellipsoid [22]. Moreover, since
measurement errors are caused separately by each sensor, they
are independent, i.e. Σmeas is diagonal, and we can split ΣF,post
by every measurement:
ΣF,post = (Σ−1

F,prior +
∑

i(CmeasF )∗i,•(CmeasF )i,•(Σ
−1
meas)i,i)

−1

= (Σ−1
F,prior +

∑
i xi(C̃measF )∗i,•(C̃measF )i,•(Σ

−1
meas)i,i)

−1

= ΣF,post(x)
(9)

where xi ∈ {0, 1}, xi = 1 if the physical quantity i has
a sensor measuring its value, 0 otherwise; and C̃meas is the
special case of CmeasF with all possible measurements of all
types (bus voltage, bus current, and line current) for all nodes
and lines in each phase.

Definition 1. In order to improve the accuracy of the SE, the
problem of optimal sensor placement consists in minimizing
Σpost(x), equivalently ΣF,post(x) in (9), according to a metric
m(·) and under a set of constraints h(·) to limit the number
of sensors or the total cost:

min
x

m(ΣF,post(x)) s.t. h(x) ≤ 0, xi ∈ {0, 1} ∀i (10)

For simplicity, we define: f(x) ≡ m(ΣF,post(x)).

Remark 3. Problem (10) is equivalent to minimizing the num-
ber of sensors or the total cost of the sensors, while enforcing
a given accuracy, i.e., satisfying a performance threshold λ of
the metric: min{x|f(x)≤λ, xi∈{0,1} ∀i} h(x), as in [15]–[18].
To achieve that, the problem (10) can be solved for different
numbers of sensors or budgets until the performance value
is below the threshold: min{x|h(x)≤0, xi∈{0,1} ∀i} f(x) ≤ λ.
The representation in (10), as used in [9], [10], [19] is
preferred due to the availability of a computationally efficient
optimization algorithm to solve the problem, see Appendix C.

IV. METRICS FOR SENSOR PLACEMENT

There are many possible metrics f(x) available in the
context of optimal design of experiments [11]. Concretely,
we will focus on the A-optimal and the D-optimal metrics,
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because of the properties that we will show later. Nonetheless,
the results of this paper could be generalized to other metrics
with the same properties.

Definition 2. The A-optimal and the D-optimal metrics are
defined as follows:

A-optimal : fA(x) := tr(Σpost(x)) = tr(ΣF,post(x))

D-optimal : fD(x) := log(det(ΣF,post(x)))
(11)

The A-optimal metric represents the sum of the eigenvalues
of ΣF,post and thus the sum of the lengths of axes of the
confidence ellipsoid [22]. This is the metric typically used for
SE methods, since standard SE maximizes the log-likelihood
through a weighted least-squares minimization [1], which is
equivalent to the minimum-variance estimator using the trace
[13]. The D-optimal metric is the natural logarithm of the
product of the eigenvalues of ΣF,post and it is related to the
logarithm of the volume of the confidence ellipsoid [22]. These
metrics have several properties relevant to the problem of
optimal sensor placement:

1) Convexity: When relaxing xi in (10) to be continuous,
xi ∈ [0, 1], the metrics are convex on x [22, Section 7.5]
[10], and thus a global optimum can be computed effi-
ciently. Note that despite log(x) being concave for x ∈ R,
log(det(X)) is convex for X ∈ Rn×n [22].

2) Gradient computation: The gradients ∇f for f ∈ {fA, fD}
can be derived analytically using matrix calculus [23]:

(∇fA(x))i =−tr
(
Σ2

F,post(x)(C̃meas)
∗
i,•(C̃meas)i,•

)
(Σ−1

meas)i,i

(∇fD(x))i =−tr
(
ΣF,post(x)(C̃meas)

∗
i,•(C̃meas)i,•

)
(Σ−1

meas)i,i
(12)

These expressions will be necessary when developing gra-
dient methods to optimize the placement of sensors in large
networks, see Appendix C.

3) Monotonicity: Moreover, these metrics can be seen as set
functions by defining the sets X = {i | xi = 1}. Note that
there is a bijection between both, i.e., i ∈ X ⇐⇒ xi = 1.
Therefore, we will use the notation X and x to denote the
set and the vector respectively, and f̂(X) = f(x) to denote
the metric functions applied to them. Defining

ΛX :=
∑
i∈X

(C̃meas)
∗
i,•(C̃meas)i,•(Σ

−1
meas)i,i ⪰ 0

the posterior error covariance can be expressed as
ΣF,post(X) = (Σ−1

F,prior + ΛX)−1.

Proposition 1. f̂A(X), f̂D(X) are monotone decreasing.
Proof. Consider the sets of sensors X ⊆ Y . Since ΛY −
ΛX = ΛY \X ⪰ 0, we have ΛY ⪰ ΛX . Then Σ−1

F,prior +

ΛY ⪰ Σ−1
F,prior + ΛX ⪰ 0 and thus (Σ−1

F,prior + ΛX)−1 ⪰
(Σ−1

F,prior + ΛY )
−1. Consequently, for any of the functions

f̂ ∈ {f̂A, f̂D}, f̂(X) ≥ f̂(Y ). ■

4) Modularity: Submodularity/supermodularity are a sort of
concavity/convexity properties when considering set func-
tions. The increment of a set function when adding a new
element diminishes (submodular) or increases (supermod-
ular) as the set gets larger.
Definition 3. Given a finite set Ω, a submodu-
lar/supermodular function [24] is a set function f̂ : 2Ω →
R, with f̂(∅) = 0, where ∅ is the empty set, so that

for any element a ∈ Ω and two subsets X,Y so that
X ⊆ Y ⊆ Ω \ {a} we have

submodular: f̂(Y ∪ {a})− f̂(Y ) ≤ f̂(X ∪ {a})− f̂(X)

supermodular: f̂(Y ∪ {a})− f̂(Y ) ≥ f̂(X ∪ {a})− f̂(X)

Proposition 2. f̂D(X)− f̂D(∅) is supermodular.
Proof. See Appendix A ■
This means that for fD, there exist bounds between greedy
solutions and optimal solutions, as we will see later in (19)
and (24). These bounds will allow us to provide a limit on
the values of the optimal solution, and thus to check how
far the values of other suboptimal solutions can be from
the value of the optimal solution.
Remark 4. In [9] was proven that if the rows in C̃meas are
orthogonal, f̂A(X) − f̂A(∅) is supermodular, and lower
bounds based on the supermodularity property can also be
used for the A-optimal metric. However, the rows of C̃meas
are in general not orthogonal due to the different types of
sensors in (4), the electrical connections represented in Y ,
and the effect of the reduced subspace F .

V. OPTIMAL SENSOR PLACEMENT

So far we have looked at the cost function in (10), now
we will focus on the constraints. In this section we state
the optimal sensor placement problem under two different
constraints: a cardinality constraint limiting the number of
sensors, which is the most typical approach in the literature
[9], [10], [12], and a budget constraint limiting the total cost
of the deployed sensors, which may have different costs. For
each case, we derive the respective lower and upper bounds on
the optimal performance, using the metrics properties derived
in Section IV.

A. Solutions with cardinality constraint

For any of the metrics f ∈ {fA, fD}, the problem of optimal
placement of Nmeas sensors is

xopt = argmin
x

f(x) s.t.
∑
i

xi ≤ Nmeas, xi ∈ {0, 1} ∀i

(13)
where Nmeas indicated the maximum number of sensors. We
denote the value of the optimal solution of (13) fopt = f(xopt).

Similar to [25], [26] for general estimation problems and in
[10] for transmission power networks, we relax the constraints
in (13), xi ∈ [0, 1], to get a continuous convex problem using

xconvex = argmin
x

f(x) s.t.
∑
i

xi ≤ Nmeas, xi ∈ [0, 1] ∀i

(14)
We denote the value of the optimal solution of (14) as
f(xconvex) = fconvex. However, this solution will not necessarily
be feasible to (13). To create a feasible solution xfeas (with
respective value f(xfeas) = ffeas), we can take the largest Nmeas
values of xconvex, set them to 1 and the others to 0:

xfeas,i =

{
1 if xconvex,i ≥ xconvex,k

0 otherwise
(15)

where k is such that
∣∣{i | xconvex,i ≥ xconvex,k}

∣∣ = Nmeas. Ties
are broken arbitrarily if there is more than one xconvex,i with
value xconvex,k, i.e. if

∣∣{i | xconvex,i = xconvex,k}
∣∣ > 1. This also
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applies for further possible ties throughout the paper. Another
simple way to create a feasible solution would be using a
forward greedy sensor selection: at iteration K, given the set
of selected sensors X(K−1), add a new sensor k such that
k = arg min

i/∈X(K−1)
f̂(X(K−1) ∪ {i}), X(K) = X(K−1) ∪ {k}

(16)
We denote the solution of (16) xgreedy and its value
f(xgreedy) = fgreedy. Then, since xopt is a feasible suboptimal
solution of (14), and xfeas and xgreedy are feasible suboptimal
solutions of (13), the following holds for all metrics:

fconvex ≤ fopt ≤ min(fgreedy, ffeas) (17)

For the case of f̂D, since f̂D(X)− f̂D(∅) is monotone non-
increasing and supermodular (−f̂D(X) + f̂D(∅) is monotone
nondecreasing submodular), we have an extra lower bound
[24] for fopt of (13):

f̂D,greedy − f̂D(∅) ≤ (f̂D,opt − f̂D(∅))α

α =

(
1−

(
1− 1

Nmeas

)Nmeas
)
∈ (1− e−1, 1]

(18)

so that
f̃D,greedy := (f̂D,greedy − f̂D(∅))α−1 + f̂D(∅) ≤ fD,opt (19)

B. Solutions with budget constraint
Although the problem of sensor placement under a cardinal-

ity constraint is simpler and has more desired properties [24],
a more realistic and economic representation of the problem
would be having a budget constraint on the sensors

xopt = argmin
x

f(x) s.t.
∑
i

cixi ≤ b, xi ∈ {0, 1} ∀i (20)

where b represents the budget and ci the cost of installing
a sensor at location i. This can take into account the extra
cost of installing a sensor in a remote area, or locations where
specific rights might be required, or different types of sensors,
etc. The relaxed convex problem is then

xconvex = argmin
x

f(x) s.t.
∑
i

cixi ≤ b, xi ∈ [0, 1] ∀i (21)

Similar to (15), a feasible solution xfeas w.r.t. (20) can be
built using the convex solution xconvex of (21), by iteratively
taking the sensor with highest xconvex,i: at iteration K, and
until the set of possible sensors is empty, B = {i | ci ≤
b −

∑
j∈X(K−1) cj} = ∅, add to the set of selected sensors

X(K−1) a new sensor k /∈ X(K−1) such that:

k = argmaxi∈B,i/∈X(K−1)xconvex,i, X
(K) = X(K−1) ∪ {k}

(22)
Likewise, we can adapt the forward greedy selection algo-

rithm (16) to take costs into account. Therefore, we can use
the cost-effective forward greedy selection algorithm of [27],
which in every iteration adds the sensor with the lowest ratio
of objective function improvement divided by sensor cost. In
this version we also return intermediate values required for the
bounds. For clarity we detail the whole algorithm here:

Using Algorithm 1, we denote the solutions as Xgreedy1 =
X1, Xgreedy2 = X2 and Xgreedy1a = X1 ∪ {a} with
corresponding values f̂(Xgreedy1) = fgreedy1, f̂(Xgreedy2) =

fgreedy2, f̂(Xgreedy1a) = fgreedy1a. Since Xgreedy1 ⊆ Xgreedy2,
fgreedy2 ≤ fgreedy1. Note that in the cardinality constrained

Algorithm 1 Cost-effective forward greedy selection

Require: b > 0, c ∈ Rn, c ≥ 0
1: X1 ← ∅
2: k ← argmini

f̂({i})
ci

3: while ck ≤ b−
∑

i∈X1
ci do

4: X1 ← X1 ∪ {k}
5: k ← argmini

f̂(X1∪{i})
ci

6: end while
7: a← k
8: X2 ← X1

9: while {i|ci ≤ b−
∑

j∈X2
cj} ≠ ∅ do

10: k ← argmin{i|ci≤b−
∑

j∈X2
cj}

f̂(X2∪{i})
ci

11: X2 ← X2 ∪ {k}
12: end while
13: return X1, X2, a

case we would have X1 = X2, and hence fgreedy1 = fgreedy2;
therefore we use fgreedy in that case. Then, as in (17) we know:

fconvex ≤ fopt ≤ min(fgreedy2, ffeas) (23)

Again, for the case of f̂D, since f̂D(X) − f̂D(∅) is nonin-
creasing supermodular, we have two extra lower bounds for
the value fopt of (20), which are derived from the proofs in
[28], [29]:
f̃D,greedy1 := (fD,greedy1 − f̂D(∅))β−1 + f̂D(∅) ≤ fD,opt

f̃D,greedy1a := (fD,greedy1a − f̂D(∅))β−1
a + f̂D(∅) ≤ fD,opt

(24)

with
β =

(
1−

∏
i∈Xgreedy1

(
1− ci

b

))
∈ (0, 1]

βa =
(
1−

∏
i∈Xgreedy1a

(
1− ci

b

))
∈ (1− e−1, 1]

(25)

Remark 5. If the costs ci are unitary and the budget b equals
the number of sensors, i.e ci = 1 ∀i and b = Nmeas, then
α = β. Consequently, (19) is a particular case of (24).

A drawback of the bound with β in (24) is that β does not
have a lower bound bigger than 0, and thus it may happen
that β−1 → ∞ and the bound becomes trivial. Nonetheless,
we can prove the following result:

Proposition 3. Let γ ∈ (0, 1] define the percentage of budget
used, so that

∑
i∈Xgreedy1

ci = γb ≤ b, then we have

β ∈ (1− e−γ , 1], βa ∈ (1− γe−γ , 1] (26)

Proof. See Appendix B ■

Proposition 3 shows that if γ → 0, then β → 0, but βa → 1;
so only the bound with βa is useful. If γ → 1, β → βa, and
the bound with β may be better.

Given the supermodularity of fD, see Proposition 2, we can
also consider the bound proposed in [27], called online bound,
generated by Algorithm 2 to obtain

max
A

f̃D,online(A) ≤ fD,opt (27)

Finally we have all bounds:
max(maxA f̃D,online(A), f̃D,greedy1, f̃D,greedy1a, fD,convex)

≤ fD,opt ≤ min(fgreedy2, ffeas)
(28)
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Algorithm 2 Online bound

Require: b > 0, c ∈ Rn, c ≥ 0,A (any set)
1: X ← ∅
2: f̃D,online = f̂D(A)
3: while

∑
i∈X ci < b do

4: k ← argmin{i/∈A}
f̂D(A∪{i})−f̂D(A)

ci
5: X ← X ∪ {k}
6: f̃D,online ← f̃D,online + f̂D(A ∪ {k})− f̂D(A)
7: end while
8: f̃D,online ← f̃D,online + (f̂D(A ∪ {k})− f̂D(A))

b−
∑

i∈X ci
ck

Fig. 1: 123-bus test feeder from [30] with different cost zones.

Remark 6. Note that since A may be any set of sensors,
maxA f̃D,online(A) is computationally demanding.

VI. TEST CASE

Now we test the bounds on the 123-bus [30] and the 8500-
node [31] test feeders. For the budget-constrained case in the
123-bus feeder, we consider two more expensive zones to
represent heterogeneous costs: c̃i = 2 in the top left blue
zone, c̃i = 1.5 in the bottom right red zone, c̃i = 1 elsewhere,
see Fig. 1. Then, sensor costs are normalized ci =

c̃i∑
i c̃i

, so
that their average is 1, and thus the budget is approximately
the number of sensors deployed. In the 8500-node feeder, we
assign random normal distributed costs: ci ∼ N (1, 0.1). For
any number of measurements or budget, the sensor locations
can be recovered from each solution x.

The algorithms are coded in Python and run on an Intel
Core i7-6700HQ CPU at 2.60GHz with 16GB of RAM. For
the convex optimization problems (14) and (21), we use the
function minimize of the scipy.optimize package for the 123-
bus test case, and a projected gradient descent algorithm for
the 8500-node, see Appendix C, where we use an efficient
projection algorithm as in [32] in order to handle the com-
putational complexity of the 8500-node feeder. Additionally,
since function evaluations may take a few seconds for the
8500-node feeder, we use matrix algebra results to speed up
the computation of the greedy solutions in (16) and Algorithm
1, see Appendix D. Otherwise, it could take several days to
evaluate all possible nodes in every step.

Fig. 2 shows the bounds for the 123-bus and the 8500-node
test feeders. Both the A,D-optimal metrics are analyzed, under
a cardinality and a budget constraint, for different numbers
of sensors and budgets respectively. For simplicity, in the
online bound f̃D,online(A) in (27), we have only considered

A = ∅ instead of any A. However, we have observed that
other options, like using a greedy solution for A, produce
similar bounds. The online bound has also been applied to the
cardinality constrained problem. The yellow shaded area with
squares shows the area between the minimum upper bound and
the maximum lower bound, and thus the possible locations of
the optimal solution f{A,D},opt.

For the D-optimal metric, in Fig. 2c, 2d, 2g and 2h, it can be
observed that the online bound f̃D,online (27) outperforms the
rest of the lower bounds (f̃D,greedy (19), f̃D,greedy1 (24), fD,convex
(14), (21)) for a small number of sensors under a cardinality
and under a budget constraint, especially in the 8500-node
feeder. For clarity, f̃D,greedy1a (24) has not been plotted, since
the results were almost equal to f̃D,greedy1. For a small number
of sensors, it is remarkable how the lower bound based on
convex relaxations fD,convex performs poorly compared to the
other lower bounds, as it produces too optimistic results.
This is a result of the high SE uncertainty in all nodes of
the grid before the PMU placement; as a consequence, the
convex optimization allocates partial unfeasible PMUs with
0 < xi ≪ 1 in many nodes of the grid, instead of full PMUs
with xi = 1 in a few nodes. This is equivalent to adding more
sensors with an error with larger relative standard deviation.
This cannot be done, since PMUs have a fixed maximum
relative error by design [20], see section III-B.

For the A-optimal metric, in Fig. 2a, 2b, 2e and 2f we do not
have the lower bounds based on the supermodularity property;
however, the lower bound based on convex relaxations fA,convex
(14), (21) performs better than for the D-optimal metric. It
still can be observed that for a small number of sensors this
convex bound is far from the greedy and feasible solutions
(fA,feas (15), fA,greedy (16), fA,greedy2 in Algorithm (1)), but
not as much as in the D-optimal metric case, and the bound
approaches the values of the solutions quicker.

As expected, for both metrics simple greedy or feasible
solutions (f{A,D},greedy, f{A,D},greedy2, f{A,D},feas) perform better
than random configurations (f{A,D},rand), even better than the
best random configuration out of the 100 samples displayed.

VII. CONCLUSIONS

We have stated the problem of optimal sensor placement
for deploying PMUs to minimize the uncertainty of state
estimation in distribution grids, both under a cardinality and
a budget constraint. We have analyzed the properties of
different metrics, concretely, convexity and supermodularity.
Using these properties, we have derived a set of bounds that
have enabled us to narrow the gap of the possible value of the
optimal solution of this intractable problem. Since the optimal
solution is unpractical to obtain in large grids, suboptimal
solutions are required instead. Using these bounds, we can
compute the maximum gap between any suboptimal solution
and the optimal solutions. Moreover, we have observed, that
the bounds produced by the supermodularity property are
especially relevant when only a small number of sensor can
be installed in large networks. In this case, a bound based on
convex relaxation produces a too optimistic result.

Future work could include extending these results to take
into account network reconfiguration due to different states of
switches. Moreover, more exhaustive search algorithms could
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(a) 123-bus A-optimal with cardinality constraint (b) 123-bus A-optimal with budget constraint

(c) 123-bus D-optimal with cardinality constraint (d) 123-bus D-optimal with budget constraint

(e) 8500-node A-optimal with cardinality constraint (f) 8500-node A-optimal with budget constraint

(g) 8500-node D-optimal with cardinality constraint (h) 8500-node D-optimal with budget constraint

Fig. 2: Plots for the A,D-optimal metrics, under cardinality and budget constraints, the 123-bus and 8500-node cases, showing
the lower bounds and the upper bounds. The grey shaded area filled with oblique lines shows the values f{A,D},rand for random
configurations of sensors (100 samples). The yellow shaded area filled with a grid of horizontal and vertical lines shows the
possible locations of the optimal solution f{A,D},opt.

be developed to obtain solutions closer to the lower bounds.
Additionally, it would be interesting to analyze how the choice
of the metric affects the effectiveness of the bounds.

APPENDIX A
PROOF OF PROPOSITION 2

Proof. The constant term f̂D(∅) is only necessary to ensure
that the function is 0 when X = ∅. For the rest of the proof
this term is not necessary since for any two sets X,Y we have:
(f̂D(Y )− f̂D(∅))− (f̂D(X)− f̂D(∅)) = f̂D(Y )− f̂D(X).
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This proof is very similar to the one used for controllability
gramians in [33]. Consider the set of sensors X ⊆ Y and a
sensor a so that {a} /∈ Y . Now let us define

ga(X) := f̂D(X ∪ {a})− f̂D(X)

f̃D(γ,X, Y ) := log det
(
(Σ−1

F,prior + ΛX + γΛY \X)−1
)

g̃a(γ,X, Y ) := f̃D(γ,X ∪ {a}, Y ∪ {a})− f̃D(γ,X, Y )

So that we have f̃D(0, X, Y ) = f̂D(X), f̃D(1, X, Y ) = f̂D(Y ),
g̃a(0, X, Y ) = ga(X) and g̃a(1, X, Y ) = ga(Y ). Now we will
prove that ga(Y ) ≥ ga(X) by computing the gradient of g̃a:

∂f̃D
∂γ (γ,X, Y ) =−tr

(
(Σ−1

F,prior + ΛX + γΛY \X)−1ΛY \X
)

∂g̃a
∂γ (γ,X, Y ) = ∂f̃D

∂γ (γ,X ∪ {a}, Y ∪ {a})− ∂f̃D
∂γ (γ,X, Y )

=−tr
((

(Σ−1
F,prior + ΛX∪{a} + γΛY \X)−1

−(Σ−1
F,prior + ΛX + γΛY \X)−1

)
ΛY \X

)
Since X ⊆ Y , we have ΛY \X ⪰ 0. Since Λ{a} ⪰ 0 and

ΛX∪{a} = Λ{a} + ΛX , we have

Σ−1
F,prior + ΛX∪{a} + γΛY \X ⪰ Σ−1

F,prior + ΛX + γΛY \X ⪰ 0

and thus
(Σ−1

F,prior+ΛX+γΛY \X)−1 ⪰ (Σ−1
F,prior+ΛX∪{a}+γΛY \X)−1

Consequently, ∂g̃a
∂γ (γ,X, Y ) ≥ 0 and

ga(Y )− ga(X) = g̃a(1, X, Y )− g̃a(0, X, Y )

=
∫ 1

0
∂g̃a
∂γ (γ,X, Y )∂γ ≥ 0

so that
f̂D(Y ∪ {a})− f̂D(Y ) ≥ f̂D(X ∪ {a})− f̂D(X)

■
APPENDIX B

PROOF OF PROPOSITION 3
Proof. If

∑
i∈Xgreedy1

ci = γb, then
∏

i∈Xgreedy1

(
1− ci

b

)
achieves its maximum at ci = γb

|Xgreedy1| for all i, where | · |
is the number of elements in a set. Then we have:

β = (1−
∏

i∈Xgreedy1
(1− ci

b ))

≥
(
1−

(
1− γ

|Xgreedy1|
)|Xgreedy1|)

≥ (1− e−γ)

We assume that ci ≤ b for all i (sensors with ci > b are
discarded since they cannot be installed). Then we know that
b > ca > b − γb, where ca is the cost of element a, and we
have:

βa = (1−
∏

i∈Xgreedy1a
(1− ci

b ))

≥
(
1−

(
1− γ

|Xgreedy1|
)|Xgreedy1|

(1− ca
b )

)
≥ (1− e−γ(1− b−γb

b )) = (1− γe−γ)

■
APPENDIX C

EFFICIENT PROJECTED GRADIENT DESCENT

To solve the convex problem under a cardinality constraint
(14) for the 8500-node feeder, we use a projected gradient
descent method using the gradient expressions in (12):

x(K+1) = ΠX (x(K) − α(K)∇f(x(K)))
X = {x |

∑
i xi = Nmeas, xi ∈ [0, 1]}

where the suffix (·)(K) denotes the value at iteration K. We use
α(K) = α

k∥∇f(x(K))∥ 2
to guarantee convergence of the method

[34], where α is a design parameter. For a more efficient

projection ΠX (·), we use the scaled boxed-simplex projection
algorithm proposed in [32], which converges in a finite number
of iterations, as opposed to the projection algorithm proposed
in [10].

When solving the problem under a budget constraint (21),
we can use the change of variables yi = xici, and the function
fc(y) = f

(
y
c

)
, and solve the alternative problem

yconvex = argmin
y

fc(y) s.t.
∑
i

yi ≤ b, yi ∈ [0, ci] ∀i

using the projected gradient descent method:
y(K+1) = ΠY(y

(K) − α(K)∇fc(y(K)))
Y = {y |

∑
i yi = b, yi ∈ [0, ci]}

where an efficient implementation of the projection ΠY(·) can
be derived by using a modified version of the one in [32] by
changing the 1 to ci for each respective yi. The details of the
algorithm can be found in [35].

APPENDIX D
EFFICIENT GREEDY COMPUTATIONS

The posterior covariance at iteration K can be defined as

Σ
(K)
F,post = (Σ−1

F,prior+
∑

i∈X(K)

(CmeasF )∗i,•(CmeasF )i,•(Σ
−1
meas)i,i)

−1

With this expression, we use Woodbury’s matrix identity [23]
to obtain a simplified expression that is easier to evaluate:
f̃A(X

(K) ∪ {j})
= tr

(
((Σ

(K)
F,post)

−1 + (CmeasF )∗j,•(CmeasF )j,•(Σ
−1
meas)j,j)

−1
)

= tr
(
Σ

(K)
F,post −

Σ
(K)
F,post(CmeasF )∗j,•(CmeasF )j,•Σ

(K)
F,post

(Σ−1
meas)

−1
j,j+(CmeasF )j,•Σ

(K)
F,post(CmeasF )∗j,•

)
= tr(Σ(K)

F,post)−
(CmeasF )j,•(Σ

(K)
F,post)

2(CmeasF )∗j,•

(Σ−1
meas)

−1
j,j+(CmeasF )j,•Σ

(K)
F,post(CmeasF )∗j,•

Then, we use Sylvester’s determinant identity [23] to get
f̃D(X

(K) ∪ {j})
= log det

(
((Σ

(K)
F,post)

−1+(CmeasF )∗j,•(CmeasF )j,•(Σ
−1
meas)j,j)

−1
)

= log det(Σ(K)
F,post)

− log det
(
Id +Σ

(K)
F,post(CmeasF )∗j,•(CmeasF )j,•(Σ

−1
meas)j,j

)
= log det(Σ(K)

F,post)

− log(1 + (Σ−1
meas)j,j(CmeasF )j,•Σ

(K)
F,post(CmeasF )∗j,•)
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