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Abstract: Due to the increasing integration of renewable sources in the electrical grid, electricity
generation is expected to become more uncertain. In this context, seasonal thermal energy
storage systems (STESSs) are key to shift the delivery of renewable energy sources and tackle
their uncertainty problems. In this paper, we propose an optimal controller for STESSs that,
using reinforcement learning, builds bidding functions for the day-ahead market. In detail,
considering that there is an uncertain energy demand that the STESS has to satisfy, the
controller buys energy in the day-ahead market so that the uncertain demand is satisfied
while the profits are maximized. Since prices are low during periods of large renewable energy
generation (and vice versa), maximizing the profit of a STESS indirectly shifts the delivery of
renewable energy to periods of high energy demand while reducing their uncertainty problems.
To evaluate the proposed algorithm, we consider a real STESS providing different yearly-demand
levels; then, we compare the performance of the controller to the theoretical upper bound, i.e. the
optimal cost of buying energy given perfect knowledge of the demand and prices. The results
indicate that the proposed controller performs reasonably well: despite the large uncertainty in
prices and demand, the proposed controller obtains 70%-50% of the maximum gains given by
the theoretical bound.

Keywords: Seasonal Storage, Bidding Functions, Reinforcement Learning, Energy Storage

1. INTRODUCTION

In recent years, as more renewable energy sources have
been integrated into the electrical grid, storing energy has
become a key aspect. Particularly, as renewable generation
is uncertain and weather dependent, larger integration
leads to more frequent and severe imbalances between
production and consumption. As a result, as these imbal-
ance become more frequent and severe, the management
of the grid becomes more complex (Lago et al. (2018)).
One of the solutions to keep the grid stable and to mit-
igate the negative effects of these imbalances is to use
seasonal thermal energy storage systems (STESSs) (Xu
et al. (2014)) to shift the delivery of renewable energy:
by storing renewable energy during periods of positive
imbalances, i.e. when generation is larger than consump-
tion, and selling it during periods of negative imbalances,
STESSs can reduce these problems. In addition, as positive
imbalances usually lead to low market prices (and vice
versa) (Lago et al. (2019)), shifting the energy delivery to
reduce imbalances is aligned with the economic objective
of STESSs, i.e. by reducing imbalances the profit of the
system is also increased.

Based on these premises, it becomes clear that, to max-
imize the benefits of STESSs, a control algorithm that
optimizes their profits is highly desirable. In particular,
the control algorithm that buys electricity for the STESS
needs to quantify price and demand uncertainty and then
use this information to build bidding functions for the elec-
tricity market that ensure that, while the energy demand
is satisfied, the cost of buying energy is minimized.

1.1 Building bidding functions in electricity markets

Constructing bidding functions for the electricity market
is a topic that has been widely researched. While tradi-
tionally the focus has been towards the case of generator
companies (see Gong et al. (2011) for a review), building
bidding functions for retailers has also been studied. In
particular, in the context of retailers, Fleten and Pet-
tersen (2005) proposed one of the earliest methods: us-
ing a stochastic linear optimization problem, a method
to build piecewise linear bidding functions for the day-
ahead market was proposed and tested in the Norwegian
market. Similarly, Carrion et al. (2007) proposed a method
for building piecewise constant bidding functions for the
Spanish futures market by solving a mixed-integer lin-
ear stochastic optimization problem. In a different study,



Herranz et al. (2012) proposed a non-linear and non-
differentiable optimization problem that constructed bid-
ding functions for several Spanish spot markets.

While these methods work well for traditional retailers,
it can be argued that there is a key difference between a
traditional retailer and a STESS that makes the existing
methods not suitable for the latter case. In detail, a
traditional retailer buys electricity on an hourly basis
to provide the requested demand (Fleten and Pettersen
(2005); Herranz et al. (2012)). The main tool to maximize
its profit is to hedge in different electricity markets and
to incentivize consumers to provide flexible demand. By
contrast, because of the seasonality and long-term aspects
of STESSs, these can spend days or weeks without buying
any energy and then buy 10-100 times their average
demand within a few hours or days. As a result, the time
scales that a traditional retailer and a STESS have to
deal with are very different. As an example, if we consider
the day-ahead market, a traditional retailer would likely
consider the prices during the next day; however, a STESS
will need to forecast the prices not only for the next day
but also for the next months.

1.2 Motivation and contributions

Due to this difference in the time scales, the methods
proposed in the literature are not suitable for STESS:

• The number of variables that a STESS needs to
consider is much larger than that of a retailer. As
the proposed methods in the literature are based on
stochastic optimization, they might not scale well for
real-time/online implementation.

• Because STESSs consider a much larger horizon, the
level of uncertainty that they need to consider is also
larger. This translates to requiring different methods
for modeling uncertainty as the existing methods for
building bidding functions are based on scenario gen-
eration and stochastic programming. In this context,
while there are several methods to generate time-
correlated scenarios for short-term horizons (Pinson
et al. (2009)), creating time-correlated scenarios with
hourly resolutions and large horizons remains, to the
best of our knowledge, an open problem.

To tackle these problems, in this paper we propose a
control algorithm to build bidding functions and trade
electricity that is tailored to systems with long optimiza-
tion horizons, such as STESSs. The proposed algorithm
has two novel features that improve upon the existing
methods:

(1) Using reinforcement learning (RL), the algorithm
removes the necessity to generate scenarios of price
and demand for long-term horizons.

(2) The method scales well for real-time operation inde-
pendently of the number of variables and/or the size
of the horizon. Particularly, as the estimation part
of the algorithm is done offline, the time required to
build bidding functions is negligible.

These two features are in turn the main contributions of
the paper: 1) a control algorithm that generates bidding
functions that are tailored to STESSs; 2) an algorithm
to build bidding functions that scales well for real-time

operation (independently of the characteristics of the
underlying system).

To assess the proposed control algorithm, we evaluate its
performance using a real STESS, i.e. the Ecovat vessel
Ecovat (2018), in a case study where the STESS needs
to satisfy an uncertain heat demand during a full year
while minimizing the cost of charging the system through
the day-ahead market. To assess the performance of the
method, we compare it with the theoretical limit that is
given by solving the equivalent optimization problem in
hindsight, i.e. the solution given by obtaining the optimal
cost assuming full knowledge of the prices and demand.
The results indicate that, for different yearly-average heat
demand levels, the proposed algorithm performs close to
this theoretical limit.

The remaining of the paper is organized as follows: Section
2 defines the framework of a generic STESS interacting
with the electricity market. Section 3 presents the pro-
posed RL algorithm for building bidding functions. Section
4.1 introduces the STESS considered for the case study.
Finally, Section 4 evaluates the algorithm and discusses
the results.

2. STESS FRAMEWORK

Before describing the proposed algorithm, we need to de-
fine the different properties/variables of a generic STESS
when interacting with the electricity market.

2.1 STESS

Let us define the STESS at time t ∈ R as a generic
dynamical system with an internal state x(t) ∈ Rnx ; in
the case of a STESS, x(t) usually represents the state
of charge of the system. Let us then define its control
inputs by Q̇in(t) ∈ Rnin and Q̇out(t) ∈ Rnout , which
respectively represent the rate of energy that is inputted
and outputted into/from the system. Finally, let us assume
that the system is disturbed by some uncontrollable input
d(t) ∈ Rnd , e.g. the external temperature.

Then, let us define the uncertain energy demand that
the STESS has to supply as Q̇d(t). Similarly, based on
the market bids, let us define the power that the STESS
gets allocated from the market as Q̇m(t). Assuming that
the STESS uses the stored energy to supply the heat
demand and the allocated power to charge the STESS,
the following holds:

Q̇d(t) =

nout∑
i=1

Q̇out
i (t). (1)

Q̇m(t) =

nin∑
i=1

Q̇in
i (t). (2)

Note that the definition above is very generic and should
be able to fit any STESS framework. In particular, as
the state and input dimensions are not restricted, this
definition includes the following classical STESSs:

• A system composed of independent storage units,
e.g. small (distributed) units comprising a large
STESS (our case study).



• A system that has different charging/discharging
devices with different prices/efficiencies, e.g. heat
pumps, electric boilers, etc.

2.2 Optimization Problem

Given a periodic seasonal cycle of N days, an unknown
heat demand Q̇d(t), and a day-ahead market with un-
known daily hourly prices 1 [λ1, . . . , . . . λ24]⊤, the goal of
the control algorithm is to build hourly optimal bidding
curves Q̇b

h(λ) during the periodic seasonal cycle.

In particular, the controller should build one day in
advance 24 optimal bidding curves Q̇b

1(λ), . . . , Q̇b
24(λ) such

that, while the STESS has always enough energy to satisfy
the demand Q̇d(t), the cost of the purchased power Q̇m(t)
is minimized. Note that, in this market structure, the
purchased power Q̇m(t) at every hour h is defined by:

Q̇m(t) = Q̇b
h(λh), ∀ t ∈ [h, h + 1], (3)

with λh being the market cleared price during hour h.

3. CONTROL ALGORITHM

To solve the described problem, i.e. how to build bidding
functions for STESS, in this paper we propose a RL
algorithm based on fitted Q-iteration (Ernst et al. (2005)).

3.1 RL introduction

As any RL algorithm, the proposed method considers that
the STESS and its interaction with the environment can be
modeled via a Markov decision process (Ernst et al. (2005);
Sutton and Barto (2018)). In detail, the system is modeled
by a state s, is controlled by an agent that takes actions
a among a discrete set of actions A = {a1, . . .aM}, and
lives in a discrete-time world. In addition, at every discrete
time step k, the agent takes an action ak and transitions
from state sk to sk+1 based on some probabilistic dynamics
p(sk+1|sk,ak). In the transition, the agent receives a
reward rk based on a distribution q(rk|sk,ak).

During the training, the RL agent aims at learning an
optimal policy π⋆(sk) that outputs, for each state sk,
the optimal action a⋆k so that the expected value of the
cumulative sum of discounted rewards R is maximized:

R =

T∑
k=1

γT−k E
q(rk|sk,ak)

{rk}. (4)

In the expression above, T is the length of a RL episode,
i.e. it indicated for how long the RL agent takes decisions,
and γ is a discount factor that prioritizes earlier rewards
and allows R to be finite even for infinite horizons.

3.2 State and control spaces

For the proposed method, the state s = (x, z, λ) is defined
by three different features:

(1) The current state x of the STESS, i.e. usually the
state of charge of the system.

1 While the algorithm works for any day-ahead market structure, for
simplicity we assume that the day-ahead market has hourly prices.

(2) The current time position z within the periodic sea-
sonal cycle, e.g. for a periodic seasonal cycle of a year
z could be the day of the year.

(3) The market price λ.

The reason for selecting these three features is twofold:

• By including them, we can base the selection of the
optimal action a⋆ = π⋆(s) on both the state of the
STESS (given by x) and the state of the environment
(given by z and λ).

• Since π⋆(s) = π⋆(x, z, λ), given a fixed time point
ẑ and STESS state x̂, we have a function a⋆ =
π⋆(x̂, ẑ, λ) = π̂⋆(λ) that selects optimal actions based
only on prices. Then, by simply including as a compo-
nent of the action vector a the power to be purchased
from the market, the bidding function Q̇b(λ) is di-
rectly defined by the optimal policy π̂⋆(λ).

To define the action space A, we consider that a single
action a ∈ Rnin+1 has the following format:

a = (Q̇in
1 , Q̇in

2 , . . . , Q̇in
nin

, j), ∀ j = 1, . . . nout. (5)

In particular, we consider that each input control Q̇in
i

(∀ i = 1, . . . nin) can take D + 1 discrete values defined
in a uniform grid between 0 and the maximum power
per input control Q̇max

i . In addition, we consider that the
control action for the output is given by the selection of an
integer j that defines which output Q̇out

j (∀ j = 1, . . . nout)

provides the demand Q̇d. Finally, the action space is
defined by all the possible combinations of these values:

A =
{

(0, . . . , 0, 1), ( 1
D Q̇max

1 , 0, . . . , 0, 1),

( 2
D Q̇max

1 , 0, . . . , 0, 1), . . . , (Q̇max
1 , Q̇max

2 , . . . , Q̇max
nin

, 1),

(0, . . . , 0, 2), . . . , (Q̇max
1 , Q̇max

2 , . . . , D−1
D Q̇max

nin
, nout),

(Q̇max
1 , Q̇max

2 , . . . , Q̇max
nin

, nout)
}
. (6)

3.3 Reward function

As the goal of the algorithm is to minimize the cost of
purchasing energy, the reward function rk at time step k is
defined as the negative of the cost of the energy purchased
at time step k. In particular, if the system is at state sk =
(xk, zk, λk) and takes an action ak = (a1,k, . . . , anin,k), the
reward is defined as −λk

∑nin

i=1 ai,k. In addition, to avoid
not having enough energy stored to satisfy the requested
demand Q̇d

k, the cost of this situation is set to 10 times

the cost of instantaneously buying Q̇d
k in the market 2 .

Finally, as with standard RL algorithms, the reward at
the last point in an episode, i.e. k = T , is 0. Using these
three definitions, the full expression for the reward is then
given by:

rk =



0, if k = T

−λk

( nin∑
i=1

ai,k + 10 Q̇d
k

)
,

if not enough

energy in STESS

−λk

nin∑
i=1

ai,k, otherwise.

(7)

2 Selecting a factor of 10 is a design choice. The agent just needs a
large penalty cost whenever it depletes the STESS.



3.4 Episode length and time grid

The episode length T is defined as two seasonal periodic
cycles. The reason for selecting T spanning more than one
seasonal cycle is to avoid optimal policies that deplete the
STESS at the end of the cycle. In particular, since the state
s considers the time position z within a seasonal cycle, if
the episode length is equal to the cycle length, the agent
would know its time position within an episode and could
use it to deplete the STESS at the end of the episode/cycle.
This behavior would be unacceptable as the agent controls
the STESS for an unknown number of periodical cycles
and depleting the system after one cycle would prevent
the agent from providing any energy after this first cycle.

For the size of the discrete time grid, we consider that a
time transition k → k+1 spans a day. The reasons for this
are twofold:

• As the system is designed for seasonal storage, it
is assumed that its energy content does not change
dramatically from one day to another. As such, the
optimal bidding curves within a day should be very
similar.

• As the decision making process occurs once per day,
i.e. we submit 24 bidding functions to the day-ahead
market at the same time point, it is convenient to
consider time steps of a day.

Note that selecting this time step size is just a design
choice. In particular, it is equally possible to consider time
steps of one hour and have different bidding functions
for each hour of the day. This would however increase
the computation load as, for the same seasonal cycle, the
length of an episode would increase twentyfourfold.

3.5 Simulation environment

To train the RL agent, we build a simulation environment
that recreates the world a STESS lives in. This environ-
ment consists of two modules: 1) one that creates realistic
price/demand time series that span two seasonal periodic
cycles (note that an episode length is two periodic cycles);
2) one that simulates the STESS dynamics.

For the first module, defining by nh the number of his-
torical data points, we use the dataset D =

{
(λi, Q̇

d
i )
}nh

i=1
of historical prices and demand. Particularly, to create the
price/demand time series for an episode, we randomly pick
two consecutive seasonal cycles from D. Then, to add vari-
ability to the time series and to create a more robust RL
agent, instead of using the historical data point (λk, Q̇

d
k)

for time step k, we randomly select a point from the

dataset
{

(λi, Q̇
d
i )
}k+nw

i=k−nw
, where nw is the window size.

The selection of nw is a design choice: for the presented
case study, as the seasonal periodic cycle is one year, we
select nw equal to 2 weeks.

For the second module, we simply use the dynamical model
of the STESS that describes the evolution of the internal
state x(t) as a function of the two system inputs Q̇in(t)

and Q̇out(t) (Lago et al. (2019)).

3.6 Training algorithm

To train the RL agent, we use the fitted Q-iteration algo-
rithm (Ernst et al. (2005)) with boosting trees (Chen and
Guestrin (2016)). The reason for selecting this algorithm
is twofold: 1) it is a very general algorithm that has been
successfully used in multiple applications; 2) we empiri-
cally observed that this algorithm performed as good as
more advanced RL algorithms, e.g. DQN, but without the
additional computational complexity.

In this RL scheme, the algorithm is trained by iteratively
performing two steps. In the first step, the RL agent
interacts with the environment during a full episode and
stores the dataset {(sk,ak, sk+1, rk)}T−1

k=1 of transitions,
actions, and rewards that it experiences. To take the action
ak, it uses an ϵ-greedy approach: it takes a random action
with a probability ϵ and the optimal action (given by last
estimated optimal policy π̄⋆(sk)) with a probability 1 − ϵ,
where ϵ decays after each episode. To make the agent
more robust, the initial state s0 of the episode is randomly
selected 3 .

In the second step, the algorithm uses the dataset of stored
data to estimate an optimal policy π̄⋆(sk). In particular,
it estimates a model Q̄(sk,ak) of the so-called Q-functions
Q(sk,ak), which represent the expected cumulative reward
at state sk when taking action ak and then acting opti-
mally. Then, an estimation of the optimal policy is built
as a⋆k = π̄⋆(sk) = argmin

ak

Q̄(sk,ak)

These two steps run one after the other until the algorithm
converges. We refer to Ernst et al. (2005) and Sutton and
Barto (2018) for further details.

3.7 Building bidding functions

After the RL agent is trained, the optimal bidding func-
tions Q̇b(λ) for any state x and time z are directly ob-
tained. In particular, since π⋆(s) = π⋆(x, z, λ), given a
fixed time point ẑ and STESS state x̂, we have a function
a⋆ = π⋆(x̂, ẑ, λ) = π̂⋆(λ). As the action a contains the
power purchased from the market, the bidding function
Q̇b(λ) is directly defined by the optimal policy π̂⋆(λ).

4. CASE STUDY

To illustrate the performance of the algorithm, we con-
sider a thermal stratified storage tank, the Ecovat vessel
Ecovat (2018), in a case study where the STESS needs to
satisfy an uncertain heat demand during a full year while
minimizing the cost of charging the system through the
day-ahead market.

4.1 Real STESS

The considered thermal vessel is a large subterranean ther-
mal storage vessel with capabilities for seasonal thermal
storage and with the ability to supply heat demand to
a cluster of buildings. It is divided into several segments
that can be charged and discharged separately. Due to this

3 Only the x0 component is actually randomly selected as z0 is
predefined and λ0 is given by historical data.
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Fig. 1. Left: schematic representation of the STESS. Right:
construction of the STESS

property and thermal stratification, each of these segments
acts as a different heat buffer. In detail, the system has
5 thermal buffers with the top 4 buffers (see Figure 1)
being able to be charged and discharged independently.
The system considers a seasonal periodic cycle of a year,
i.e. it tries to use the cheap electricity prices of summer to
provide heat on the winter.

The insulation structure of the vessel is such that it can
very efficiently store energy between seasons: the heat
losses of the vessel are about 25% over a period of 6
months. Figure 1 provides a schematic overview of the
vessel and the real system when it was under construction.
For further details on the system we refer to (Lago et al.
(2019)).

4.2 Model and definitions

To model the system, we consider the following definitions:

• The state xk = [T1,k, T2,k, T3,k, T4,k, T5,k]⊤ at time
step k is given by the temperature stored in each of
the 5 buffers. We use the temperature in each heat
buffer as it is proportional to the stored energy.

• As the top 4 buffers can be charged and dis-
charged independently, we respectively define Q̇in

k =

[Q̇in
1,k, . . . , Q̇

in
4,k]⊤ and Q̇out

k = [Q̇out
1,k , . . . , Q̇

out
4,k ]⊤ as the

input and output power at time step k.
• For the position z within the seasonal periodic cycle,

we use the day of the year, i.e. z ∈ {1, . . . 365}.

For the STESS simulation model required for the RL en-
vironment, we employ the dynamical model for thermally
stratified storage tanks defined by Lago et al. (2019).

4.3 Data

To evaluate the algorithm, we consider three years of
historical data involving the day-ahead prices of 2015,
2016, and 2017 in the Dutch day-ahead market 4 , and the
heat demand of a cluster of 5 buildings with a yearly-
average heat demand of 220 MWh during the same time
period 5 .

4 Collected from https://transparency.entsoe.eu/.
5 Obtained from one of our research partners.

4.4 Experimental Setup

The RL agent is first trained using the data from 2015 and
2016. Next, the agent is evaluated on the 2017 dataset.
In particular, at hourly steps, we discharge the STESS
following the demand of 2017. In parallel, we use the agent
to build the optimal bidding functions at every day and
we employ the prices of 2017 as the market clearing prices.

For the evaluation, we compute the economic savings that
the RL agent provides w.r.t. not having a heat buffer and
directly buying the instantaneous heat demand Q̇d at the
day-ahead market price. Then, we compare the savings
of the RL agent w.r.t. the maximum theoretical savings.
This theoretical upper bound is obtained by solving the
optimization problem that minimizes the cost in hindsight
assuming perfect knowledge of the demand and price (Lago
et al. (2019)). Note that, due to the uncertainty in prices
and demand, this theoretical limit is impossible to reach
in practice.

Finally, to evaluate the robustness of the algorithm and
to compare its relative performance under different con-
ditions, the RL agent is evaluated at 20 different random
initial states x0. In addition, the demand data is multiplied
by 2 and used to retrain and evaluate the algorithm in the
case of having 10 buildings, i.e. having a yearly-average
demand of 440 MWh.

4.5 Results

The results of training the RL agent are depicted in Figure
2 representing, for the 220 MWh scenario, the evolution of
the yearly cost (average cost over the two seasonal cycles
comprised in an episode) as a function of the number
of episodes explored. As it can be seen, the RL agent
converges to a solution after 200-300 episodes; while this
does not mean that the solution is good, it is the first step
to ensure that the RL agent is correctly trained.
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Fig. 2. Training results for the RL agent on a 220 MWh
yearly-average demand level.

Table 1 presents the comparison between the RL agent and
the theoretical limit. From the table, several observations
can be made:

• The RL agent learns to trade energy as the cost of
the RL agent is lower than the cost of directly buying
the energy, i.e. not having an STESS.

• The RL agent is robust and leads to stable solutions:
despite considering 20 different random initial states



x0 and two different demand levels, the standard
deviation of the solutions is just 2-3 %.

• In terms of the quality of the solutions, considering
the uncertainty and volatility of day-ahead prices, the
RL agent performs reasonably well: while in hindsight
(theoretical limit) we could respectively save 24 % and
31 % for the 440 MWh and 220 MWh case, the RL
agent saves approximately 12 % and 22 %.

Table 1. Comparison in terms of economic cost
and savings during 2017 between the RL agent
and the theoretical limit. The costs are computed
as the average costs for 20 random initial points
x0. The savings are computed w.r.t. the cost of

not having a STESS.

Average demand
440MWh 220MWh

Cost [e]
No STESS 15005.5 7502.8
Min. theoretical 11331.3 5151.8
RL Agent 13264 ± 2% 5876.9 ± 3%

Savings
Max. theoretical 24.1% 31.3%
RL Agent 11.6% 21.6%

4.6 Discussion

Based on the obtained results, it can be stated that the
RL agent learns how to trade energy and to build bidding
functions that improve the cost of providing heat demand
via a STESS. Moreover, not only does the algorithm build
bidding functions that reduce the cost, but it is also very
robust: for different initial points and for different demand
levels the solutions are of the same quality.

Two of the advantages of the algorithm are that—when
compared with the approaches proposed in the literature
for traditional retailers—it removes the necessity for cre-
ating future scenarios and it can be used online indepen-
dently of the number of variables or the size of the horizon.

In detail, as the RL agent is trained based on historical
data, generating future scenarios of the price and demand
is not necessary. Similarly, as all the training is done offline,
the online computational cost of the bidding functions
is negligible and independent of the number of variables.
These two features are key for STESS systems as: 1) gen-
erating realistic scenarios for very long-term horizons is, to
the best of our knowledge, an open problem; particularly,
due to accumulation of errors, generating realistic long-
term scenarios is extremely difficult. 2) The computational
cost of solving online optimization problems for long-term
horizons can quickly become larger than the time that the
STESS has to make a bid, i.e. some hours/minutes.

In terms of the quality of the solution, the RL agent
obtains financial costs that are between the two extreme
scenarios, i.e. perfect knowledge of the future and not
having a STESS system. Considering the large uncertainty
and volatility of electricity prices over the course of a year,
i.e. how utopian and unreal is the case of having perfect
knowledge of the future, the obtained results are arguably
good. In particular, for different demand scenarios and
initial points, the RL agent is able to obtain robust
solutions that provide financial savings that are equal to
50-70 % of the maximum theoretical limit.

5. CONCLUSION

In this paper a novel approach for generating bidding
functions for seasonal thermal energy storage systems
(STESSs) has been proposed. The algorithm is based on
reinforcement learning (RL), and it has been shown to
provide robust trading strategies and financial savings
that are relatively close to the maximum theoretical limit.
In future research, this work will be expanded to the
case of multiple markets and/or different types of devices
interacting with the STESS.
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