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Abstract

To mitigate the effects of the intermittent generation of renewable energy sources, reliable and efficient energy storage
is critical. Since nearly 80 % of households energy consumption is destined to water and space heating, thermal energy
storage is particularly important. In this context, we propose and validate a new model for one of the most efficient
heat storage systems: stratified thermal storage tanks. The novelty of the model is twofold: first, unlike the non-smooth
models from the literature, it identifies the mixing and buoyancy dynamics using a smooth and continuous function.
This smoothness property is critical to efficiently integrate thermal storage vessels in optimization and control problems.
Second, unlike models from literature, it considers two types of buoyancy: slow, linked to naturally occurring buoyancy,
and fast, associated with charging/discharging effects. As we show, this distinction is paramount to identify accurate
models. To show the relevance of the model, we consider a real tank that can satisfy heat demands up to 100 kW.
Using real data from this vessel, we validate the proposed model and show that the estimated parameters correctly
identify the physical properties of the vessel. Then, we employ the model in a control problem where the vessel is
operated to minimize the cost of providing a given heat demand and we compare the model performance against that
of a non-smooth model from literature. We show that: 1) the smooth model obtains the best optimal solutions; 2) its
computation costs are 100 times cheaper; 3) it is the best alternative for use in real-time model- based control strategies,
e.g. model predictive control.

Keywords: Thermal Storage, Stratified Tank, Modeling, Parameter Estimation, Optimal Control, Numerical
Optimization

1. Introduction

In the last decade, as the integration of renewable en-
ergy sources into the electrical grid has steadily increased,
energy storage has emerged as one of the key components
in this change. In particular, due to the increasing uncer-
tainty associated with renewable source generation, imbal-
ances between production and consumption of electricity
have become more common. As the amount of variable re-
newable electricity is expected to increase in future electri-
cal systems [1], these problems will become worse. In this
context, energy storage is paramount to tackle these im-
balances as it shifts consumption and generation and keeps
the grid stable. In addition to grid stability, energy stor-
age has also become extremely important for profit max-
imization. More specifically, under positive imbalances,
i.e. generation larger than consumption, electricity prices
are usually lower (and vice versa). In this situation, util-
ity companies would ideally like to buy and store energy
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under positive imbalances and use/sell the stored energy
under negative imbalances. To optimally carry out this
strategy, utilities need cost-effective storage systems that
are also fast and efficient.

While the perfect energy storage system does not exist,
thermal energy storage (TES) systems partially fulfill the
increasing demand for cost-effective and efficient storage.
While using electricity to generate heat was not efficient
in fossil fuel-based power systems, the flexibility of using
electricity for heating purposes combined with TES has
recently received increasing attention [2, 3]. Particularly,
considering that 26.3 % of the electricity consumption in
EU households is destined to water and space heating,
and that water and space heating accounts for 79.2 % of
the total energy consumption in the same households [4]
and one-third of related greenhouse gas emissions [5], TES
systems might help fulfill some of the energy storage re-
quirements. The new class of systems that exploit the
interaction between different energy carriers are usually
called multi-energy systems, and as they try integrate di-
verse energy systems to achieve a higher energy utilization
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efficiency [6], they have become in a central point of re-
search [7, 8]. Another application where TES systems are
a key component is concentrated solar power plants; there,
they help to smooth the production, to maximize earnings
from the electricity market fluctuation, and to increase the
lifespan of the power block [9].

1.1. Stratified fluid tank

One of the most important TES systems are stratified
fluid tanks [10], which store energy by keeping fluid layers
stratified at different temperatures. In detail, exploiting
the fact that fluid density decreases as temperature in-
creases, they are able to stratify fluid layers where the
warmest layers are displaced to the top of the tank and
the coldest layers to the bottom. This type of heat stor-
age systems are widely used, and multiple applications can
be found in the literature [3, 5, 11–13].

One of their main advantages is that, in comparison
with a regular mixed fluid tank, a stratified tank improves
the average net energy and exergy efficiencies by up to
60% [10]. To maximize the energy efficiency, the system is
built such that the mixing between the stratified layers is
minimized.

Within the family of stratified fluid tanks, there are sev-
eral possible configurations depending on how the tank is
charged, i.e. how heat is introduced in the tank, and on
how the tank is discharged. In terms of charging, the fluid
in the tank can be heated directly using a fluid flow or
indirectly using a heat exchanger [10]. Likewise, when dis-
charging the tank, heat can be directly extracted as a fluid
flow or indirectly extracted using a heat exchanger. The
four possible combinations are depicted in Figure 1.

The main advantage of indirect charge/discharge is that,
as no flow is introduced in the tank, stratification is more
easily maintained. However, since heat is indirectly trans-
ferred, the energy efficiency is lowered. In contrast, while
direct heating introduces turbulences in the tank that
might destroy the thermal stratification, it has a larger
efficiency as heat is directly transferred [10].

1.2. Modeling of storage tanks

The scientific literature regarding modeling of stratified
thermal storage vessels is very large and diverse. Typi-
cally, the proposed models can be divided into three cate-
gories: 1-dimensional models [14–18], 2-dimensional mod-
els [19, 20], and 3-dimensional computational fluid dynam-
ics models [21, 22]. Although 1D models are less accurate,
they are the preferred choice in several applications: while
2D and 3D models are more accurate, their computational
complexity makes them unsuitable for process optimiza-
tion or long-term simulation of the storage tank [10, 19].
By contrast, to analyze the behavior of the fluid within
the tank or the effect of new configurations, 2D and 3D
models give detailed information that a 1D model cannot
provide.

One of the most important reasons behind the reduced
accuracy of 1D models is the approximation they make to

model the mixing of layers due to buoyancy effects [18, 19].
In more detail, given two consecutive layers in a real tank,
the lower layer might achieve a temperature higher than
the top layer; in this scenario, the bottom layer would
rise, the top layer would sink, and during this process both
layers would mix. In a real tank, there are several scenarios
when this effect might occur:

1. Due to its larger contact area with the environment,
the top layer in the tank would normally suffer larger
heat losses. Therefore, as the top layer loses more
heat, there is a point when the layer below reaches a
higher temperature and both layers mix.

2. When the tank is directly charged/discharged, new
fluid enters the tank. If the temperature of the incom-
ing fluid is higher than the temperature of any layer
above the entrance point, the incoming fluid will rise
and mix.

3. When the tank is indirectly charged/discharged, a
lower layer might be heated more than a top layer.
In this scenario, the fluid in the lower layer will rise
and mix.

When considering 1D models for thermal stratified stor-
age vessels from the literature, none of them can physically
model this effect. More specifically, while 1D models con-
sider heat transfers between fluid layers and input/output
flows, they do not model the effect of gravity in the tank.
To address this, the 1D models proposed in the literature
usually include a post-processing step after each simula-
tion step that approximates the mixing of layers due to
buoyancy effects [16, 19]. This post-processing algorithm
has the following structure:

1. Check the temperature of each layer and evaluate
whether buoyancy effects are present.

2. If buoyancy effects are present, mix the corresponding
layers.

3. Repeat steps 1-2 until buoyancy effects are removed.

1.3. Motivation

The post-processing method described before has a large
disadvantage: the dynamics of the tank are not defined
by a single continuous equation, but by a first continu-
ous equation that models the heat transfers and the in-
put/output flows and a second non-smooth algorithm that
models the buoyancy effects. Due to this structure, the
1D dynamical models proposed in the literature cannot be
used with derivative-based optimization algorithms that
make use of analytical expressions; instead, they either re-
quire the use of heuristic optimization methods or of finite
differences if derivative-based optimization methods are to
be used. This is especially critical for control applications:
if the optimal set of controls to steer the tank have to be
computed, the optimization problem that computes these
controls needs to be based on a heuristic method, e.g. ge-
netic algorithms [23, 24] or particle swarm optimization
[25], or on a derivative-based optimization algorithm that
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Figure 1: Simplified configurations of stratified tanks when considering the two types of exchanging heat (direct and indirect)
and the two directions of the heat (charge and discharge).

relies on finite differences. As both heuristic methods and
derivative-based optimization via finite differences require
large computation times, the controller time step might
not be enough for these methods to find a solution. In
addition, as heuristic methods cannot guarantee that the
obtained solution is a local minimum, the quality of the
obtained solution might be worse. This last issue could be
solved using dynamic programming [26], which could com-
pute the global solution using the two-step non-continuous
dynamics; however, due to the curse of dimensionality [26],
the applications would be limited to thermal storage tanks
with a low-dimensional state space, i.e. a small number of
controls and a small number of stratified layers.

1.4. Contributions and organization of the paper

The main goal of this paper is to solve the described
problem by deriving a 1D continuous and smooth dynam-
ical model that can accurately model the buoyancy effects
and that can be used in derivative-based optimization al-
gorithms that use analytical methods to compute deriva-
tive information, e.g. automatic differentiation. While a
model with similar characteristics has been proposed in
[12], that approach only modeled the buoyancy effects due
to input/output flows, i.e. due to direct charging and dis-
charging. In the current paper, the aim is different as
we propose a more general model that can represent the
buoyancy effects due to heat losses, indirect charging and
discharging, and direct charging and discharging. In addi-
tion, a second difference w.r.t. [12] is the fact that, while
the model of [12] included non-smooth expressions given
by the min and max functions, the model proposed in the
current paper is completely smooth.

As a second contribution, we take an approach that dif-
fers from the existing literature and we explicitly model
and identify two different types of buoyancy: slow buoy-
ancy effects that are linked to naturally occurring pro-
cesses, and fast buoyancy effects that are associated with
charging and discharging the vessel. As we show, this dis-
tinction is very important to obtain a smooth model that

can accurately represent the buoyancy dynamics.

Finally, as a third contribution, to show the benefits of
using the smooth model in optimization problems, we com-
pare the smooth model against the non-smooth model in
a real-life optimization setup: an optimal control applica-
tion where a 1500 m3 real commercial storage vessel needs
to satisfy a given heat demand over some time horizon
and, knowing the electricity prices over the given period,
it has to minimize the cost of charging the vessel while sat-
isfying the demand. Using this case study we show that
the smooth model does not only obtain the best optimal
solutions, but its computation costs are 100 times cheaper.

As a final remark, it is important to note that the model
estimation and validation is done using a real thermal
storage vessel. Having a real-life setup is important to
strengthen the conclusions of the study as the model is
validated in a real noisy environment.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces a real thermal vessel used as a case study
to verify and study the proposed model. Section 3 presents
and discusses the proposed model. Next, Section 4 esti-
mates the parameters of the model when applied to the
real system and validates the model. Then, Section 5 il-
lustrates the benefits of the model in an optimal control
set-up by comparing the model performance against non-
smooth models from the literature. Finally, Section 6 con-
cludes the paper and discusses future research.

2. Real thermal vessel

In this paper, to illustrate the proposed general model,
we consider a real stratified thermal storage tank: the Eco-
vat vessel [27]. This system will be used as a case study to
validate the proposed general model for thermal storage
vessels and it is briefly presented here as a short introduc-
tion to this type of storage systems. Note however that the
proposed approach is generic and can easily be applied to
other types of stratified thermal storage tanks.
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Figure 2: Schematic representation of the Ecovat system.

The considered thermal vessel is a large subterranean
thermal storage vessel with capabilities for seasonal ther-
mal storage and with the ability to supply heat demand
to a cluster of buildings. The thermal vessel is divided
into several segments that can be charged and discharged
separately. Due to this property and due to thermal strat-
ification, each of these segments acts as a different heat
buffer. The vessel employs indirect charging/discharging
via heat exchangers located in the vessel walls that can
receive heat from two difference sources: a heat pump or
resistance heaters. The insulation structure of the vessel
is such that it can very efficiently store energy between
seasons. In particular, the heat losses of the vessel are
about 25% in a period of 6 months. Another advantage of
the vessel is that, due to its indirect charging/discharging
structure, the stratification of the layers, i.e. the exergy of
the system, can be better maintained. Figure 2 provides a
schematic overview of the vessel and Figure 3 depicts the
real system when it was under construction.

2.1. Technical specifications

Depending on the specific use case, the commercial ver-
sions of the Ecovat vessel can be built with different vol-
umes and different numbers of heat buffers, with volumes

Figure 3: Construction of the real Ecovat system.

and numbers of heat buffers respectively ranging from
20000 m3 to 100000 m3 and from 8 to 15. For our case
study, as the first commercial vessel is still under construc-
tion, we consider the Ecovat prototype, a thermal storage
system of 1500 m3 and 5 heat buffers that has been oper-
ational for approximately one year.

A technical schematic diagram of the prototype is de-
picted in Figure 4, where the gray parts represent con-
crete elements, the blue ones water, and the yellow ones
the insulation material. In the schematic diagram, all di-
mensions are expressed in millimeters, the reference point
of the system is located approximately 1 meter above the
ground, and the water level starts 4 meters below the refer-
ence point (i.e. approximately 3 meters below the ground
level). The diameter of the vessel is approximately 11 me-
ters, and the water depth is 15.3 meters (i.e. 19.3 meters
deep from the reference point). Moreover, the considered
vessel has 5 heat buffers, each one of them with different
isolation thickness.

The vessel consists of an external concrete wall, an in-
termediate isolation layer, and an internal concrete wall.
While it cannot be seen from the figure, the heat exchang-
ers are not inside the water but embedded in the internal
concrete walls. The thermal properties of the building ma-
terials, i.e. concrete and foam glass, are only known within
a range of values. These parameters are listed in Table 1,
which summarizes the thermal parameters of the concrete,
the foam glass, and the fluid (water) used in the Ecovat
prototype.
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Figure 4: Technical schematic diagram of the Ecovat. All
dimensions are given in mm.

2.2. Working principle

As can be seen from Figure 4, the vessel consists of 5
different heat buffers. These heat buffers are separated
along the wall by a horizontal layer of isolation material
so that the heat conductance across the walls is restricted
to each buffer. This structure prevents the destruction
of stratification due to wall conductance between the heat
buffers and helps the vessel to store energy more efficiently.

In addition of being isolated, each of the heat buffers can
be charged and discharged independently. Particularly, as
mentioned in the previous section, each heat buffer has
heat exchangers embedded in the internal walls, which al-
lows to charge and discharge the heat buffer independently.
This specific location of the heat exchangers will play a
very important role when estimating the system parame-
ters: as explained in Section 4.2, this characteristic implies
that the medium where the heat is stored is a mixture of
fluid and concrete.

3. Mathematical model

Before explaining and deriving the proposed mathemat-
ical model, it is necessary to introduce the models from
the literature and to discuss their limitations.

Table 1: Thermal properties of the materials.

Parameter Value/Range

Density of concrete 2360 kg/m3

Thermal conductivity of concrete 1.8 W/mK

Specific heat of concrete [750, 1170] J/kgK

Thermal diffusivity of concrete [10−6, 6.5·10−7] m2/s

Thermal conductivity of foam glass 0.041 W/mK

Density of water 1000 kg/m3

Specific heat of water 4181.3 J/kgK

Thermal diffusivity of water 0.143 · 10−6 m2/s

3.1. Traditional model

The standard 1D model [10, 17] for a heat storage vessel
divides the tank in M segments/layers. Then, it models
each layer with a partial differential equation (PDE) based
on the heat transfer equation. In its most general case,
each layer i is characterized by a state Ti representing the
temperature of the layer; this state can be controlled by the
input flow ṁi and its temperature T in

i or by the external
input heat Q̇i (heat sink or hear source) in the layer.

3.1.1. Partial differential equation

The PDE that models the state evolution of layer i is
given by:

∂Ti

∂t
= α

∂2Ti

∂z2
+

Piki
ρcpAi

(T∞−Ti)+
Q̇i

ρcpAi ∆zi
+
ṁi(T

in
i − Ti)

ρAi ∆zi
,

(1)
where α, ρ, and cp respectively represent the fluid dif-
fusivity, density, and specific heat; Ai, Pi, and ∆zi the
cross-sectional area, perimeter, and thickness of layer i; ki
the thermal conductance of the isolation wall of layer i;
and T∞ the ambient temperature (ground temperature if
the vessel is underground).

It is important to note that not all vessel architectures
make use of all input controls: in case of direct charging
and discharging, only the input controls ṁi and T in

i are
used. Likewise, in case of indirect charging and discharg-
ing, only Q̇i is required. In addition, it is also important
to remark that T in

i might be Ti−1 or Ti+1 depending on
whether the flow ṁi comes from the bottom or top layer.

3.1.2. Mixing and inversion of layers

As briefly introduced in Section 1.3, this 1D model has
an important drawback: as it is solely based on heat trans-
fer, it cannot model the mixing of layers due to buoyancy
effects. To address this issue, the traditional models from
the literature perform, after each simulation time step,
a non-smooth post-processing algorithm. In this post-
processing step, the temperature of all layers is checked
to detect buoyancy effects; if buoyancy is present, the lay-
ers involved are mixed; this process is repeated until all
buoyancy effects are removed.
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A simple example of this traditional simulation scheme
is given in Algorithm 1. On this example, the vessel is
divided into M layers, where layer M is at the top and
layer 1 at the bottom of the tank, and the tank is steered
using a generic control vector u, where u can comprise
the input flow ṁ, the input temperature T in of the flow,
and/or the heat sink/source Q̇. The algorithm simulates
the system using a simulation time step of length ∆t and
for a total of N time steps. As can be seen in lines 4
and 5, the simulation routine involves two steps: a first
part where the PDE is solved and a second part where the
buoyancy effects are included as an iterative algorithm.

Algorithm 1 Traditional Simulation Scheme

1: function simulator(T1, [u1, . . . , uN ],∆t, V )
2: Tt ← T1

3: for t ∈ {1, 2, . . . , N} do
4: Tt+1 ← simulatePDEStep(Tt, ut,∆t)
5: Tt+1 ← correctBuoyancy(Tt+1, V )
6: end for
7: return T1, T2, . . . , TN

8: end function
9: function correctBuoyancy(T, V )

10: while max
i=2,...,N

T [i]− T [i− 1] < 0 do

11: for i ∈ {2, . . . ,M} do
12: if T [i] < T [i− 1] then
13: T [i], T [i−1]← mixLayers(T [i], T [i−1],

V [i], V [i−1])
14: end if
15: end for
16: end while
17: end function
18: function mixLayers(Ti, Ti−1, Vi, Vi−1)
19: ∆T = Ti−1 − Ti

20: Ti−1 = Ti−1 − Ai ∆zi
Ai ∆zi+Ai−1 ∆zi−1

∆T

21: Ti = Ti + Ai−1 ∆zi−1

Ai ∆zi+Ai−1 ∆zi−1
∆T

22: end function

3.1.3. Model drawback

As explained in Section 1.3, while this traditional
scheme is a very good approximation when simulating the
dynamics of the heat storage vessel, it is not so suitable for
use in derivative-based optimization problems. In particu-
lar, this limitation becomes very important when control-
ling the vessel and/or estimating its parameters: to solve
the related optimization problems either heuristic meth-
ods or derivative-based optimization methods with finite
differences are needed. As explained before, these methods
have two problems:

1. Their computational requirements can easily become
unacceptable.

2. They can compromise the quality of the solution.

3.2. Modeling slow buoyancy effects

In order to tackle these issues, derivative-based op-
timization methods with analytical derivative computa-
tions, i.e. automatic differentiation [28], can be used. How-
ever, in order to use them, the dynamics of the system need
to be modeled by smooth expressions. In this paper, we
propose a possible solution to include the buoyancy effects
within the dynamics of the system using a continuous and
smooth function. In particular, in this first section, we
propose a general methodology for buoyancy effects whose
time span is larger than the simulation time step, i.e. slow
buoyancy effects. Next, in Section 3.3, we expand the
model to also include fast buoyancy effects, i.e. buoyancy
effects with a time span shorter than the simulation time
step.

3.2.1. Discretized dynamics

In a simulation framework, the PDE defined by (1) is
normally discretized and integrated on time using an ex-
pression of the following form:

Tt+1,i = Fi(Tt, Q̇t,i, ṁt,i, T
in
i ,∆t), (2)

where Tt,i is the temperature of layer i at time step t, Tt

the vector of temperatures in the M layers at time step
t, Q̇t,i, ṁt,i, and T in

i the control inputs of layer i at time
step t, and ∆t the length of the time step.

As an example, we can derive Fi in two steps using a
simple integration method:

1. Transforming the PDE into an ordinary differential
equation (ODE) by approximating the second-order
spatial derivatives by finite differences.

2. Using a numerical integration method to perform in-
tegration of the ODE.

In this case, if a forward Euler method is used for the
numerical integration, (2) is equivalent to:

Tt+1,i = Tt,i +

(
α
Tt,i+1 + Tt,i−1 − 2Tt,i

∆zi
2 + βi (T∞ − Tt,i)

+
λi

∆zi
˙Qt,i +

ϕ

∆zi
ṁt,i (T in

t,i − Tt,i)

)
∆t

(3)

where ∆zi is the thickness of layer i and:

βi =
Pik

ρcpAi
, λi =

1

ρcpAi
, ϕ =

1

ρAi
. (4)

3.2.2. Buoyancy effects via the max function

As shown in [16], a single mixing iteration in the stan-
dard approach, i.e. line 13 in Algorithm 1, can be easily
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modeled using the max function by replacing line 13 by
the following two expressions:

T [i] = T [i] + θi,i−1 max
(
0, T [i− 1]− T [i]

)
, (5)

T [i− 1] = T [i− 1]− (1− θi,i−1) max
(
0, T [i− 1]− T [i]

)
,

(6)

where

θi,i−1 =
Ai−1 ∆zi−1

Ai ∆zi + Ai−1 ∆zi−1
∈ [0, 1] (7)

is the ratio between the volume of layer i− 1 and the sum
of the volumes of both layers.

It can be argued that if the dynamics of the buoyancy
effects are slow, a single mixing iteration might suffice.
In particular, if the simulation time step ∆t is small in
comparison with the time span where the effects of buoy-
ancy start to be noticed, a single mixing iteration can keep
up with the changes that occur due to buoyancy. In this
scenario, using (5) and (6), the mixing algorithm can be
directly integrated in the discrete dynamics. More specif-
ically, (2) can be expanded as follows:

Tt+1,i =Fi(Tt, Q̇t,i, ṁt,i, T
in
i ,∆t)

+ θi,i−1 max(0, Tt,i−1 − Tt,i) (8)

− θi,i+1 max(0, Tt,i − Tt,i+1)

3.2.3. Buoyancy effects via a smooth function

While the max approximation allows to integrate the
buoyancy effects directly within the dynamics, the result-
ing equations cannot easily be handled by a derivative-
based optimization method as the max function is non-
smooth. However, as indicated in [29], the max function
can be approximated by the convex log-sum-exp function;
in that case, (8) can be approximated by the following
smooth expression:

Tt+1,i =Fi(Tt, Q̇t,i, ṁt,i,∆t)

+ θi,i−1
1

µ
log
(
e0 + eµ(Tt,i−1−Tt,i)

)
(9)

− θi,i+1
1

µ
log
(
e0 + eµ(Tt,i−Tt,i+1)

)
,

where the parameter µ is a scaling factor to make the max
approximation sharper. The specific value of µ should be
selected according to the specific application so that, while
the approximation of the max function is sharp, there are
no numerical issues. In the case of heat storage vessels,
considering the range of temperature differences between
consecutive layers, we have found that µ = 10 is a reason-
able value.

With this new approximation, the model for the vessel
dynamics includes buoyancy, is represented by a smooth
function, and can be integrated in any derivative-based
optimization framework.

3.2.4. Empirical analysis

As indicated in the previous section, an important re-
quirement for the proposed approximation to work is to
have buoyancy effects whose time span is large in compar-
ison with the simulation time step.

An example of a relative slow buoyancy effect is the
natural recirculation of the fluid due to the higher heat
losses in the top layer. In particular, as the top layer has a
larger contact area with the environment, it suffers larger
heat losses than the layers below it; as a result, the top
layer reaches lower temperatures and the fluid from the
lower layers rises to the top. As this effect depends on
heat losses, it is a very slow process; in the case of the
Ecovat vessel, it can be shown that, even for time steps
∆t of 2 hours, the proposed model can accurately model
this natural buoyancy effect.

This can be observed in Figure 5, where the simulated
system using the slow buoyancy model is compared at dif-
ferent time steps ∆t against the real data in the vessel
during a 2-months cycle when the system was undisturbed,
i.e. no heat was added or extracted (note that the simula-
tion was done after estimating the model parameters; for
the details of the parameter estimation we refer to Section
4). As can be observed, both ∆t = 30 min and ∆t = 2 h
are small enough and a single mixing iteration per time
step suffices to correct the buoyancy effect: the larger heat
losses of the top layer cannot be noticed as the model cor-
rectly represents the mixing of the lower layers. However,
as ∆t increases to 4-6 h, the effect starts to be noticeable:
the rate of heat losses in the top layer is larger than the
update frequency of the buoyancy effect and the upper
layers appear to have a lower temperature than the layers
below it.

While the proposed model is very accurate for slow
buoyancy effects, it is not for the faster buoyancy ef-
fects that appear due to charging/discharging. As indi-
rect/direct charging introduces a much larger heat rate
than heat losses, the corresponding buoyancy effects take
place in a much shorter time span. This can be observed
in Figure 6, where the simulated slow model is compared
for different time steps ∆t against the real evolution of
the vessel during a 3-week charging period. During that
period, the vessel is charged via its heat buffer 3, i.e. right
in the middle of the vessel; during that time there is a
moment where the temperature in the middle of the tank
is equal to the temperature of the layers above and mixing
due to buoyancy starts to occur. While the proposed slow
model still works, it only does so accurately for small time
steps ∆t. Particularly, while ∆t = 5 min can correctly
represent the buoyancy effects, ∆t = 30 min already leads
to an inconsistent system state where the middle temper-
atures are higher than the top ones. For even larger ∆t
the situation worsens: not only does the difference in tem-
perature between the middle and top layers increase, but
numerical artifacts such as oscillations appear in the sim-
ulated trajectory.
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Figure 5: Effect of ∆t when using the slow buoyancy model for slow buoyancy effects. The plot compares real vs. simulated
trajectories of the Ecovat vessel during a 2-month cycle where the vessel is undisturbed. As buoyancy is slow, a medium-size ∆t,
e.g. 30min or 2 h, can model the buoyancy effect. However, as ∆t increases, to e.g. 4–6 h, the effect starts to be noticeable.
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Figure 6: Effect of ∆t when using the slow buoyancy model for fast buoyancy effects. The plot compares real vs. simulated
trajectories of the Ecovat vessel during a 3-week cycle where the third heat buffer is charged. In this scenario, the slow model
only captures buoyancy effects when using a small ∆t, e.g. 5min.
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3.3. Modeling fast buoyancy effects

Based on the previous results, it is clear that to model
fast buoyancy effects a different approach is needed. In
this section, we propose a model for the buoyancy ef-
fects that appear when charging and discharging the ves-
sel. For the sake of simplicity, the model explanation will
focus on the case of indirect charging. However, in Sec-
tion 3.3.4 and 3.3.5 we briefly describe how the model
also applies to the case of indirect discharging and direct
charging/discharging. Similarly, during the model deriva-
tion, we will assume that all layers have the same volume;
nonetheless, in Section 3.3.6 we will briefly explain the ex-
tension to layers with different volumes.

3.3.1. Empirical observation

When observing the buoyancy effect due to indirect
charging, what we can effectively see is that any layer on
top of the charged layer with a lower or equal temperature
is also charged. More specifically, what we empirically ob-
serve is that, when applying heat to a specific layer, the
heat is homogeneously distributed across the charged layer
and any layer above it with an equal or lower temperature.

This concept is better understood with a simple exam-
ple: consider a simple vessel with 4 layers as represented
in Figure 7. Let us analyze what the above effect means in
terms of heating the third layer: if T3 is equal or lower than
T1 or T2, any heat applied to the first or second layer will
be equally distributed to the third layer; similarly, if T3 is
equal or larger than T4, any heat applied to the third layer
will be effectively divided between the third and the fourth
layer. Mathematically, this means that at any given time
step t, the third layer is indirectly heated by the following
amount:

α3 Q̇t,3 + α2 Q̇t,2 + α1 Q̇t,1 (10)

with

α3 =

{
1 if T3 ≤ T4

0.5 if T3 > T4

(11)

α2 =


0 if T2 ≤ T3 and T2 ≤ T4

0.5 if T3 < T2 ≤ T4

1/3 if T3 < T2 and T4 < T2

(12)

α1 =


0 if T1 ≤ T3

1/3 if T3 < T1 ≤ T4

0.25 if T3 < T1 and T4 < T1

(13)

3.3.2. Mathematical modeling

Formally, the above observation means that, at any time
step t, the ith layer in the vessel is heated by the following
amount:

T1

T2

T3

T4

Q̇1

Q̇2

Q̇3

Q̇4

Figure 7: Simplified heat storage vessel with 4 layers and
indirect charge/discharge.

i∑
l=0

Q̇t,l ·



1
M∑
j=l

1Tt,l≥Tt,j

if Tt,l ≥ Tt,i

0 else

(14)

with 1S defining the indicator function:

1S =

{
1 if S is true,

0 otherwise.
(15)

Using this empirical observation, we can now extend (2)
to include the buoyancy effects due to indirect charging.
In particular, by replacing ˙Qt,i by (14), these effects can
be included in the model.

3.3.3. Smooth approximation

The model proposed in the previous section is non-
smooth and non-continuous. As with the initial model
proposed for the slow buoyancy effects, an approximation
is needed to transform (14) into a smooth and continu-
ous expression. Analyzing (14), it can be seen that its
non-smoothness and its non-continuity come from the in-
clusion of step functions:

step
(
T1 − T2

)
=

{
1 if T1 − T2 ≥ 0

0 else.
(16)

Therefore, the only requirement to obtain a smooth and
continuous model is to replace the step functions by a
smooth and continuous approximation. One of the most
popular approximations [30, Chapter 11] of the step func-
tion is the logistic function:

S
(
T1 − T2

)
=

1

1 + e−µ(T1−T2)
, (17)

where µ is a scaling parameter that indicates how sharp
the logistic function is, i.e. the larger the µ the closer the
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logistic function is to the real step function. In all the
experiments carried out in this research, µ = 1 was selected
as it was empirically shown to be an appropriate value.

Using this approximation, we can finally establish the
smooth and continuous approximation of the buoyancy ef-
fects due to indirect charging. Particularly, by replacing
Q̇t,i in (14) by:

Q̇′
t,i =

i∑
l=0

Q̇t,l ·
S(Tt,l − Tt,i)

M∑
j=l

S(Tt,l − Tt,j)

, (18)

the buoyancy effects due to indirect charging can be in-
cluded within the discrete system dynamics.

3.3.4. Modeling indirect discharging

While the proposed model was derived for the case of
indirect charging, it can be easily extended to the case
of indirect discharging. In detail, when discharging the
vessel, the effect is the opposite: any layer below the layer
that is discharged that has a temperature higher or equal
than the discharged layer will also be discharged in an
equally distributed manner.

This effect can be easily modeled using the same ap-
proximations as for the charging case, i.e. for the indirect
discharging, Q̇t,i should be replaced by:

Q̇′
t,i =

M∑
l=i

Q̇t,l ·
S(Tt,i − Tt,l)
l∑

j=0

S(Tt,j − Tt,l)

, (19)

3.3.5. Modeling direct charging and discharging

In the case of direct charging, the empirical observation
is very similar: the heat of the incoming flow will be dis-
tributed across any layer on top of the input layer that has
a temperature equal to or lower than the temperature of
the incoming flow (note that for indirect charging it was
any layer on top with a temperature lower than or equal
to the temperature of the charged layer). Therefore, defin-
ing by T in

t,i the temperature of the incoming flow at time t
and layer i, the approximation for direct charging can be
easily derived from (18) with a minor modification: the
replacement of the temperature of layer l at time step t,
i.e. Tt,l, by the temperature of the incoming flow at layer
l at time step t, i.e. T in

t,l:

ṁ′
t,i =

i∑
l=0

ṁt,l ·
S(T in

t,l − Tt,i)

M∑
j=l

S(T in
t,l − Tt,j)

, (20)

Using the same reasoning as for indirect discharging,
the approximating for direct discharging can be similarly
derived as:

ṁ′
t,i =

M∑
l=i

ṁt,l ·
S(Tt,i − T in

t,l)

l∑
j=0

S(Tt,j − T in
t,l)

, (21)

3.3.6. Layers with different volume

For the sake of simplicity, all the derivations have been
performed assuming constant volume across the layers,
i.e. assuming that Ai ∆zi was constant for each layer i.
However, the model can be easily extended to the case
where the volumes are not constant. In this case, it can
be shown that (18) is equivalent to:

Q̇′
t,i =

i∑
l=0

Q̇t,l ·
Ai ∆zi S(Tt,l − Tt,i)

M∑
j=l

Aj ∆zj S(Tt,l − Tt,j)

, (22)

4. Parameter estimation and validation of the
model

In order to validate the proposed model, we use it to
estimate the parameters of the real stratified thermal stor-
age vessel introduced in Section 2. First, we estimate the
model parameters using a training dataset, and then eval-
uate the model performance in an out-of-sample dataset.
Next, we compare the obtained parameters with their ideal
value considering the structure and materials of the vessel.

4.1. Data

The employed data for validating the model consists of
a period of 7 months divided in two different cycles:

1. A 5-month cycle (15/04/2017-10/09/2017) where the
buffer 3, 4, and 5 (the top 3 buffers of the vessel) are
charged interchangeably.

2. A 2-month cycle (10/09/2017-15/11/2017) where the
system is left in a steady state and natural discharge
occurs.

From this period, there are two types of measurements
available:

1. The temperatures T inside the vessel at different
depths; these are sampled with a frequency of 1 week.

2. The heat values Q̇ introduced in each of the 5 heat
buffers; these are sampled with a frequency of 15 min-
utes.

These measurements of the input heats and the tempera-
tures are respectively depicted in Figure 8 and Figure 9.
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Figure 8: Heat introduced in the vessel during the 7-month
period considered.
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Figure 9: Temperature evolution in the vessel at intervals
of 1 month during the 7-month period considered. The black
dashed lines represent the division between the 5 heat buffers
within the vessel. The depth is measured using the reference
system defined in Figure 4.

4.2. Model parameters

Unlike most heat storage vessels, the considered vessel
has its heat exchangers embedded into the concrete wall.
As a result, the storage medium for the heat is a mix-
ture of fluid and concrete and, unlike regular heat storage
tanks, the parameters that define the dynamics of the ves-
sel are not specific to the fluid but to a mixture of fluid
and concrete. More specifically, the density ρ, the specific
heat cp, and the diffusivity α are defined by the proper-
ties of the fluid (water in the case of the considered vessel)
and the concrete in the walls. Considering this observa-
tion, the fact that the considered vessel works with indirect
charge/discharge, as well as equations (1) and (3), it can
be shown that there are 6 unknown parameters defining
the system dynamics; these are listed and described in Ta-
ble 2.

Table 2: Model parameters to be estimated.

Parameter Description

α [m2/s] Diffusivity of the storage medium.

λ [mK/J] Coefficient of the input heat. As the cross-sectional
area A does not vary along the tank, the same λi =

1
ρcpAi

applies to each layer i.

β [1/s] Coefficient of heat losses of the inner layers. As the
cross-sectional A and the perimeter P do not vary

along the tank, the same βi =
Pik

ρcpAi
applies to each

inner layer i.

β1 [1/s] Coefficient of heat losses of the bottom layer, which
differs from the general β as the bottom layer has
a larger surrounding wall area.

βM [1/s] Coefficient of heat losses of the top layer, which
differs from the general β as the top layer has a
larger surrounding wall area.

T∞ [◦C] Temperature of the surrounding terrain. While it
is known that the surrounding ground has a tem-
perature of 11-13 ◦C, the exact value is unknown.

4.3. Estimation problem

Define by Tk = [Tk,1, . . . , Tk,M ]⊤ the temperature dis-

tribution at time step k, by Q̇k = [Q̇k,1, . . . , Q̇k,M ]⊤

the input heat at the same time step, by φ =
[α, λ, β, β1, βM , T∞]⊤ the vector of unknown parameters,
and by M the number of layers used to model the vessel
dynamics. Define also the discrete system dynamics by
Tk+1,i = Gi(Tk, Q̇k,∆t,φ), with ∆t the length of the dis-
cretization interval and with Gi(·) the numerical integra-
tion of (1) including the two proposed buoyancy models;
i.e. Gi(·) is equivalent to (9) but replacing Q̇k,i by (18)
and (19). Then, the numerical optimization problem that
is solved to estimate the model parameters is given by:

minimize
φ,T0, . . . ,TN

∑
i∈S
∥T̄i −Ti∥22 (23a)

subject to

Tk+1,i = Gi(Tk, Q̇k,∆t,φ) for k = 0, . . . , N − 1,

for i = 1, . . . ,M (23b)

where T̄i represents the temperature measurement at
time step i; S the set of time indices when tempera-
ture measurements are available, i.e. S = { i | i =
0, . . . , N, T̄i exists}1; and N + 1 the number of discrete
time points.

Note that the above formulation could also include the
input heat Q̇ as optimization variable. However, for the
sake of simplicity, it is assumed that the measurements of
Q̇ are error-free. In addition, to avoid interpolations in Q̇,
∆t is selected as a multiple of the sampling period of Q̇,
i.e. ∆t = a · 15 min with a ∈ N.

1Note that the temperature sampling period of one week will al-
ways be larger than ∆t.
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4.4. Experimental setup

To estimate and validate the model, the experimental
setup is divided into two distinguishable parts: model val-
idation and parameter estimation.

4.4.1. Model Validation

In a first part, the model is estimated using a training
dataset and validated with an out-of-sample test dataset.
The goal of this part is to ensure that the estimated model
does not overfit the training dataset and to ensure that
its accuracy is in agreement with the existing literature.
To verify that the model validation is independent from
the training/test dataset split, i.e. that it does not overfit,
the parameter estimation is done 50 times and each time a
random training/test dataset split is considered. Then, the
average performance is compared with the performance
of the existing models from the literature. To perform
the splits, the training/test datasets are built using the
following convention:

1. Training dataset: a dataset that spans 5.5 months and
includes part of the charging period and part of the
natural discharging period.

2. Test dataset: an out-of-sample dataset of 1.5 months
that includes three weeks of the charging period and
three weeks of the natural discharging period.

To randomize the splits, we consider that there are 25
weeks during the charging period and we randomly select
an integer i between 1 and 23. Then, weeks i, i + 1, and
i + 2 are used for the test dataset and the remaining 22
for the training dataset. Next, the process is repeated for
the natural discharging period considering that in this case
the number of weeks is 9, i.e. the randomly selected integer
varies between 1 and 7. The results of this experiment are
described in detail in Section 4.5.

4.4.2. Parameter Estimation

After validating the model, the parameter estimation is
performed on the full dataset to ensure that the parame-
ters are estimated using as much information as possible.
In addition, as the estimation problem (23) is non-convex,
the problem is solved using multi-start optimization. In
particular, the optimization problem is solved multiple
times using different initial guesses for the optimization
variables and the optimal parameters are selected from the
optimization run that obtains the best optimization cost.
For this application, the optimization problem is solved 30
times2 and the initial guesses are randomly generated us-
ing Gaussian distributions. For the six model parameters,
i.e. α, λ, β, β1, βM , T∞, the means of their Gaussian distri-
butions are selected as their theoretical values assuming
water as storage medium (see the first column of Table 4).

2For the considered application, it was empirically observed that
after 20-30 iterations the best optimal solution did not vary much
anymore.

For the temperature variables, at those time points where
measurements are available, the means of the Gaussian
distributions are selected as the measured temperatures;
for the time points where measurements are not available,
the means are selected by a linear interpolation using the
closest measurements in time. The standard deviations
of the distributions are selected as half the value of the
means. The results of this experiment are described in
Section 4.6.

4.4.3. Implementation Details

To estimate the model, we consider a discrete time step
∆t of 2 hours and an explicit Euler scheme to perform the
numerical integration of the dynamics. In terms of the
spatial discretization, we consider different thicknesses for
the different heat buffers of the vessel. Particularly, as the
top buffers are more often charged and discharged, they
employ a coarser spatial discretization. The discretization
uses 23 layers distributed as follows:

• 6 layers of 550 mm for the top heat buffer (buffer 5).

• 6 layers of 550 mm for the heat buffer 4.

• 6 layers of 550 mm for the heat buffer 3.

• 3 layers of 967 mm for the heat buffer 2.

• 2 layers of 1450 mm for the bottom heat buffer (buffer
1).

The problem is modeled in python using the mathemati-
cal modeling framework CasADi [31] and solved using the
interior point solver IPOPT [32].

4.5. Model Validation

To validate the model, the parameters are estimated for
50 different training/test dataset splits and, for each split,
the model is evaluated in terms of the mean and maximum
absolute errors for both the training and the test dataset.
Then, the model is considered to be valid if its performance
is independent of the training and test datasets and if its
accuracy is in agreement with the existing literature. A
summary of the results is listed in Table 3, which presents
the average and standard deviation of the mean and max-
imum absolute errors across the 50 splits. In addition, the
distribution of the two error metrics is depicted in Figure
10. As can be observed, the average of both metrics in
the training and test datasets is of the same order of mag-
nitude, with the average errors in the test datasets being
smaller. This last result is expected as the test datasets
comprise a shorter time span and should therefore have
lower errors.

Another observation that can be made is that the vari-
ance of the errors in the training datasets is smaller than
the variance in the test datasets. This effect is also ex-
pected as the size of the training datasets is much larger
than the size of the test datasets (a training dataset spans
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5.5 months while a test dataset only 1.5 months). More
specifically, as two training datasets can be at most 27%
different (over the 5.5 months two training datasets can
at most differ by a month and a half), it is normal for
them to have similar errors. In contrast with that, two
test datasets can show more variable errors as they can be
100% different (a test dataset only contains 1.5 months of
the total 7 months of data).

Table 3: Comparison between training and test errors across
the 50 training/test dataset splits in terms of the average and
standard deviation of the mean absolute errors and the average
and standard deviation of the maximum absolute errors.

Metric Training Set Test Set

Average Mean Absolute Error 0.84 ◦C 0.64 ◦C

Std. Mean Absolute Error 0.07 ◦C 0.39 ◦C

Average Maximum Absolute Error 4.14 ◦C 2.88 ◦C

Std. Maximum Absolute Error 0.50 ◦C 1.24 ◦C

Based on the obtained results it is clear that no sig-
nificant differences exist between the performance of the
model in the training datasets and the test datasets. More-
over, considering that over a period of 5.5 months the mean
absolute errors are below 1 ◦C and the maximum errors are
below 5 ◦C, it can be stated that the accuracy of the pro-
posed model is in agreement with the existing literature
[16]. Using these two observations it can be concluded
that: 1) the proposed model is valid; 2) the model is ac-
curate; 3) the model does not overfit the data.

4.6. Parameter Estimation

As described in Section 4.4.2, after the model has been
validated, the parameters of the model are estimated using
the full dataset and multi-start optimization. In addition,
to further validate that the obtained parameters are rea-
sonable, two comparisons are done:

1. The estimated parameters are compared for two dif-
ferent spatial discretizations: 23 layers (as before) and
31 layers. As the parameters are independent from the
number of layers, a valid model should have similar
parameters in both estimations.

2. The estimated parameters are compared against the
theoretical parameters in the case that the heat stor-
age medium is only water or only concrete. As moti-
vated in Section 4.2, since the considered vessel has its
heat exchangers embedded in the concrete wall, the
parameters of the dynamics are not specific to the
fluid but to a mixture of fluid and concrete. There-
fore, if the model is valid, the estimated parameter are
expected3 to be in the range of the parameter values
in the case of having only water as storage medium

3Assuming that, if the model parameters depend on two materi-
als, their value is a linear combination of the parameters defined for
each material.

and the parameter values in the case of having only
concrete.

The results of this experiment are listed in Table 4. As
can be observed, the estimated parameters satisfy the two
conditions for the model to be valid:

1. The difference in the estimated parameters for differ-
ent numbers of layers is very small. Particularly, ex-
cept for the heat loss parameter β1 in the lowest layer,
all other parameters show very small variations. In
the case of β1, this variation can be easily explained:
as can be observed from Figure 9, the temperature
at the bottom of the vessel only varies between 11 ◦C
and 13 ◦C, which in turn is in the same range as the
ground temperature T∞. As a result, the heat losses
in the lower layer have an almost negligible effect on
the overall accuracy of the model and, as the problem
is non-convex, there might exist several local minima
with very similar accuracies but very different β1 val-
ues.

2. All the estimated parameters are within the range of
theoretical parameters corresponding to the cases of
having only water as storage medium and having only
concrete.

4.7. Discussion

Based on the obtained results, it can be claimed that the
proposed model is a valid model that correctly identifies
the system dynamics. In particular, the model accuracy in
out-of-sample datasets is similar to the accuracy in train-
ing datasets and this accuracy is within the range of ex-
pected accuracy for a 1D model. In addition, the estimated
parameters are within the range of values to be expected
to correctly identify the physics behind the system dynam-
ics. These two observations are clear indications that the
model seems to be correct and that correctly represents
the real physical behavior of heat storage vessels.

5. Model comparison

As motivated in the introduction, the goal of the pro-
posed model is to provide a smooth representation of the
dynamics of heat storage vessels so that the model can be
employed in derivative-based optimization problems. In
this section, we show the benefits obtained in optimization
problems when using the proposed smooth model instead
of the non-smooth models from the literature. In detail, we
compare the quality of the optimal solution and the com-
putation cost of the smooth and non-smooth models in the
same optimization setup: an optimal control application
where a stratified thermal storage vessel needs to satisfy a
given heat demand over some time horizon while the elec-
tricity prices over the same period are known. The goal
of the controller is to find the optimal charging strategy
that minimizes the cost while satisfying the heat demand.
As before, we consider as a case study the real stratified
thermal storage vessel introduced in Section 2.
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Figure 10: Mean and maximum absolute errors of the training and test datasets for the 50 different dataset random splits. As
the average of both metrics in the training and test datasets is of the same order of magnitude, it is clear that no significant
differences exist between the performance of the model in the training and test datasets.

Table 4: Results of the parameter estimation for different numbers of layers. The estimation is compared against the ideal
theoretical parameters assuming that the construction dimensions are perfectly known and considering that the material for
storing heat in the vessel is either only water or only concrete.

Theoretical Values Estimated Parameters

Parameter Water Concrete 23 Layers 31 Layers

α [m2/s] 1.4·10−07 52.0·10−07 2.32 · 10−07 2.76 · 10−07

λ [mK/J] 2.4 · 10−09 5.7 · 10−09 3.49 · 10−09 3.48 · 10−09

β [1/s] 0.8 · 10−08 1.9 · 10−08 1.60 · 10−08 1.68 · 10−08

β1 [1/s] 2.7·10−07 6.3 · 10−07 3.99 · 10−07 2.55 · 10−04

βM [1/s] 5.7 · 10−08 13.5 · 10−08 9.62 · 10−08 10.15 · 10−08

T∞ [◦C] [11, 13] 13.03 13.09

5.1. Smooth vs non-smooth models

As introduced in Section 1.3 and 3.1, because the 1D dy-
namical models proposed in the literature are non-smooth,
they cannot be employed in optimization setups using
derivative-based optimization methods that employ auto-
matic differentiation. Instead, they either need to employ
heuristic methods or derivative-based methods that use
finite differences.

5.1.1. Heuristic methods

As heuristic methods can optimize black-box functions,
they are a good fit for optimization problems where the
gradient and Hessian matrix of the problem cannot be
computed analytically. However, while they can be used to
integrate non-smooth models in optimization setups, they
have two major problems: 1) they provide no guarantee
of finding a local minimum or even a feasible solution;
2) they are usually computationally more expensive than
derivative-based optimization methods.

5.1.2. Finite differences

Another option for non-smooth models is to employ fi-
nite differences to compute the derivative-based informa-

tion and then use the same derivative-based optimization
algorithms that smooth methods can use. However, un-
like smooth models for which automatic differentiation
can be used, the cost of computing second-order and first-
order derivative information via finite differences respec-
tively grows quadratically and linearly with the number
of optimization variables. As a result, finite differences
can quickly become computationally infeasible for many
optimization problems.

More specifically, denoting the cost of evaluating some
function f : x ∈ Rn → R by cf , computing the gradi-
ent ∇xf and the Hessian matrix ∇2

xf via finite differences
have approximate costs of n · cf and n · (n + 1) · cf re-
spectively4. By contrast, using automatic differentiation,
the cost of computing ∇xf is not only independent of the
number of variables n but lower than 4 · cf ; likewise, the
cost of computing ∇2

xf not only grows linearly with n but
is bounded by 8·n·cf [28]. This comparison is summarized

4Note that the cost of computing the Hessian is derived for the
general case of having a non-symmetric Hessian, i.e. the Hessian of
a non-smooth function, as this represents the real cost of the non-
smooth models from the literature.
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in Table 5.

Table 5: Comparison of the computation cost of using finite
differences versus using automatic differentiation.

Finite Automatic
Function Differences Differentiation

Cost(f : x ∈ Rn → R) cf cf
Cost(∇xf) (n+ 1) · cf < 4 · cf
Cost(∇2

xf) (n+ 1)2 · cf < 8 · n · cf

A second disadvantage of using finite differences is the
accuracy: computing the gradient and Hessian matrix via
finite differences reduces the numerical precision w.r.t. to
the original function f and introduces truncation errors
[28].

5.2. Optimal Control Problem

To evaluate and compare the performance of the pro-
posed smooth model vs. non-smooth models, we consider
an optimal control problem (OCP) where a stratified ther-
mal storage vessel needs to satisfy a given heat demand
over a horizon while ensuring that its costs are minimized.
For this, the spatial discretization of 23 layers described
in Section 4 is considered again. In addition, it is assumed
that only the top 4 buffers (buffer 2 to buffer 5) can be
charged and discharged and that each buffer has indepen-
dent heat exchangers for charging and discharging. The
definition of the different OCP variables and parameters
are listed in Table 6. Using these definitions the OCP can
then be defined as:

minimize
T0,...,TN ,Q̇

c
0,...,

Q̇
c
N−1,Q̇

d
0 ,...,Q̇

d
N−1

N−1∑
k=0

pk ·∆t ·
5∑

i=2

Q̇c
k,i + γ · ∥T0 −TN∥22

(24a)

subject to

T0 = T̄0, (24b)

Tk+1,i = Gi

(
Tk, Q̇

c

k, Q̇
d

k

)
, for k = 0, . . . , N − 1, (24c)

for i = 1, . . . ,M,

Q̇
c

k ≥ 0 for k = 0, . . . , N − 1, (24d)

Q̇
d

k ≤ 0 for k = 0, . . . , N − 1, (24e)

T∞ ≤ Tk ≤ Tmax, for k = 0, . . . , N, (24f)

˙̄Qd
k =

5∑
i=2

Q̇d
k,i, for k = 0, . . . , N − 1, (24g)

Q̇c
k,i ≤ ṁmax cp

(
T c
in −

1

Mi

∑
j∈Si

Tk,j

)(
1− e

−khe

ṁmaxcp

)
,

for k = 0, . . . , N − 1, for i = 2, 3, 4, 5, (24h)

Q̇d
k,i ≥ ṁmax cp

( 1

Mi

∑
j∈Si

Tk,j − T d
in

)(
1− e

−khe

ṁmaxcp

)
,

for k = 0, . . . , N − 1, for i = 2, 3, 4, 5. (24i)

From the optimization problem above, several facts are to
be noted:

• The penalty cost γ · ∥T0 − TN∥22 ensures that the
optimal solution does not leave the vessel discharged.

• The constraint (24g) ensures that at each time step k
the heat extracted from the 4 buffers is equal to the
heat demand.

• In (24h) and (24i),
1

Mi

∑
j∈Si

Tk,j is simply the average

temperature of heat buffer i.

• The constraint (24h) ensures that the input heat is
lower than the maximum input heat considering the
maximum temperature and flow in the heat exchanger
and the actual temperature in the vessel.

• Equation (24i) ensures that the average temperature
in a given heat buffer is enough to satisfy the heat
demand required from that buffer.

5.3. Comparison setup

To compare the performance of the smooth model vs the
non-smooth models from the literature, the OCP is first
solved using the proposed smooth model and a second-
order Newton-based optimization method with automatic
differentiation. Then, the same OCP is solved using the
equivalent non-smooth model and the following optimiza-
tion techniques:

1. The particle swarm optimization (PSO) [33], one of
the most widely used heuristic algorithms that has
often been used for optimizing different types of en-
ergy storage systems [25, 34, 35]. The algorithm is
run for 3 different numbers of particles: 100, 1000,
and 10000 particles.

2. The Markov chain Monte Carlo (MCMC) using the
Metropolis–Hastings algorithm [36], a method used
in the literature to estimate the parameters of a non-
smooth heat vessel model [16], and also used for other
energy demand applications [37].

3. The tree-structured Parzen estimator (TPE) [38], a
black-box optimization algorithm previously used in
energy-related applications [39–41].

4. A second-order Newton method where the Hessian is
computed using finite differences.

5. A first-order Newton method where the Hes-
sian is approximated using the gradient through
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) al-
gorithm [42], and the gradient is computed using finite
differences.
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Table 6: Parameters and variables of the optimal control problem considered for evaluating the proposed smooth model.

Parameter Units Description

N Number of steps for the time horizon of the OCP.

Tk = [Tk,1, . . . , Tk,23]
⊤ K Temperature distribution at time step k.

˙̄Qd
k W Given heat demand at time step k.

pk e/J Given heat price at time step k.

Q̇
c
k = [Q̇c

k,2, . . . , Q̇
c
k,5]

⊤ W Heat added to the four buffers at time step k.

T̄0 K Initial observed temperature.

Tk+1,i = Gi(Tk, Q̇
c
k, Q̇

d
k) K Discrete system dynamics.

Si Set of indices of the layers in heat buffer i

Tmax K Maximum temperature in the vessel.

ṁmax kg/s Maximum water flow through the heat exchangers.

Td
in K Minimum input temperature of the discharge heat exchanger.

T c
in K Maximum input temperature of the charge heat exchanger.

cp J/(K·kg) Specific heat of water.

khe W/K Heat exchanger coefficient.

5.4. Implementation details

The heat demand used in the OCP is the realistic heat
demand profile from a cluster of buildings in The Nether-
lands from 01/09/2016 to 31/10/2016. Similarly, the price
of buying heat is assumed to be the price of buying the
equivalent amount of electricity in the Dutch day-ahead
electricity market in the same time period. Both quanti-
ties are depicted in Figure 11.
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Figure 11: Considered heat demand (top) and heat prices
(bottom) in the OCP. The heat demand is the real heat con-
sumption of a group of buildings. The prices are the real market
prices of the day-ahead electricity market in The Netherlands.

All the OCPs are solved using a time resolution of 1

hour, and to study the effect of the number of optimization
variables, the OCP is solved for 4 different horizons: 1
day, 1 week, 1 month, and 2 months. In addition, as the
constraints (24g-24i) cannot be explicitly included in the
heuristic methods, they are modeled as penalty costs in
the objective function.

For the Newton-based method using the smooth model,
the system dynamics are defined as in the OCP above: us-
ing a multiple shooting algorithm [43] where the system
state (temperature profile) is an optimization variable and
the dynamics are ensured via constraint (24c). For the
heuristic methods, in order to reduce the size of the search
space, only the input heats Q̇c and Q̇d are considered as
optimization variables. More specifically, the system dy-
namics are implicitly defined by modeling each tempera-
ture profile Tk as a function of the initial temperature T0

and the previous heat inputs. As the cost of computing the
Hessian via finite differences scales quadratically with the
number of variables, the reduced OCP formulation is also
employed for the Newton-based method that uses finite
differences.

It is important to note that, as can be seen from (24),
the OCP is solved via a direct optimal control method
where the controls and states are discretized in time and
the problem is transformed into a nonlinear optimization
problem. Thus, when compared with indirect methods,
this approach has the disadvantage that, as it discretizes
the controls and states, the obtained solution is just an ap-
proximation [44]. However, unlike indirect methods, this
approach is robust to the initial approximation and re-
quires a much lower amount of work since the user does
not need to derive the adjoint differential equations [44].
These two advantages together with the fact that the er-
rors of direct methods are normally lower than 1 % [44],
make the direct approach a more suitable option for the
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current case study.
All experiments are implemented in python. The OCP

using the smooth model is solved using CasADi [31] and
IPOPT [32]. The same applies for the OCP using the
non-smooth model and finite differences. For the heuristic
methods, we consider the hyperopt [45] library for the TPE
algorithm, the pyswarm library [46] for PSO, and an in-
house library for MCMC.

5.5. Results

The comparison results of solving the OCP via the dif-
ferent methods are listed in Tables 7 and 8. Table 7 com-
pares the quality of the optimal solution as the cost of
buying heat and uses a baseline that represents the cost of
buying heat without using the heat buffer, i.e. buying the
heat demand at the actual market price. Table 8 compares
the computation time required for each of the methods.
In both tables the combinations of algorithm horizon that
were unable to compute a solution were marked with an
x; this issue always occurred for one of two reasons:

1. In the case of heuristic methods, the problem was al-
ways the same: the solver was unable to find a feasible
solution. Particularly, the constraint (24h) limiting
the maximum input heat was usually violated.

2. In the case of finite differences, the algorithm was un-
able to find a solution after 3 days. It is important to
note that this bound of 3 days was randomly selected
to avoid situations where the algorithms would run
indefinitely.

Table 7: Comparison of the OCP optimal solution/cost (in
EUR) for different time horizons using different optimization
methods. The best solutions per time horizon are marked in
bold. The first row represents the cost of buying directly the
heat without the heat buffer, i.e. buying the heat demand at
the actual market price. Cells with an x represent cases where
the method was unable to find a feasible solution either because
the algorithm converged to an infeasible solution (in the case of
heuristic methods) or because the algorithm did not converge
within 3 days (in the case of finite differences methods).

OCP Horizon [h]
Optimization Method 24 168 720 1440

No Buffer 10.1 73.3 397.0 1761.1

Smooth model 0 16.2 215.9 1108.9

Finite-diff.: BFGS 0 16.2 235.1 x

MCMC 0 19.6 343.8 x

PSO 10000 0 38.1 2570.4 x

PSO 1000 0 361.6 3305.0 x

PSO 100 73.5 783.9 x x

TPE 41.6 x x x

Finite-diff.: 2nd order 0 x x x

After analyzing the obtained results, the superiority of
using a smooth model with a Newton-based optimization
method and automatic differentiation becomes clear. Par-
ticularly, the following observations can be made:

Table 8: Comparison of the computation time (in minutes)
required to solve the OCP for different time horizons and using
different optimization methods. The most cost efficient solu-
tions at each time horizon are marked in bold. Cells with an x
represent cases where the method was unable to find a feasible
solution either because the algorithm converged to an infeasi-
ble solution (in the case of heuristic methods) or because the
algorithm did not converge within 3 days (in the case of finite
differences methods).

OCP Horizon [h]
Optimization Method 24 168 720 1440

Smooth-model 0.1 0.6 5.1 34.9

Finite-diff.: BFGS 0.3 47.6 708.3 x

MCMC 26.4 137.6 571.0 x

P-Swarm 10000 4.2 194.3 1203.6 x

P-Swarm 1000 0.8 18.8 165.6 x

P-Swarm 100 0.2 15.9 x x

TPE 182.3 x x x

Finite-diff.: 2nd order 816.6 x x x

• The OCP solved with the smooth model is able to
obtain the best solution for all possible horizons.

• Not only is the proposed approach the one with the
best optimal solutions, but also the only one that out-
performs the baseline across all horizons. In terms of
economic savings, the proposed approach respectively
reduces the baseline cost by 100 %, 77 %, 46 %, and
37 % for the 1-day, 1-week, 1-month, and 2-months
horizons.

• In terms of accuracy, the majority of the alternative
methods do not perform well: except for the short-
est time horizon of 24 hours, 5 of the 7 alternative
methods are outperformed by the baseline and the
remaining 2 directly fail to find any feasible solution.

• The best alternative methods are MCMC and BFGS,
which can find better solutions than the baseline for
3 of the 4 horizons. However, they still fail to find a
solution for the longest time horizon and they are out-
performed by the proposed approach in terms of both
computation time and the quality of the solution.

• In terms of computation cost, the method using the
smooth model is by far the best: in comparison
with all the other alternatives, the method using the
smooth model finds the optimal solution between 10
and 100 times faster.

• As it could be expected, as the number of optimiza-
tion variables increases, all the methods using the
non-smooth model struggle to find optimal solutions.
In the case of a 1-month horizon, only MCMC and
BFGS are able to find a solution. In the case of a
2-months horizon, none of these methods can.

To further illustrate the good results of the smooth
model, its optimal solution obtained for the longest hori-
zon is depicted in Figures 12 and 13. Figure 12 illustrates
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the optimal charging and discharging strategy considering
the heat price and the heat demand. Figure 13 depicts
the optimal temperature evolution of vessel when apply-
ing this optimal charging/discharging strategy. As could
be expected, the optimal solution is to fully charge the
vessel when prices are lowest, i.e. between the last week
of September and the first week of October, and then to
discharge the system to follow the heat demand.

5.6. Discussion

Based on the obtained results, it is clear that smooth
models are very important if heat storage vessels are used
in optimization contexts, e.g. if heat storage vessels are to
be controlled optimally. In particular, when solving the
OCP that provides the best charging strategy for the ves-
sel, the smooth model provides the best yet fastest optimal
solutions by using derivative-based optimization with au-
tomatic differentiation.

This gain becomes more significant for optimization
problems with a large number of variables; in those situ-
ations, both heuristic methods and derivative-based opti-
mization methods using finite differences struggle to solve
the optimization problem and they use significant amounts
of computational resources. Particularly, looking at the
case of a 2-months horizon OCP, none of these methods is
able to find a feasible solution either because the algorithm
converges to an infeasible solution (in the case of heuris-
tic methods) or because the algorithm does not converge
within 3 days (the case of finite differences). Similarly,
for the 1-month horizon, only MCMC and BFGS can find
a solution; however, even in that case, the optimal solu-
tions of MCMC and BFGS are worse and 100 times more
computationally expensive than the one provided by the
smooth model via derivative-based optimization.

While they might seem surprising, these results are in
fact not unusual as the search space for the heuristic meth-
ods becomes very large for the longer horizons: the number
of variables to be optimized are 192, 1344, 5760, and 11520
respectively for the 1-day, 1-week, 1-month, and 2-months
horizons. In the case of numerical optimization with fi-
nite differences, a similar problem occurs: the computation
time quickly becomes unacceptable. This property can be
seen from Table 9, which lists the time to compute the Hes-
sian of the Lagrangian for the 4 different horizons and for
the first-order and second-order methods: for the longest
horizon, the computation cost difference between using fi-
nite differences and automatic differentiation is a factor of
106 for the second-order method and a factor of 103 for the
first-order method. Considering that computing the Hes-
sian is done at each iteration of the optimization process,
it becomes clear why the finite differences approaches do
not scale well with the OCP horizon.

In addition to the quality of the solution and the cheap
computational cost, another clear advantage of the smooth
model is that it provides the only feasible alternative to be
run in real time, e.g. in a model predictive control setup.
In particular, a real-time control application would require

Table 9: Comparison of the cost of using automatic differenti-
ation versus using finite differences (via first-order and second-
order methods) to compute the Hessian of the Lagrangian in
the OCP.

Computational Cost
Finite differences Automatic

Horizon Exact Hessian Hessian-BFGS Differentiation

24 h 7.4 sa 78msa 1.5ms
168 h 43mina 5 sa 11ms

720 h 73 ha,b 32 sa 65ms

1440 h 405 ha,b 130 sa 100ms
a To reduce the computational cost of finite differences and list their
best case scenario, these costs consider the single shooting formulation
where only the control inputs are optimization variables.

b This cost is an approximation: it is computed as the cost of evaluating
the Lagrangian times (n+ 1)2, where n is the number of variables in
the OCP.

computation times below the time step ∆t = 1 h, and as
can be seen from Table 8, only the proposed model satisfies
that.

6. Conclusions

In this research, a new 1-dimensional model for stratified
heat storage vessels has been proposed. The model over-
comes the shortcomings of the existing models from litera-
ture by providing a smooth and continuous 1-dimensional
representation of the system dynamics while including
buoyancy effects. More specifically, this is the first
model that, while remaining 1-dimensional, it is able to
model buoyancy using a smooth and continuous function.
The combination of the smoothness property and the 1-
dimensionality of the model is critical to efficiently inte-
grate the model in optimization problems and to obtain
better optimal solutions while using less computational re-
sources. These properties allow the use of state-of-the-art
derivative-based methods which, in comparison with the
optimization methods available for the non-smooth meth-
ods from the literature, are computationally much more
efficient and lead to more optimal solutions.

In addition, the model further innovates the state-of-
the-art in the field via a second contribution. In particular,
by explicitly distinguishing between slow and fast buoy-
ancy effects, the model obtains a more accurate smooth
representation of the buoyancy dynamics.

To show the benefits and the accuracy of the model,
we have considered a real commercial stratified storage
vessel so that the model is evaluated in a real and noisy
environment. In detail, two experiments were carried out:
first, the model was validated using real data from a large
stratified thermal storage vessel. During the estimation,
the obtained parameters were shown to correctly identify
the physical properties behind the system dynamics.

In a second experiment, the benefits of using the smooth
model in optimization problems were demonstrated: the
performance of the proposed smooth model was compared
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Figure 12: Optimal charging and discharging of the vessel over the 2-months period. As it is expected, the optimal solution
charges the vessel when prices are low and discharges the system to follow the heat demand.

against that of non-smooth models from literature con-
sidering an optimal control problem where the stratified
thermal storage vessel was controlled to minimize its costs
while satisfying a given heat demand. In this case study,
it was shown that the smooth model did not only result in
the best optimal solutions, but it also required computa-
tion costs that were 100 times less.

In future research, other uses for the proposed model
will be explored. A possible line of research will be the
inclusion of the model in a model predictive control set-up
where the heat storage vessel has to interact with multiple
markets and systems.
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Figure 13: Optimal temperature evolution in the vessel over the 2-months period.
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