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Analysis and control of max-plus linear discrete-event systems:

An introduction

Bart De Schutter · Ton van den Boom · Jia Xu ·
Samira S. Farahani

Abstract The objective of this paper is to provide a concise introduction to the max-plus

algebra and to max-plus linear discrete-event systems. We present the basic concepts of the

max-plus algebra and explain how it can be used to model a specific class of discrete-event

systems with synchronization but no concurrency. Such systems are called max-plus lin-

ear discrete-event systems because they can be described by a model that is “linear” in the

max-plus algebra. We discuss some key properties of the max-plus algebra and indicate how

these properties can be used to analyze the behavior of max-plus linear discrete-event sys-

tems. Next, some control approaches for max-plus linear discrete-event systems, including

residuation-based control and model predictive control, are presented briefly. Finally, we

discuss some extensions of the max-plus algebra and of max-plus linear systems.
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1 Introduction

In recent years both industry and the academic world have become more and more interested

in techniques to model, analyze, and control complex discrete-event systems (DESs) such

as flexible manufacturing systems, telecommunication networks, multiprocessor operating

systems, railway networks, traffic control systems, logistic systems, intelligent transporta-

tion systems, computer networks, multi-level monitoring and control systems, and so on.

Although in general DESs lead to a nonlinear description in conventional algebra, there

exists a subclass of DESs for which this model becomes “linear” when it is formulated in

the max-plus algebra (Baccelli et al., 1992; Cuninghame-Green, 1979; Heidergott et al.,

2006; Butkovič, 2010), which has maximization and addition as its basic operations. More

specifically, DESs in which only synchronization and no concurrency or choice occur can

be modeled using the operations maximization (corresponding to synchronization: a new

operation starts as soon as all preceding operations have been finished) and addition (corre-

sponding to the duration of activities: the finishing time of an operation equals the starting

time plus the duration). This leads to a description that is “linear” in the max-plus algebra.

Therefore, DESs with synchronization but no concurrency are called max-plus linear DESs.

In the early sixties the fact that certain classes of DESs can be described by max-

linear models was discovered independently by a number of researchers, among whom

Cuninghame-Green (1961, 1962) and Giffler (1960, 1963, 1968). An account of the pi-

oneering work of Cuninghame-Green on max-plus-algebraic system theory for DESs has

been given in (Cuninghame-Green, 1979). Related work on dioid theory and its applica-

tions has been undertaken by Gondran and Minoux (1976, 1984b, 1987). In the late eighties

and early nineties the topic attracted new interest due to the research of Cohen et al. (1985,

1989), Olsder (1986); Olsder and Roos (1988); Olsder et al. (1990a), and Gaubert (1990,

1992, 1993), which resulted in the publication of (Baccelli et al., 1992). Since then, several

other researchers have entered the field.

The class of DESs that can be described by a max-plus linear time-invariant model is

only a small subclass of the class of all DESs. However, for max-plus linear DESs there are

many efficient analytic methods available to assess the characteristics and the performance

of the system since one can use the properties of the max-plus algebra to analyze max-

plus linear models in a very efficient way (as opposed to, e.g., computer simulation where,

before being able to determine the steady-state behavior of a given DES, one may first have

to simulate the transient behavior, which in some cases might require a large amount of

computation time).

As will be illustrated later on in the paper, there exists a remarkable analogy between

the basic operations of the max-plus algebra (maximization and addition) on the one hand,

and the basic operations of conventional algebra (addition and multiplication) on the other

hand. As a consequence, many concepts and properties of conventional algebra also have

a max-plus analogue. This analogy also allows to translate many concepts, properties, and

techniques from conventional linear system theory to system theory for max-plus linear

DESs. However, there are also some major differences that prevent a straightforward trans-

lation of properties, concepts, and algorithms from conventional linear algebra and linear

system theory to max-plus algebra and max-plus linear system theory for DESs. Hence,

there is a need for a dedicated theory and dedicated methods for max-plus linear DESs.

In this paper we give an introduction to the max-plus algebra and to max-plus linear

systems. We highlight the most important properties and analysis methods of the max-plus

algebra, discuss some important characteristics of max-plus linear DES, and give a concise

overview of performance analysis and control methods for max-plus linear DESs. More
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extensive overviews of the max-plus algebra and max-plus linear systems can be found in

(Baccelli et al., 1992; Cuninghame-Green, 1979; Gaubert, 1992; Heidergott et al., 2006;

Hardouin et al., 2018). The history of how max-plus algebra became an important tool in

discrete event systems since the late seventies is described in (Komenda et al., 2018).

The main feature of the current survey compared to these previous works is its com-

pactness and its focus on analysis and model-based control for max-plus linear systems,

in particular residuation-based control and model predictive control. We also include an

extensive qualitative comparison between residuation-based control and model predictive

control for max-plus linear systems. In addition, we provide several worked examples for

basic max-plus concepts, we include several references to recent literature, and we present

some results not included in previous surveys (such as, e.g., two-sided systems of linear

max-plus equations, systems of max-plus-algebraic polynomial equations and inequalities,

and model-based predictive control for max-plus linear systems).

2 Max-plus algebra

2.1 Basic operations of the max-plus algebra

The basic operations of the max-plus algebra (Baccelli et al., 1992; Cuninghame-Green,

1979; Heidergott et al., 2006) are maximization and addition, which will be represented by

⊕ and ⊗ respectively:

x⊕ y = max(x,y) and x⊗ y = x+ y

for x,y ∈ Rε
def
= R∪{−∞}. The reason for using these symbols is that there is a remarkable

analogy between ⊕ and conventional addition, and between ⊗ and conventional multipli-

cation: many concepts and properties from linear algebra (such as the Cayley-Hamilton

theorem, eigenvectors and eigenvalues, and Cramer’s rule) can be translated to the max-plus

algebra by replacing + by ⊕ and × by ⊗ (see, e.g., Baccelli et al. (1992, Chapters 2, 3);

Heidergott et al. (2006, Chapters 2, 5); Cuninghame-Green (1979); Gaubert (1992); Olsder

and Roos (1988)). Therefore, we also call ⊕ the max-plus-algebraic addition, and ⊗ the

max-plus-algebraic multiplication. Note however that one of the major differences between

conventional algebra and max-plus algebra is that in general there do not exist inverse ele-

ments with respect to ⊕ in Rε . The zero element for ⊕ is ε
def
= −∞: we have x⊕ε = x = ε ⊕x

and x⊗ε = ε = ε ⊗x for all x ∈Rε . The structure (Rε ,⊕,⊗) is called the max-plus algebra.

In the sequel we denote the set of non-negative integers by N= {0,1,2, . . .}. Let r ∈ R.

The rth max-plus-algebraic power of x ∈ R is denoted by x⊗r
and corresponds to rx in

conventional algebra. If x ∈ R then x⊗0
= 0 and the inverse element of x w.r.t. ⊗ is x⊗−1

=
−x. There is no inverse element for ε w.r.t. ⊗ since ε is absorbing for ⊗. If r > 0 then

ε⊗r
= ε . If r < 0 then ε⊗r

is not defined. In this paper we have ε⊗0
= 0 by definition.

The rules for the order of evaluation of the max-plus-algebraic operators correspond to

those of conventional algebra. So max-plus-algebraic power has the highest priority, and

max-plus-algebraic multiplication has a higher priority than max-plus-algebraic addition.
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2.2 Max-plus-algebraic matrix operations

The basic max-plus-algebraic operations are extended to matrices as follows. If A,B ∈R
m×n
ε

and C ∈ R
n×p
ε then

(A⊕B)i j = ai j ⊕bi j = max(ai j,bi j) (1)

(A⊗C)i j =
n

⊕

k=1

aik ⊗ ck j = max
k=1,...,n

(aik + ck j) (2)

for all i, j. Note the analogy between (1)–(2) and the definitions of matrix sum and product

in conventional linear algebra.

Example 1 Consider A =





2 3 ε
1 ε 0

2 −1 3



 and B =





ε 5 −1

3 ε −2

ε −4 7



. Following (1) and (2), we have:

A⊕B =





2⊕ ε 3⊕5 ε ⊕−1

1⊕3 ε ⊕ ε 0⊕−2

2⊕ ε −1⊕−4 3⊕7



=





2 5 −1

3 ε 0

2 −1 7





A⊗B =





2⊗ ε ⊕3⊗3⊕ ε ⊗ ε 2⊗5⊕3⊗ ε ⊕ ε ⊗−4 2⊗−1⊕3⊗−2⊕ ε ⊗7

1⊗ ε ⊕ ε ⊗3⊕0⊗ ε 1⊗5⊕ ε ⊗ ε ⊕0⊗−4 1⊗−1⊕ ε ⊗−2⊕0⊗7

2⊗ ε ⊕−1⊗3⊕3⊗ ε 2⊗5⊕−1⊗ ε ⊕3⊗−4 2⊗−1⊕−1⊗−2⊕3⊗7





=





ε ⊕6⊕ ε 7⊕ ε ⊕ ε 1⊕1⊕ ε
ε ⊕ ε ⊕ ε 6⊕ ε ⊕−4 0⊕ ε ⊕7

ε ⊕2⊕ ε 7⊕ ε ⊕−1 1⊕−3⊕10



=





6 7 1

ε 6 7

2 7 10



 . ⊓⊔

The matrix εm×n is the m× n max-plus-algebraic zero matrix: (εm×n)i j = ε for all

i, j; and the matrix En is the n× n max-plus-algebraic identity matrix: (En)ii = 0 for all i

and (En)i j = ε for all i, j with i 6= j. If the size of the max-plus-algebraic identity matrix

or the max-plus-algebraic zero matrix is not specified, it should be clear from the context.

The max-plus-algebraic matrix power of A ∈ R
n×n
ε is defined as follows: A⊗0

= En and

A⊗k
= A⊗A⊗k−1

for k ∈ N\{0}.

2.3 Connection with conventional algebra via exponentials

Olsder and Roos (1988) have introduced a link between conventional algebra and the max-

plus algebra based on asymptotic equivalences that allows to establish an analogy between

the basic operations of the max-plus algebra (max and +) on the one hand, and the basic op-

erations of conventional algebra (addition and multiplication) on the other hand. As a result,

many concepts and properties of conventional algebra also have a max-plus analogue. In

particular, Olsder and Roos (1988) used this link to show that every matrix has at least one

max-plus-algebraic eigenvalue and to prove a max-plus-algebraic version of Cramer’s rule

and of the Cayley-Hamilton theorem. In addition, this analogy allows to translate many con-

cepts, properties, and techniques from conventional linear system theory to system theory

for max-plus linear DESs.

In (De Schutter and De Moor, 1997) the link introduced by Olsder and Roos (1988) has

been extended and formalized. Now we recapitulate the reasoning of De Schutter and De

Moor (1997) but in a slightly different form that is mathematically more rigorous.
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First we extend the conventional definition of asymptotic equivalence such that we can

also allow asymptotically equivalence to 0. Recall that f is asymptotically equivalent to g

in the neighborhood of ∞, denoted by f (s) ∼ g(s), s → ∞, if lim
s→∞

f (s)

g(s)
= 1. This definition

in principle requires that there is no real number K such that g is identically zero in [K,∞).
However, we also say a function f is asymptotically equivalent to 0 in the neighborhood of

∞: f (s) ∼ 0, s → ∞ if there exists a real number L such that f (s) = 0 for all s > L.

In this section we consider exponentials of the form eνs with s > 0. Since we want to

allow exponents that are equal to ε , we set eεs equal to 0 for all positive real values of s by

definition. For all x,y,z ∈ Rε we now have

x⊕ y = z ⇔ exs + eys ∼ (1+δx=y)ezs , s → ∞ (3)

x⊗ y = z ⇔ exs · eys = ezs for all s > 0 (4)

where δx=y = 0 if x 6= y and δx=y = 1 if x = y. The relations (3) and (4) show that there

exists a connection between the operations ⊕ and ⊗ performed on elements of Rε and the

operations + and × performed on exponentials.

2.4 Connection with graph theory

There exists a close relation between max-plus algebra (and related structures) and graphs

(see, e.g., Baccelli et al. (1992, Chapter 2); Gondran and Minoux (1976, 1984a)).

Definition 1 (Precedence graph) Consider A ∈R
n×n
ε . The precedence graph of A, denoted

by G (A), is a weighted directed graph with vertices 1, 2, . . . , n and an arc ( j, i) with weight

ai j for each ai j 6= ε .

It easy to verify that every weighted directed graph corresponds to the precedence graph of

an appropriately defined matrix with entries in Rε .

Now we can give a graph-theoretic interpretation of the max-plus-algebraic matrix power.

Let A ∈ R
n×n
ε . If k ∈ N\{0} then we have

(A⊗k
)i j = max

i1,i2,...,ik−1∈{1,...,n}
(aii1 +ai1i2 + . . .+aik−1 j)

for all i, j. Hence, (A⊗k
)i j is the maximal weight 1 of all paths of G (A) of length k that have

j as their initial vertex and i as their final vertex — where we assume that if there does not

exist a path of length k from j to i, then the maximal weight is equal to ε by definition.

Example 2 Consider matrix A defined in Example 1. The precedence graph G (A) of A is

given in Figure 1. Let k = 2. By direct computation (cf. Example 1), we get

A⊗2
= A⊗A =





4 5 3

3 4 3

5 5 6



 .

Now we can check that (A⊗2
)i j is the maximal weight of all paths of G (A) of length 2 that

have j as their initial vertex and i as their final vertex. These paths and their corresponding

weights are shown in Table 1. As one can see, the maximum weights are equal to the entries

of A⊗2
. ⊓⊔
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2
1

0

−1

3

3

2

1

3
2

Fig. 1 Precedence graph of the matrix A of Examples 1 and 2. The vertices are indicated in an encircled bold

italic font, and the weights are indicated next to the arcs in a regular font.

(A⊗2
)i j Value of (A⊗2

)i j Path Weight Maximum weight

(A⊗2
)11 4 1 → 2 → 1 4 4

1 → 1 → 1 4

(A⊗2
)12 5 2 → 1 → 1 5 5

(A⊗2
)13 3 3 → 2 → 1 3 3

(A⊗2
)21 3 1 → 1 → 2 3 3

1 → 3 → 2 2

(A⊗2
)22 4 2 → 1 → 2 4 4

2 → 3 → 2 −1

(A⊗2
)23 3 3 → 3 → 2 3 3

(A⊗2
)31 5 1 → 1 → 3 4 5

1 → 2 → 3 0

1 → 3 → 3 5

(A⊗2
)32 5 2 → 3 → 3 2 5

2 → 1 → 3 5

(A⊗2
)33 6 3 → 2 → 3 −1 6

3 → 3 → 3 6

Table 1 All possible paths with length 2 for the matrix A and the graph G (A) of Example 2, and the corre-

sponding weights. Note that the maximum weights are indeed equal to the entries of A⊗2
(listed in the second

column of the table).

A directed graph G is called strongly connected if for any two different vertices i, j of

the graph, there exists a path from i to j.

Definition 2 (Irreducible matrix) A matrix A∈R
n×n
ε is called irreducible if its precedence

graph G (A) is strongly connected.

1 The weight of a path is defined as the sum of the weights of the arcs in the path.
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If we reformulate this in the max-plus algebra then a matrix A ∈ R
n×n
ε is irreducible if

(A⊕A⊗2
⊕ . . .⊕A⊗n−1

)i j 6= ε for all i, j with i 6= j ,

since this condition means that for two arbitrary vertices i and j of G (A) with i 6= j there

exists at least one path (of length 1,2, . . . or n−1) from j to i.

Example 3 Let A be defined as in Example 1. The precedence graph G (A) of A is given in

Figure 1. Clearly, G (A) is strongly connected as there exists a path from any node in G (A)
to any other node, and hence A is irreducible. ⊓⊔

3 Some basic problems in the max-plus algebra

In this section we present some basic max-plus-algebraic problems and some methods to

solve them.

3.1 Max-plus-algebraic eigenvalue problem

Definition 3 (Max-plus-algebraic eigenvalue) Let A ∈ R
n×n
ε . If there exist λ ∈ Rε and

v ∈ R
n
ε with v 6= ε n×1 such that A⊗ v = λ ⊗ v then we say that λ is a max-plus-algebraic

eigenvalue of A and that v is a corresponding max-plus-algebraic eigenvector of A.

It can be shown that matrix A ∈ R
n×n
ε has at least one max-plus-algebraic eigenvalue (Bac-

celli et al., 1992, Section 3.2.4). However, in contrast to linear algebra, the total number

(multiplicities taking into account) of max-plus-algebraic eigenvalues of an n by n matrix is

in general less than n. Moreover, if a matrix is irreducible, it has only one max-plus-algebraic

eigenvalue (see, e.g., (Cohen et al., 1985)).

The max-plus-algebraic eigenvalue has the following graph-theoretic interpretation. If

λmax is the maximal average weight2 over all elementary circuits of G (A), then λmax is a

max-plus-algebraic eigenvalue of A. An elementary circuit is a circuit in which no vertex

appears more than once, except for the initial vertex which appears exactly twice.

There exist several efficient algorithms to determine max-plus-algebraic eigenvalues

such as the Karp’s algorithm (Karp, 1978; Cohen et al., 1985) or the power algorithm of

Cochet-Terrasson et al. (1998).

To determine the max-plus-algebraic eigenvectors corresponding to a given max-plus-

algebraic eigenvalue, the following procedure can be applied (Karp, 1978; Cohen et al.,

1985).

First we introduce the Kleene star operator3 of the matrix A:

A⋆ = En ⊕A⊕A⊗2
⊕ . . . (5)

The entries of A⋆ have the following meaning: (A⋆)i j is the maximal weight of any path of

arbitrary length in G (A) between node j and node i. We also define

A+ = A⊗A⋆ = A⊕A⊗2
⊕A⊗3

⊕ . . .

2 The average weight of a path is the weight of the path divided by the length of the path.
3 Note the analogy between the definition of A⋆ and the Taylor series expansion of (I −A)−1 in conven-

tional algebra. This is related to solution of linear equations of the form x = A⊗ x⊕b, see Section 3.2.2.
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Circuit Length Weight Average weight

1 → 1 1 2 2

3 → 3 1 3 3

1 → 2 → 1 2 4 2

2 → 3 → 2 2 −1 −0.5

Table 2 The elementary circuits of the precedence graph of the matrix A of Examples 1, 3, and 4.

Let λ be4 a non-ε max-plus-algebraic eigenvalue of A ∈R
n×n
ε . Now consider the matrix Aλ

defined by (Aλ )i j = ai j −λ . Since all paths in G (Aλ ) will have a non-positive weight, the

matrix A+
λ

will have entries in Rε . Now if (A+
λ
)ii = 0 for some i then (A+

λ
)·i, the ith column of

A+
λ

, will be a max-plus-algebraic eigenvector of A for the eigenvalue λ . This can be verified

as follows: Note that in general A⋆ = En ⊕A+. Since (A+
λ
)ii = 0 this implies that (A⋆

λ )·i =

(A+
λ
)·i or equivalently Aλ ⊗ (A+

λ
)·i = (A+

λ
)·i or, since Aλ = A−λ or A = Aλ +λ = λ ⊗A,

also A⊗ (A+
λ
)·i = λ ⊗ (A+

λ
)·i. Hence, the ith column of A+

λ
is indeed a max-plus-algebraic

eigenvector of A.

Example 4 Consider the (irreducible) matrix A of Examples 1 and 3. The elementary circuits

of G (A) are listed in Table 2. The maximum average weight is 3. Hence, λ = 3 is a max-

plus-algebraic eigenvalue of A.

We have Aλ =





−1 0 ε
−2 ε −3

−1 −4 0



 and A+
λ
=





−1 0 −3

−2 −2 −3

−1 −1 0



. Since (A+
λ
)33 = 0, the third column

of A+
λ

is a max-plus-algebraic eigenvector of A. Indeed, with v =
[

−3 −3 0
]T

, we find

A⊗ v = 3⊗ v =
[

0 0 3
]T

. ⊓⊔

We also have the following property (see, e.g., Baccelli et al. (1992, Chapter 3), Cohen

et al. (1985); Gaubert (1994)):

Theorem 1 If A ∈ Rε is irreducible, then

∃k0 ∈ N, ∃c ∈ N\{0} such that ∀k > k0 : A⊗k+c
= λ⊗c

⊗A⊗k

where λ is the (unique) max-plus-algebraic eigenvalue of A.

In the case where A is not irreducible the behavior of A⊗k
is more complex (see, e.g., Baccelli

et al. (1992, Chapter 3); Heidergott et al. (2006, Chapters 3, 4); De Schutter (2000)).

4 If λ = ε then any vector v such that vi = ε if the ith column of A contains a non-ε entry will be a

max-plus-algebraic eigenvector of A.
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Example 5 For the matrix A of Example 1 we have

A =





2 3 ε
1 ε 0

2 −1 3



 , A⊗2
=





4 5 3

3 4 3

5 5 6



 ,

A⊗3
=





6 7 6

5 6 6

8 8 9



 , A⊗4
=





8 9 9

8 8 9

11 11 12



 ,

A⊗5
=





11 11 12

11 11 12

14 14 15



 , A⊗6
=





14 14 15

14 14 15

17 17 18



 ,

A⊗7
=





17 17 18

17 17 18

20 20 21



 , A⊗8
=





20 20 21

20 20 21

23 23 24



 , . . .

It can be verified that for k > 5 we have
(

A⊗k+1)

i j
=

(

A⊗k)

i j
+ 3 = 3 ⊗

(

A⊗k)

i j
for all

i, j ∈ {1,2,3}. So A⊗k+1
= 3⊗A⊗k

for c = 1, k0 = 5 and k = 5,6, . . . ⊓⊔

For given matrices A,B ∈ R
n×n
ε the generalized or two-sided max-plus-algebraic eigen-

problem (Cuninghame-Green and Butkovič, 2008; Gaubert and Sergeev, 2013; Butkovič

and Jones, 2016) consists in finding λ ∈Rε and a vector v ∈R
n
ε with non-ε entries such that

A⊗ v = λ ⊗B⊗ v.

Another generalized eigenvalue problem is considered by Cochet-Terrasson et al. (1998),

who define the generalized max-plus-algebraic eigenproblem for A ∈R
n×n
ε as finding λ and

v such that
⊕

t∈N At ⊗λ⊗−t
⊗ v = v.

Heidergott et al. (2006, Chapter 3) use the concept of generalized eigenmode of a reg-

ular matrix A, which is defined by the pair of vectors (η ,v) with η ,v ∈ R
n such that

A⊗ (k ·η + v) = (k+ 1) ·η + v for all k ∈ N. The vector η coincides with the cycle time

vector and can be seen as an extended eigenvalue, where v still remains the eigenvector. In

(Fahim et al., 2017) a generalized power algorithm has been presented that computes the

generalized eigenmode.

3.2 Systems of max-plus linear equations

In this section we consider three types of systems of max-plus linear equations, namely

A⊗ x = b, x = A⊗ x⊕b, and A⊗ x⊕b =C⊗ x⊕d.

3.2.1 A⊗ x = b

Let A ∈ R
n×n
ε and b ∈ R

n
ε . In general, the system of max-plus linear equations A⊗ x = b

will not always have a solution, even if A is square or if it has more columns than rows.

Therefore, the concept of subsolution has been introduced (see Cuninghame-Green (1979,

Chapter 14), Baccelli et al. (1992, Section 3.2.3)).

Definition 4 (Subsolution) Let A ∈ R
n×n
ε and b ∈ R

n
ε . We say that x ∈ R

n
ε is a subsolution

of the system of max-plus linear equations A⊗ x = b if A⊗ x 6 b.
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Although the system A⊗ x = b does not always have a solution, it always possible to

determine the largest subsolution if we allow components that are equal to ∞ in the solution

and if we assume that ε⊗∞=∞⊗ε = ε by definition5. The largest subsolution x̂ of A⊗x= b

is then given by

x̂ j = min
i

(bi −ai j) for j = 1,2, . . . ,n , (6)

or equivalently,

x̂ =−(AT ⊗ (−b))

Example 6 Consider the matrix A of Example 1 and let b =
[

1 2 3
]T

. The system of equa-

tions A ⊗ x = b does not have a solution. However, the largest subsolution is given by

x̂ =
[

−1 −2 0
]T

, and we have A⊗ x̂ =
[

1 0 3
]T

6 b. ⊓⊔

Note that for the largest subsolution x̂ we have A⊗ x̂ 6 b. In some cases, one may want

to minimize the difference between A⊗ x and b, i.e., to find x such that max
i

|bi − (A⊗ x)i|
is minimized. A solution x̃ of this problem is given by

x̃ = x̂⊗
δ

2
with δ = max

i
(bi − (A⊗ x̂)i) . (7)

We then have max
i

|bi − (A⊗ x̃)i|=
δ
2

.

3.2.2 x = A⊗ x⊕b

Let A ∈ R
n×n
ε and b ∈ R

n
ε . Since the operation ⊕ is not invertible, an equation of the form

x = A⊗ x⊕b can in general not be recast into the form Ã⊗ x = b for some matrix Ã.

If the entries of A⋆ (see (5)) all belong to Rε , then the least solution of x = A⊗ x⊕b is

given by Baccelli et al. (1992, Section 3.2.3.1):

x = A⋆⊗b .

3.2.3 A⊗ x⊕b =C⊗ x⊕d

A system of two-sided max-plus linear equations can be formulated as follows (Walkup and

Borriello, 1998):

A⊗ x⊕b =C⊗ x⊕d, (8)

with A,C ∈ R
m×n
ε , b,d ∈ R

m×1
ε , and x ∈ R

n×1
ε . Note that the ith equation in (8) can be

expanded as

[

n−1
⊗

j=0

Ai j ⊗ x j

]

⊕bi =

[

n−1
⊗

j=0

Ci j ⊗ x j

]

⊕di.

The maximum solution to an arbitrary system of linear max-plus equation can be obtained

using the following three steps:

5 Accordingly, ε − ε = ε .
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– translate each linear max-plus equation into a small set of upper bound constraints, each

of which bounds the values of a single variable from above (see (Walkup and Borriello,

1998, Section 2.1)).

– employ the max-plus closure operation to find the maximum solution to a special subset

of the upper bound constraints (see (Walkup and Borriello, 1998, Section 2.2)).

– use that subset’s maximum solution to guide the choice of a new constraint subset which

will have a smaller maximum solution (see (Walkup and Borriello, 1998, Section 2.3)).

The last two steps are repeated until either the process converges upon a solution which

meets all the upper bound constraints, or it is found that the systems is infeasible since some

variable has a maximum solution of ε .

The specific case A⊗x=C⊗x has been considered in (Cuninghame-Green and Butkovic,

2003).

3.3 Systems of max-plus-algebraic multivariate polynomial equations and inequalities

A system of multivariate polynomial equations and inequalities in the max-plus algebra is

defined as follows:

Given a set of integers {mk}k∈K and sets of coefficients {aki}k∈K , i∈I , {bk}k∈K and

set of exponents {cki j}k∈K , i∈I , j∈J where I = {1, . . . ,mk}, J = {1, . . . ,n} and K =
{1, . . . , peq, peq +1, . . . , peq + pineq}, find x ∈ R

n such that

mk
⊕

i=1

aki ⊗
n

⊗

j=1

x j
⊗

cki j
= bk for k = 1,2, . . . , peq,

mk
⊕

i=1

aki ⊗
n

⊗

j=1

x j
⊗

cki j
6 bk for k = peq +1, . . . , peq + pineq.

Note that the exponents cki j can be negative or real. In conventional algebra the above equa-

tions can be written as

max
i=1,...,mk

(

aki +
n

∑
j=1

cki jx j

)

= bk for k = 1,2, . . . , peq,

max
i=1,...,mk

(

aki +
n

∑
j=1

cki jx j

)

6 bk for k = peq +1, . . . , peq + pineq.

In (De Schutter and De Moor, 1996; De Schutter, 1996; De Schutter and De Moor,

1998) it has been shown that the above problem and related max-plus problems such as

computing max-plus matrix decompositions, transformation of max-plus linear state space

models, state space realization of max-plus linear systems, construction of matrices with a

given max-plus characteristic polynomial, and solving systems of max-min-plus equations

can be recast as a so-called extended linear complementarity problem (ELCP), which is

defined as follows:

Given A ∈R
p×n, B ∈R

q×n, c ∈R
p, d ∈R

q and m subsets φ j of {1,2, . . . , p}, find x ∈R
n

such that

m

∑
j=1

∏
i∈φ j

(Ax− c)i = 0 (9)

subject to Ax > c and Bx = d.
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Algorithms for solving ELCPs can be found in (De Schutter and De Moor, 1995) (for com-

puting the entire solution set) and in (De Schutter et al., 2002) (for finding only one solution).

4 Max-plus linear state space models

DESs with only synchronization and no concurrency can be modeled by a max-plus-algebraic

model of the following form (Baccelli et al., 1992; Cuninghame-Green, 1979; Heidergott

et al., 2006):

x(k) = A⊗ x(k−1) ⊕ B⊗u(k) (10)

y(k) =C⊗ x(k) (11)

with A ∈R
n×n
ε , B ∈R

n×m
ε , and C ∈R

l×n
ε , where m is the number of inputs and l the number

of outputs. The vector x represents the state, u is the input vector, and y is the output vector

of the system. It is important to note that in (10)–(11) the components of the input, the

output, and the state are event times, and that the counter k in (10)–(11) is an event counter.

For a manufacturing system (see also Example 7 below), u(k) typically represents the time

instants at which raw material is fed to the system for the kth time, x(k) the time instants

at which the machines start processing the kth batch of intermediate products, and y(k) the

time instants at which the kth batch of finished products leaves the system.

Due to the analogy with conventional linear time-invariant systems, a DES that can be

modeled by (10)–(11) will be called a max-plus linear time-invariant DES.

Typical examples of systems that can be modeled as max-plus linear DESs are produc-

tion systems, railroad networks, urban traffic networks, queuing systems, and legged robots

(Baccelli et al., 1992; Cuninghame-Green, 1979; Heidergott et al., 2006; Lopes et al., 2014).

We will now illustrate in detail how the behavior of a simple manufacturing system can be

described by a max-plus linear model of the form (10)–(11).

Example 7 Consider the system of Figure 2. This production system consists of three pro-

cessing units: P1, P2, and P3. Raw material is fed to P1 and P2, processed, and sent to P3

where assembly takes place. The processing times for P1, P2, and P3 are respectively d1 = 12,

d2 = 11, and d3 = 7 time units. We assume that it takes t2 = 2 time units for the raw ma-

terial to get from the input source to P2 and that it takes t4 = 1 time unit for the finished

products of processing unit P2 to reach P3. The other transportation times (t1, t3, and t5) are

assumed to be negligible. We assume that at the input of the system and between the pro-

cessing units there are buffers with a capacity that is large enough to ensure that no buffer

overflow will occur. We consider the situation where initially all buffers are empty and none

of the processing units contains raw material or intermediate products. This corresponds to

in fact to the case where x(0) = ε 3×1; if initially, some buffers or some processing units are

non-empty, then we will have x(0) 6= ε 3×1.

A processing unit can only start working on a new product if it has finished processing

the previous product. We assume that each processing unit starts working as soon as all parts

are available. Define

– u(k): time instant at which raw material is fed to the system for the kth time,

– xi(k): time instant at which the ith processing unit starts working for the kth time,

– y(k): time instant at which the kth finished product leaves the system.
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P1

P2

✲

✲

P
P

P
P
P
P

P
P
Pq

✏
✏

✏
✏
✏
✏

✏
✏
✏✶

P3
✲

u(k)

y(k)

t1 = 0

t2 = 2

t3 = 0

t4 = 1

t5 = 0

d1 = 12

d2 = 11

d3 = 7

Fig. 2 A simple production system.

Let us now determine the time instant at which processing unit P1 starts working for the

kth time. If we feed raw material to the system for the kth time, then this raw material is

available at the input of processing unit P1 at time t = u(k)+0. However, P1 can only start

working on the new batch of raw material as soon as it has finished processing the previous,

i.e., the (k−1)st, batch. Since the processing time on P1 is d1 = 12 time units, the (k−1)st

intermediate product will leave P1 at time t = x1(k− 1)+ 12. Since P1 starts working on a

batch of raw material as soon as the raw material is available and the current batch has left

the processing unit, this implies that we have

x1(k) = max(x1(k−1)+12, u(k)+0) (12)

for k = 1,2, . . . The condition that initially processing unit P1 is empty and idle corresponds

to the initial condition x1(0) = ε since then it follows from (12) that x1(1) = u(1), i.e., the

first batch of raw material that is fed to the system will be processed immediately.

Using a similar reasoning we find the following expressions for the time instants at

which P2 and P3 start working for the (k+1)st time and for the time instant at which the kth

finished product leaves the system:

x2(k) = max(x2(k−1)+11, u(k)+2) (13)

x3(k) = max(x1(k)+12+0,x2(k)+11+1, x3(k−1)+7)

= max(x1(k−1)+24, x2(k−1)+23, x3(k−1)+7, u(k)+14) (14)

y(k) = x3(k)+7+0 (15)

for k = 1,2, . . . The condition that initially all buffers are empty corresponds to the initial

condition x1(0) = x2(0) = x3(0) = ε .

Let us now rewrite the evolution equations of the production system using the symbols

⊕ and ⊗. It is easy to verify that (12) can be rewritten as

x1(k) = 12⊗ x1(k−1) ⊕ 0⊗u(k) .

If we also do this for (13)–(15) and if we rewrite the resulting equations in max-plus-

algebraic matrix notation, we obtain

x(k) =





12 ε ε
ε 11 ε

24 23 7



⊗ x(k−1) ⊕





0

2

14



⊗u(k)

y(k) =
[

ε ε 7
]

⊗ x(k)
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where x(k) =
[

x1(k) x2(k) x3(k)
]T

. Note that this is a model of the form (10)–(11). ⊓⊔

In the next section we shall use this production system to illustrate some of the max-plus-

algebraic techniques that can be used to analyze max-plus linear time-invariant DESs.

5 Performance analysis and control of max-plus linear systems

5.1 Analysis of max-plus linear systems

Now we present some analysis techniques for max-plus linear DESs that can be described

by a model of the form (10)–(11).

First we determine the input-output behavior of the max-plus linear DES. We have

x(1) = A⊗ x(0) ⊕ B⊗u(1)

x(2) = A⊗ x(1) ⊕ B⊗u(2)

= A⊗2
⊗ x(0) ⊕ A⊗B⊗u(1) ⊕ B⊗u(2)

etc., which yields x(k) = A⊗k
⊗ x(0) ⊕

k
⊕

i=1

A⊗k−i
⊗B⊗u(i) for k = 1,2, . . . Hence,

y(k) = C⊗A⊗k
⊗ x(0) ⊕

k
⊕

i=1

C⊗A⊗k−i
⊗B⊗u(i) (16)

for k = 1,2, . . .

Consider two input sequences u1 = {u1(k)}
∞
k=1 and u2 = {u2(k)}

∞
k=1. Let y1 = {y1(k)}

∞
k=1

be the output sequence that corresponds to the input sequence u1 (with initial condition

x1(0) = x1,0) and let y2 = {y2(k)}
∞
k=1 be the output sequence that corresponds to the input

sequence u2 (with initial condition x2(0) = x2,0). Let α ,β ∈Rε . From (16) it follows that the

output sequence that corresponds to the input sequence α⊗u1 ⊕ β ⊗u2 = {α⊗u1(k)⊕ β ⊗
u2(k)}

∞
k=1 (with initial condition α ⊗ x1,0 ⊕ β ⊗ x2,0) is given by α ⊗ y1 ⊕ β ⊗ y2. This ex-

plains why DESs that can be described by a model of the form (10)–(11) are called max-plus

linear.

Let p ∈ N\{0}. If we define

Y =
[

yT(1) yT(2) . . . yT(p)
]T

U =
[

uT(1) uT(2) . . . uT(p)
]T

,

then (16) results in

Y = H ⊗U ⊕ G⊗ x(0) (17)

with

H =











C⊗B ε . . . ε
C⊗A⊗B C⊗B . . . ε

...
...

. . .
...

C⊗A⊗p−1
⊗B C⊗A⊗p−2

⊗B . . . C⊗B











, G =











C

C⊗A
...

C⊗A⊗p−1











.
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For the production system of Example 7 this means that if we know the time instants at

which raw material is fed to the system and we know the initial state x(0), we can compute

the time instants at which the finished products will leave the system. Often we assume that

x(0) = ε n×1. For the simple production system of Example 7 this would mean that all the

buffers are initially empty.

Example 8 Consider the production system of Example 7. Define Y =
[

y(1) y(2) y(3) y(4)
]T

and U =
[

u(1) u(2) u(3) u(4)
]T

. If x(0) = ε 3×1 then we have Y = H ⊗U with

H =









21 ε ε ε
32 21 ε ε
43 32 21 ε
55 43 32 21









.

If we feed raw material to the system at time instants u(1) = 1, u(2) = 8, u(3) = 15, u(4) =
19, the finished products will leave the system at time instants y(1) = 22, y(2) = 33, y(3) =
44, and y(4) = 56 since

H ⊗









1

8

15

19









=









22

33

44

56









. ⊓⊔

Now we consider the autonomous max-plus linear DES described by

x(k+1) = A⊗ x(k)

y(k) =C⊗ x(k)

with x(0) = x0. For the production system of Example 7 this would mean that we start from

a situation in which some internal buffers and all the input buffer are not initially empty (if

x0 6= ε n×1) and that afterwards the raw material is fed to the system at such a rate that the

input buffers never become empty.

If the system matrix A of the autonomous DES is irreducible, then we can compute the

“ultimate” behavior of the autonomous DES by solving the max-plus-algebraic eigenvalue

problem A⊗ v = λ ⊗ v. By Theorem 1 there exist integers k0 ∈ N and c ∈ N\{0} such that

x(k+ c) = λ⊗c
⊗ x(k) for all k > k0. This means that

xi(k+ c)− xi(k) = cλ (18)

for i = 1,2, . . . ,n and for all k > k0. From this relation it follows that for a production system

the average time duration of a cycle of the production process when the system has reached

its cyclic behavior will be given by λ . The average production rate will then be equal to
1
λ . This also enables us to calculate the utilization levels of the various machines in the

production process. Furthermore, some algorithms to compute the eigenvalue also yield the

critical paths of the production process and the bottleneck machines (Cohen et al., 1985).

Example 9 The system matrix A of the production system of Example 7 is not irreducible

and it does not lead to a behavior of the form6 (18). In fact, it can be verified that A has three

6 Due to the structure of the system matrix A it is easy to verify that
(

A⊗k )

11
12⊗k

and
(

A⊗k )

22
= 11⊗k

for

all k > 1. Hence, the relation given in Theorem 1 does not hold in this case.
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eigenvalues λ1 = 12, λ2 = 11, and λ3 = 7, with corresponding eigenvectors

v1 =





0

ε
12



 , v2 =





ε
0

12



 , and v3 =





ε
ε
0



 .

Now consider x(0) = [0 1 2]T and compute x(k+1) = A⊗x(k) for k = 0, . . . ,4. This yields

x(1) =





12

12

24



 , x(2) =





24

23

36



 , x(3) =





36

34

48



 , x(4) =





48

45

60



 , and x(5) =





60

56

72



 .

So by choosing k0 = 1, we see that for k ≥ k0 the first and the third element of x satisfies

xi(k+c)−xi(k) = cλ1 for i = 1 or 3 with c = 1, but the second element of x satisfies x2(k+
c)− x2(k) = cλ2 with c = 1, which means that (18) does not hold in this case.

5.2 Control of max-plus linear DES

The basic control problem for max-plus linear DESs consists in determining the optimal

input times (e.g., feeding times of raw material or starting times of processes or activities)

for a given reference signal (e.g., due dates for the finished products or completion dates for

processes or activities). In the literature many different approaches are described to solve

this problem. Among these the most common ones are based on residuation and on model

predictive control (MPC). Residuation essentially consists in finding the largest solution to a

system of max-plus inequalities with the input times as variables and the due dates as upper

bounds. The MPC approach is essentially based on the minimization of the error between

the actual output times and the due dates, possibly subject to additional constraints on the

inputs and the outputs.

Remark 1 For simplicity, we only consider single-input single-output (SISO) systems in

this section. Note however that MPC can very easily be extended to multi-input multi-output

(MIMO) systems.

5.2.1 Residuation-based control

The basic control problem for max-plus linear DESs consists in determining the optimal

feeding times of raw material to the system and/or the optimal starting times of the (internal)

processes.

Consider (17) with x(0) = ε n×1. If we know the vector Y of latest times at which the

finished products have to leave the system, we can compute the vector U of (latest) time

instants at which raw material has to be fed to the system by solving the system of max-

plus linear equations H ⊗U = Y , if this system has a solution, or by determining the largest

subsolution of H⊗U =Y , i.e., determining the largest U such that H⊗U 6Y . This approach

is also based on residuation (Blyth and Janowitz, 1972).

Note that the method above corresponds to just-in-time production. However, if we have

perishable goods it is sometimes better to minimize the maximal deviation between the

desired and the actual finishing times. In that case we have to solve the problem

min
U

max
i

|(Y −H ⊗U)i|. (19)

This problem can be solved using formula (7).
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Example 10 Let us again consider the production system of Example 7 and the matrix H

and the vectors U and Y as defined in Example 8. If the finished parts should leave the system

before time instants 21, 32, 48, and 55 and if we want to feed the raw material to the system

as late as possible, then we should feed raw material to the system at time instants 0, 11,

23, 34 since the largest subsolution of H ⊗U =Y =
[

21 32 48 55
]T

is Û =
[

0 11 23 34
]T

.

The actual output times Ŷ are given by Ŷ = H ⊗Û =
[

21 32 44 55
]T

. Note that Ŷ ≤Y . The

largest deviation δ between the desired and the actual output times is equal to 4. The input

times that minimize this deviation are given by Ũ = Û ⊗
δ

2
= Û ⊗2 =

[

2 13 25 36
]T

. The

corresponding output times are given by Ỹ =
[

23 34 46 57
]T

. Note that the largest deviation

between the desired finishing and the actual finishing times is now equal to δ
2
= 2, which

means that the maximal deviation between the desired (Y ) and the actual (Ỹ ) finishing times

is minimized. ⊓⊔

The residuation-based approach for computing the optimal feeding times is used in

one form or another in (Boimond and Ferrier, 1996; Cottenceau et al., 2001; Goto, 2008;

Hardouin et al., 2009; Houssin et al., 2013; Lahaye et al., 2008; Maia et al., 2003; Menguy

et al., 1997, 1998, 2000a,b).

In particular, Libeaut and Loiseau (1995) have applied the geometric approach and resid-

uation theory in order to find the optimal input. The geometric approach is a collection of

mathematical concepts developed to achieve a better and neater insight into the most impor-

tant features of multi-variable linear dynamical systems in connection with compensator and

regulator synthesis problems. It is based on the state space representation and it also easily

links SISO and MIMO systems and clarifies in a concise and elegant way some common

properties that cannot be obtained by the transform-based techniques usually adopted in the

SISO case. Related work can be found in (Ilchmann, 1989). Using these results, in (Libeaut

and Loiseau, 1995) the set of admissible initial conditions of a linear system is defined and

characterized geometrically and the optimal input is computed by applying residuation the-

ory. In (Boimond and Ferrier, 1996) the Internal Model Control (IMC) structure used in

conventional control theory is extended to deterministic max-plus linear DESs. The IMC

philosophy relies on the internal model principle, which states that control can be achieved

only if the control system encapsulates, either implicitly or explicitly, some representation

of the process to be controlled; a comprehensive explanation can be found in (Garcia and

Morari, 1982). The controller design raises the problem of model inversion, where the resid-

uation approach also plays an important role. In (Menguy et al., 1997), a feedback control

structure is proposed to be able to take into account a possible mismatch between the sys-

tem and its model. Instead of adopting the commonly used IMC approach for closed-loop

systems, the authors proposed another closed-loop control structure consisting in applying

an open-loop control approach that is modified by using the system output behavior. In fact,

the model is initially supposed to be exact; subsequently, the control structure is modified

by using the system output in order to be as close as possible to the optimal system control.

The optimization problem is solved using residuation. The method of Menguy et al. (1998)

is also based on inverting a dynamic system and applying residuation theory. The proposed

control structure is based on adaptive control and encompasses both identification and in-

version of a dynamic system. In (Lahaye et al., 2008), a just-in-time optimal control for a

first-in first-out (FIFO) time event graph is proposed based on residuation theory. The aim is

to compute the largest control u such that the firing dates of output transitions (or simply the

output signals) occur at the latest before the desired ones. In (Brunsch et al., 2012; Brunsch

and Raisch, 2012; David-Henriet et al., 2017) residuation-based control is applied for max-
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plus linear systems arising in the context of manufacturing systems and of high-throughput

screening (e.g., for the pharmaceutical industry).

Note that the sequence u(1),u(2), . . . ,u(N) of the feeding times should be non-decreasing

as it corresponds to a sequence of consecutive feeding times. However, in general a residuation-

based solution does not always satisfy this property. This problem can be overcome by pro-

jection onto the set of non-increasing sequences as in the approach proposed by Menguy

et al. (2000a). In addition, an initial state x(0) that is not necessarily equal to ε n×1 can be

included and an explicit form can be derived for the residuation controller. The resulting

expression involves the operations minimization and addition from the min-plus algebra,

which is the dual of the max-plus algebra and which has minimization (⊕′) and addition

(⊗′) as basic operations with the zero element ε ′ = ∞. More specifically, the residuation

controller is now given by the following expression (van den Boom and De Schutter, 2014):

Û = S⊗′ (−HT )⊗′ (G⊗ x(0) ⊕ H ⊗U0 ⊕ Y ) (20)

where U0 and S are respectively a vector with p components and a p by p matrix defined as7

U0 =
[

u(0) u(0) · · · u(0)
]T

S =













0 · · · 0

ε ′
. . .

. . .
...

...
. . .

. . .

ε ′ · · · ε ′ 0













.

5.2.2 Model predictive control

A somewhat more advanced control approach for max-plus linear DESs has been developed

by De Schutter and van den Boom (2001). This approach is an extension to max-plus lin-

ear DESs of the model-based predictive control approach called Model Predictive Control

(MPC) (Camacho and Bordons, 1995; Maciejowski, 2002; Rawlings and Mayne, 2009) that

has originally been developed for time-driven systems.

The main advantage of the MPC method of De Schutter and van den Boom (2001),

comparing to other available methods for control design in max-plus linear DES, is that it

allows to include general linear inequality constraints on the inputs, states, and outputs of

the system.

In MPC for max-plus linear DESs at each event step k the controller computes the input

sequence u(k), . . . ,u(k+Np − 1) that optimizes a performance criterion J over the next Np

event steps, where Np is called the prediction horizon, subject to various constraints on the

inputs, states, and outputs of the system. Typically, the performance criterion

J = Jout +λJin

aims at minimizing the difference or the tardiness with respect to a due date signal r(·),
while at the same time making the inputs as large as possible (just-in-time production) where

λ ∈ (0,1) is a weighting factor. A typical choice for the output cost function is

Jout =
Np−1

∑
j=0

ny

∑
i=1

max(yi(k+ j)− ri(k+ j),0) (21)

7 Recall that in this section we consider SISO systems (cf. Remark 1).
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and for the input criterion function a typical choice is

Jin =−
Np−1

∑
j=0

nu

∑
l=1

ul(k+ j). (22)

Note that Jout penalizes late delivery and Jin penalizes early feeding times (i.e., it favors

just-in-time feeding).

This results in an optimization problem that has to be solved at each event step k. In

order to reduce the computational complexity, often a control horizon Nc is introduced with

Nc < Np and it is assumed that the feeding rate (∆u(k + j) = u(k + j)− u(k + j − 1)) is

constant after event step k+Nc, i.e., u(k+Nc+ℓ) = u(k+Nc−1) for ℓ= 0, . . . ,Np−Nc−1.

Moreover, we can also have lower and upper bound constraints on ∆x(k + j), ∆y(k + j),
y(k+ j), or linear constraints on x(k+ j), y(k+ j), and u(k+ j). In general, this leads to a

system of linear inequalities Ac(k)x̃(k)+Bc(k)ỹ(k)+Cc(k)ũ(k)6 dc(k), for properly defined

matrices and vectors Ac(k), Bc(k), Cc(k), and dc(k), and where

ũ(k) =
[

u(k) . . . u(k+Np −1)
]T

x̃(k) =
[

x(k) . . . x(k+Np −1)
]T

ỹ(k) =
[

y(k) . . . y(k+Np −1)
]T

.

Hence, at event step k the following optimization problem has to be solved:

min
ũ(k),x̃(k),ỹ(k)

J (23)

subject to

x(k+ j) = A⊗ x(k+ j−1) ⊕ B⊗u(k+ j−1) for j = 0, . . . ,Np −1 (24)

y(k+ j) =C⊗ x(k+ j) for j = 0, . . . ,Np −1 (25)

∆u(k+ j)≥ 0 for j = 0, . . . ,Nc −1 (26)

u(k+Nc + j) = u(k+Nc −1) for j = 0, . . . ,Np −Nc −1 (27)

Ac(k)x̃(k)+Bc(k)ỹ(k)+Cc(k)ũ(k)6 dc(k) . (28)

MPC uses a receding horizon approach. This means that once the optimal input se-

quence has been determined only the input for the first event step is applied to the system.

Next, at event step k+ 1 the new state of the system is determined or measured8, the pre-

diction window is shifted, and the whole process is repeated again. This receding horizon

approach introduces a feedback mechanism, which allows to reduce the effects of possible

disturbances and model mismatch errors.

More information on MPC for max-plus-linear systems can be found in (De Schutter

and van den Boom, 2001; Goto, 2009; Necoara et al., 2007, 2009a; van den Boom and De

Schutter, 2002a). MPC for max-plus-linear systems with partial synchronization is proposed

in (David-Henriet et al., 2016).

8 See (van den Boom and De Schutter, 2002a) for a discussion of causality issues that arise in this context

for max-plus linear DESs and that do not play a role for conventional time-driven systems.



20 Bart De Schutter et al.

5.3 Comparison of residuation-based control and MPC for max-plus-linear systems

In this section we compare the control methods based on residuation with the ones based

on MPC. We discuss four items: constraint handling, cost functions, computation time, and

implementation. We end the section with a worked example.

5.3.1 Constraint handling

First note that the problem of solving the problem (23)–(25) with output criterion (21) and

input criterion (22), but without constraints (26)–(28), is equivalent to solving the residu-

ation problem with p = Np in a receding horizon setting. If we also take constraint (26)

into account, we obtain the result from (Menguy et al., 2000a) with a non-decreasing input

signal, for which the explicit solution is given by (20).

As was already mentioned in the previous section, the main advantage of the MPC,

compared to other available methods for control design for max-plus linear DES, is that it

allows to include general linear inequality constraints on the inputs, states, and outputs of

the system. This is done by writing the control law as the result of a constrained optimization

problem (23)–(28). MPC is until so far the only known method to handle the constraint (28).

5.3.2 Different cost functions

In Section 5.2.2 we have discussed MPC with the performance criterion J = Jout + λJin

where Jout and Jin are given by (21) and (22), respectively. This performance criterion re-

sults in a just-in-time control strategy, which is comparable to the ones in residuation-based

control.

However, in (De Schutter and van den Boom, 2001) it has been shown that MPC can

handle a broad range of other performance criteria. Some alternative output criteria are

Jout,1 =
Np

∑
j=1

ny

∑
i=1

∣

∣

∣
yi(k+ j)− ri(k+ j)

∣

∣

∣
(29)

Jout,2 =
Np

∑
j=1

ny

∑
i=1

∣

∣

∣
∆ 2yi(k+ j)

∣

∣

∣
(30)

where (29) does not only penalize late delivery but also any deviation from the due date, and

(30) can be used if we want to balance the output rates. Some alternative input criteria are

Jin,1 =
Np

∑
j=1

∑
i=1,...,ny, l=1,...,nu

∣

∣

∣
yi(k+ j)−ul(k+ j−1)

∣

∣

∣
(31)

Jin,2 =
Np−1

∑
j=1

nu

∑
l=1

∣

∣

∣
∆ 2ul(k+ j)

∣

∣

∣
(32)

where (31) minimizes the maximum holding time of products in the system, and (32) bal-

ances the input rates.



Max-plus linear systems: An introduction 21

5.3.3 Computation time

An important advantage of residuation-based control w.r.t. MPC is that of the constraint (28)

is not present residuation-based control offers an analytic solution that can be computed

very efficiently, while in MPC at every event step an optimization problem has to be solved

numerically.

In some cases (De Schutter and van den Boom, 2001) the MPC optimization will result

in a linear programming problem, which can to be solved numerically and on-line in a finite

number of iterative steps using reliable and fast algorithms. This is the case if we, e.g., solve

the problem (23)–(28) with output criterion (21) and input criterion (22), and if the matrix

Bc in constraint (28) satisfies [Bc]i j ≥ 0 for all i, j.

If the performance criterion is not convex the problem has to be solved with other opti-

mization techniques, such as an ELCP algorithm (De Schutter and De Moor, 1995), a mixed

integer linear programming problem (Heemels et al., 2001; Bemporad and Morari, 1999),

or a optimistic programming algorithm (Xu et al., 2014).

The time required for the optimization makes model predictive control not always suit-

able for fast systems and/or complex problems.

5.3.4 Implementation

Another difference between residuation-based controllers and controllers based on MPC is

the complexity in implementation.

The control law of a residuation-based controller can be written as an analytic expres-

sion, which can be implemented on a programmable logic controller (PLC), a distributed

control system (DCS), or a programmable automation controller (PAC) in a straightforward

way.

Most MPC controllers in industry use personal computers or dedicated microprocessor-

based systems to manipulate the data and to perform the calculations, usually needing ded-

icated optimization software. This means that the final step in the controller design (imple-

mentation) is more complex for MPC controllers than for residuation-based controllers.

For application in industry it is important that controllers are cheap and therefore the

additional performance and scope of the MPC controller should weigh up against the higher

implementation costs.

5.3.5 Worked example

To make the above explanations more tangible, let us compare the residuation methods (19)

and (20) with the MPC method (23)–(28). We assign u(0) = 15 as the initial input value

and x(0) = [ 0 2 14 ]T as the initial state. The reference signal is given as {r(k)}15
k=0 =

14, 33, 57, 76, 85, 108, 108, 108, 126, 140, 154, 168, 182, 196, 210, 224. We compare

three controller implementations:

Residuation-1 Here we use (19) to compute the optimal input sequence. For event step

k = 1 the optimal sequence is given by {ures-1
opt ( j)}15

j=0 = 15, 12, 29, 41, 53, 65, 76, 87,

105, 119, 133, 147, 161, 175, 189, 203. The corresponding output sequence is given

by: {yres-1
opt ( j)}15

j=0 = 21, 33, 50, 62, 74, 86, 97, 108, 126, 140, 154, 168, 182, 196, 210,

224.

Residuation-2 Where we use (20) to compute the optimal, non-decreasing input sequence.

For event step k= 1 the optimal sequence is given by {ures-2
opt ( j)}15

j=0 = 15, 15, 29, 41, 53,



22 Bart De Schutter et al.

0 5 10 15

 k

-25

-20

-15

-10

-5

0

5

10

y(
k
)-

r(
k
)

residuation

residuation, ∆u(k) ≥ 0

constrained MPC

Fig. 3 Tracking error y− r obtained from residuation and MPC

65, 76, 87, 105, 119, 133, 147, 161, 175, 189, 203. The corresponding output se-

quence is given by: {yres-2
opt ( j)}15

j=0 = 21, 36, 50, 62, 74, 86, 97, 108, 126, 140, 154, 168,

182, 196, 210, 224.

Model predictive control We solve the MPC problem (23)–(28) for Np = 10, Nc = 5 where

(28) is a constraint on the increment input: ∆u(k + j) ≤ 15, j = 0, . . . ,15. Consider-

ing (21) and (22), the performance criterion is defined as J = Jout,1 + λ Jin with λ =
0.05. The optimal input sequence obtained for event step k = 1 is {uMPC

opt ( j)}15
j=0 =

15, 15, 29, 41, 53, 65, 76, 87, 102, 117, 132, 147, 161, 175, 189, 203. The corre-

sponding output sequence is given by: {yMPC
opt ( j)}15

j=0 = 21, 36, 50, 62, 74, 86, 97, 108,

123, 138, 153, 168, 182, 196, 210, 224.

In Figure 3 the tracking error y(k)− r(k), k = 0, . . . ,15 is given for the two residuation

approaches and the MPC approach. All start with a tracking error of y(0)− r(0) = 7. For

k = 1 the tracking error of the residuation-1 method decreases to zero, while the residuation-

2 method as well as the MPC method still face a tracking error. This is due to the fact that

the residuation-1 solution allows a decreasing input signal (note that ures-1
opt (1) = 12 < 15 =

ures-1
opt (0)) and is therefore infeasible in reality. This infeasibility is caused by the fact that

the solution intends to fulfill the constraint ỹres-1
opt (k) = r̃(k), where yres-1

opt is the obtained

output sequence and r̃ is the desired one, which cannot be met using a non-decreasing input

sequence ures-1
opt . This is due to the fact the output obtained from an autonomous system

is always less that or equal to the one obtained from (10)–(11). So, if the output of the

autonomous system is not less than or equal to the reference signal, it is impossible for the

real system to satisfy this condition.

The residuation-2 method (Libeaut and Loiseau, 1995; Menguy et al., 1997) includes

the non-decreasing input constraint and it yields a non-decreasing — and thus feasible —

input sequence. Note that the residuation-2 approach is equivalent to solving MPC problem

(23)–(26) for Np = 15.

For k ∈ {8,9,10} we see observe that the tracking error in the MPC approach is negative.

This due to the fact that the increment input signal hits the constraint ∆u(k) ≤ 15. The

residuation methods both show input signals with an increment larger than 15, which thus

do not satisfy all the imposed constraints.
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6 Related work in modeling, performance analysis, identification, and control

6.1 Modeling and performance analysis

Addad et al. (2010) present an approach to evaluate the response time in networked au-

tomation systems that use a client/server protocol. The developments introduced are derived

from modeling the entire architecture in the form of timed event graphs, as well as from

the resulting state space representation in max-plus algebra. Another method for deriving a

max-plus linear state space representation for repetitive FIFO systems is presented in Goto

and Masuda (2008).

An interesting topic is the use of network calculus as a tool to analyze the perfor-

mance in communication networks and queuing networks, in particular to obtain determin-

istic bounds. Although network calculus is originally based on min-plus algebra, alternative

formulations can be developed based on max-plus algebra (Liebeherr, 2017). In (Bouillard

and Thierry, 2008) some efficient algorithms, implementing network calculus operations for

some classical functions, have been provided as well as the analysis of their computational

complexity.

Other related work on modeling and analysis different types of systems using max-plus

algebra can be found in (Declerck, 2011; Shang and Sain, 2009; Tao et al., 2013; Addad

et al., 2012; Lu et al., 2012; Goto and Takahashi, 2012; Nait-Sidi-Moh et al., 2009; Addad

et al., 2011; Su and Woeginger, 2011; Ferreira Cândido et al., 2018; Adzkiya et al., 2015).

In (van den Boom and De Schutter, 2006, 2012) switching max-plus linear systems were

introduced as an extension of max-plus linear systems. The system can switch between

different modes, where in each mode the system is described by a max-plus-linear state

equation and a max-plus-linear output equation, with different system matrices for each

mode.

6.2 Identification and verification

In (Schullerus et al., 2006) the problem of designing adequate input signals for state space

identification of max-plus linear systems is addressed. This work constitutes an improve-

ment compared to the existing methods by adding additional constraints due to safety or

performance requirements on input and output signals besides reducing the computational

burden of the already existing models.

Observer design for max-plus linear systems is considered in (Hardouin et al., 2010,

2017). Stochastic filtering of max-plus linear systems with bounded disturbances is dis-

cussed in (Santos-Mendes et al., 2019).

Adzkiya et al. (2013) develop a method to generate finite abstractions (i.e., simplified

representations that still capture a given behavior or feature of the original system) of max-

plus-linear models. This approach enables the study — in a computationally efficient way —

of general properties of the original max-plus-linear model by verifying (via model check-

ing) equivalent logical specifications over the finite abstraction. Related work is reported in

(Esmaeil Zadeh Soudjani et al., 2016).
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6.3 Control

In (Katz, 2007) the extension of the geometric approach to linear systems over the max-plus

algebra is presented. This approach is based on the state space representation rather than

using residuation methods; however, it is still different from the MPC approach. The aim is

to compute the set of initial states for which there exists a sequence of control vectors that

makes the state of system (10) converge in the given space. Related work is described in

(Shang, 2013; Shang et al., 2016).

An important topic in the study of control for max-plus linear system is the incorporation

of uncertainty in the system parameters. Note that noise and parameter uncertainty in max-

plus linear systems will appear in a max-plus-multiplicative way as perturbations of the

system parameters (Olsder et al., 1990b), usually leading to delays in the system, even if

the uncertainty has a zero mean. This perturbation can have a bounded character or it can

be modeled in a stochastic way. The bounded case has been studied in Lahaye et al. (1999);

Lhommeau et al. (2004); van den Boom and De Schutter (2002b); Necoara et al. (2009b).

In (van den Boom and De Schutter, 2004) it is shown that the stochastic MPC problem can

be recast into a convex optimization problem. To reduce the complexity of the stochastic

MPC optimization problem Farahani et al. (2016) use the moments of a random variable to

obtain approximate solution using less computation time. Xu et al. (2019) introduced chance

constraints in the MPC problem for stochastic max-plus linear systems.

Related work on control of max-plus DESs can be found in (Amari et al., 2012; Başar

and Bernhard, 1995; Commault, 1998; Declerck and Alaoui, 2010; Hruz and Zhou, 2007;

Maia et al., 2011; McEneaney, 2004; Kordonis et al., 2018; Gonçalves et al., 2017; Wang

et al., 2017).

7 Summary

This paper has presented a survey of the basic notions of the max-plus algebra and max-

plus linear discrete-event systems (DESs). We have introduced the basic operations of the

max-plus algebra and presented some of the main definitions, theorems, and properties of

the max-plus algebra. Next, we have given an introduction to max-plus linear DES, and dis-

cussed some elementary analysis and control methods for max-plus linear DESs including

worked examples.
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Gonçalves V, Maia C, Hardouin L (2017) On max-plus linear dynamical system theory: The

regulation problem. Automatica 75:202–209

Gondran M, Minoux M (1976) Eigenvalues and eigenvectors in semimodules and their in-

terpretation in graph theory. In: Proceedings of the 9th International Mathematical Pro-

gramming Symposium, Budapest, Hungary, pp 333–348

Gondran M, Minoux M (1984a) Graphs and Algorithms. John Wiley & Sons, Chichester,

UK

Gondran M, Minoux M (1984b) Linear algebra in dioids: A survey of recent results. Annals

of Discrete Mathematics 19:147–163

Gondran M, Minoux M (1987) Dioı̈d theory and its applications. In: Algèbres Exotiques
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