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Railway disruption: a bi-level rescheduling algorithm

G. Cavone, Member, IEEE, L. Blenkers, T. van den Boom, M. Dotoli, Senior Member, IEEE,
C. Seatzu, Senior Member, IEEE, B. De Schutter, Fellow, IEEE

Abstract— The real-time rescheduling of railway traffic in
case of unexpected events is a challenging task. This is mainly
due to the complexity of the railway service, which has to ensure
safety, punctuality, and efficiency to customers by respecting
timetable, framework, and resources constraints. Most of the
available researches focus on short delays (i.e., disturbances).
Approaches typically rely on simplified macroscopic models
for large-scale systems or detailed microscopic models for one
or a few lines, due to the long computation time required
for solving the rescheduling problem. Only a small number
of works considers rescheduling in case of long delays (i.e.,
disruptions) and all of them are also based on either a
macroscopic or a microscopic model. This research focuses on
disruptions and aims at filling the gap between macroscopic
and microscopic modeling by proposing an innovative bi-
level rescheduling algorithm based on a mesoscopic Mixed
Integer Linear Programming (MILP) model. The technique
allows obtaining a feasible rescheduled timetable in a short
computation time respecting not only timetable and safety
constraints (typical of macroscopic models) but also capacity
and ordering constraints for the disrupted stations (typical
of microscopic models). The bi-level algorithm first solves the
macroscopic MILP rescheduling problem and then, considering
the cancellation and non-admissible platform assignments re-
sults, it solves a mesoscopic MILP rescheduling problem. This
allows to significantly reduce the search space and consequently
the computation time. The method is tested for the rescheduling
of the Dutch railway traffic in case of a full blockade between
two consecutive stations.

I. INTRODUCTION

Increasing the market share of railway transport is one
of the top priorities of many governments for the resolution
of mobility problems. A proper rescheduling of the railway
traffic in case of unexpected events is then fundamental to
improve the performance of railway services. Basically, train
rescheduling consists in retiming the offline scheduled traffic
(i.e., the nominal timetable) to minimize undesired effects
(e.g., train delays, customer discomfort, energy consumption)
when unpredictable events occur in the network [1]–[3].
Typically, unpredictable events are distinguished into distur-
bances (i.e., relatively small perturbations such as signal mal-
functions or no-show of staff) and disruptions (i.e., large and
particularly damaging external accidents such as breakdowns
of trains or infrastructure) [4]–[6]. Both kinds of events cause
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the nominal timetable to become invalid because at least one
train deviates from its original schedule. Generally, Train
Dispatchers (TDs) manage disturbances mostly manually
based on their experience and knowledge [5]. This process
becomes complex in case of disruptions, due to rolling stock
constraints. In these cases TDs use contingency plans to
manage traffic. This highly stressful and time-consuming
manual approach often leads to suboptimal outcomes, since
only a limited number of solutions can be reviewed for a
rapid decision-making process. Differently, automated real-
time rescheduling procedures can refine and speed up the
manual approach, thus supporting TDs in determining in real
time suitable control actions and updating timetables while
optimizing some traffic performance indices. However, due
to the scale, the complexity, and the short resolution time
constraints, these problems still remain challenging in the
related research field.

This paper proposes a bi-level algorithm for the real-
time resolution of the rescheduling problem in case of a
full blockade between two consecutive stations (i.e., the
traffic is prevented in both directions between the two
disrupted stations). The rescheduling problem is set in a
Mixed Integer Linear Programming (MILP) fashion aiming
at minimizing the delays, the cancellations, and the shunting
in station. More in detail, a macroscopic and a mesoscopic
constrained model of the disrupted network are presented.
The macroscopic model considers a high-level representation
of the system and allows reordering of trains on tracks,
cancellations of train runs, short-turning, and shunting in
station; while the mesoscopic model also includes specific
control actions in the disrupted stations, i.e., platform as-
signment and train ordering on platforms. Then, based on
the two models, two MILP problems are set and the bi-level
algorithm solves them sequentially. The first-level optimiza-
tion solves the macroscopic MILP problem for the disrupted
network, ideally assuming that the stations involved in the
disruption have infinite capacity and no platform constraint
is necessary. Then, the second-level optimization solves the
mesoscopic MILP problem, which includes the additional
capacity constraints keeping into account the results of the
first-level optimization regarding the assigned cancellations
and the non-admissible short turnings in the form of equality
constraints. The application of the proposed algorithm leads
to a twofold advantage. On one hand, it strongly reduces
the required computation time with respect to the resolution
of the fully mesoscopic optimization problem. On the other
hand, it allows to take into account the capacity limitations
of the disrupted stations that otherwise are neglected in the



macroscopic formulation.
The technique is tested for the rescheduling of the national

Dutch railway traffic in case of a full blockade between two
consecutive stations.

II. STATE OF THE ART

The computer-based rescheduling of railway traffic can be
applied when unpredictable events, such as disturbances and
disruptions, occur in the system. Disruptions can be roughly
divided into full blockades (i.e., no traffic is allowed in a
track section) and partial blockades (i.e., the capacity of the
track section is decreased). In this paper, the focus is on full
blockades since they are rarer but more difficult to manage,
with respect to disturbances and partial blockade, and induce
severe limitations to the railway traffic.

Three main classes of computer-based rescheduling ap-
proaches to railway traffic control can be identified in the
literature [7]: simulation-based approaches, heuristic pro-
cedures, and mathematical optimization. Simulation-based
approaches aim at reproducing the flow of real life in which
there is no specific objective function [8]. Heuristic proce-
dures take decisions that aim at ensuring a proper behavior
of the system, are able to avoid conflicts, give priorities,
and so on (see, e.g., [9]). Usually, the computational effort
in implementing heuristics is low. Finally, mathematical
optimization models have instead a well-defined objective
function, which frequently refers to average or maximum
delays [10], total delays (i.e., considering the delay at the
final destination of trains) [11] or delays at stations along
the train trip.

An exhaustive discussion on commonly used rescheduling
mathematical models can be found in [12], showing that
rescheduling techniques based on mathematical models can
provide optimal solutions. However, their implementation
and resolution is not trivial, especially when the number
of variables and constraints of the problem is high and the
rescheduling time horizon is large. Nonetheless, effective
solvers (e.g., CPLEX, GUROBI, etc.) may allow the resolu-
tion of such optimization problems in reasonable computa-
tion times, i.e., adequate for real-time control. Typically, the
train rescheduling problem statement is based on Integer Pro-
gramming (IP), Mixed Integer Linear Programming (MILP),
Linear Programming (LP), or Nonlinear Programming (NLP)
[12]. This paper considers the use of the MILP modeling,
which has been extensively tested for solving (re)scheduling
problems and for which a large variety of effective solvers
have been developed. Depending on the scale and level of
detail to be considered in the train rescheduling problem,
different types of models can be developed that are generally
classified in three main classes: (1) Macroscopic models, i.e.,
a high-level representation in which stations are nodes and
the connecting tracks are links between the nodes. The results
of such a modeling technique can mainly be departures and
arrival times, and possible routes. Then, further refinements
are required before the actual application of the dispatching
results to the railway system. (2) Microscopic models, i.e.,
a low-level representation of the railway system, which

includes at least block sections and switch locations in the
network as well as rolling stock and infrastructure availability
constraints. Due to the huge amount of information included
in the model, computational complexity quickly increases
and can become a severe issue especially when controlling
large-scale systems. (3) Mesoscopic models, i.e., a middle-
level representation of the system, which includes elements
from both the macroscopic and microscopic modeling. Some
parts of the network, e.g., stations, are detailed, whereas
others, such as links between stations, are modeled macro-
scopically.

Regarding the rescheduling of the railway traffic in case
of disruptions, mainly macroscopic and microscopic MILP
models have been used in the literature, see e.g. [13], [14].
This paper aims at filling the gap by using a mesoscopic
model that, on one hand allows the reduction of the compu-
tational complexity while increasing the dimension of the
problem and, on the other hand, reduces the number of
eventual re-adaptations of the rescheduled timetable.

III. MILP MODELS FOR TRAIN RESCHEDULING

The rescheduling of the railway traffic can be represented
as a constrained optimization problem, and the railway
network as an event-driven system, whose evolution is de-
termined by the occurrence of train runs. In this paper, both
a macroscopic and a mesoscopic MILP model based on the
work in [15] are considered to represent the railway network
in case of full blockade between two consecutive stations.
Both models can be used to represent the nominal and the
disrupted functioning of the network and include recovery
actions to reschedule the disrupted traffic. The macroscopic
model allows quick cancellations and reorderings of train
runs, short-turnings, and shunting actions in stations; the
mesoscopic model allows in addition the representation of
capacity limits (i.e., number of available platforms and
respective assignment of trains) and ordering of trains on
platforms for the disrupted stations. In case of a full blockade
between two consecutive stations, the trains of the interrupted
lines can enter the two stations only in one direction, then
can be short-turned and used to perform outgoing train
runs on the opposite direction that otherwise have to be
canceled. Alternatively, shunting actions consist in moving
trains to/from shunting yards when they cannot be used for
short-turning. Note that, in general, shunting is avoided due
to its costs in terms of time and resources.

The models are based on the concept of train run, which
is represented as a departure-arrival pair (di, ai with i ∈ T ,
where T is the set of the indices of all train runs. The set
T is divided into two subsets: TND consisting of all indices
of train runs that are not influenced by the disruption, and
set TD consisting of all indices of train runs that are directly
affected by the disruption and can be canceled, short-turned
or shunted. A track of the network is represented by e, with
e ∈ E, where E is the set containing the indices of all tracks.
Each train run is associated with a track, the set of the indices
of all train runs not affected by the disruption and associated
with the track e is represented by Te ⊂ TND, while the set of



all train runs affected by the disruption and associated with
the track e is represented by T e ⊂ TD. The dynamics of the
system is described by the following constraints set:

• Timetable constraints

di ≥ rd,i ∀i ∈ T

ai ≥ ra,i ∀i ∈ T
(1)

where rd,i and ra,i are the nominal departure and
arrival times of the i-th train run, while di and ai are
the rescheduled departure and arrival times.

• Running time constraints

ai ≥ di + τrt,i ∀i ∈ TND

ai ≥ di + τrt,i + βci ∀i ∈ TD

(2)

where τrt,i is the minimal running time duration of
the i-th train run. If the train run belongs to TND,
then the arrival time has to be larger than or equal to
the sum of the corresponding departure time and the
minimal running time duration. Otherwise, if the train
run belongs to TD, then a binary cancellation variable
ci is associated with the train run, along with a large
negative constant β. If the variable ci assumes the value
1, there is no longer any coupling between ai and di,
and the train run is canceled. Note that the difference
between the nominal departure and arrival times of a
train run is often larger than the pure running time τrt,i
to absorb small delays:

ra,i − rd,i ≥ τrt,i (3)

• Continuity constraints

dj ≥ ai + τdw,(i,j) ∀i, j ∈ TND

dj ≥ ai + τdw,(i,j) + βci ∀j ∈ TND, ∀ i ∈ TD

dj ≥ ai + τdw,(i,j) + βcj ∀i ∈ TND, ∀j ∈ TD

(4)
where τdw,(i,j) is the train dwell time in the station
connecting train run i to train run j. When both train
runs belong to set TND, the departure of the j-th train
run has to be larger than or equal to the sum of
the arrival of the i-th train run and the dwell time.
Otherwise, if the runs belong to TD a cancellation
variable is included in the constraints along with a large
negative constant β. When the cancellation variable has
the value 1, there is no longer coupling between ai
and dj . Note that the dwell times in the timetable are
the absolute minimum waiting times at stations and the
difference:

rd,j − ra,i ≥ τdw,(i,j) (5)

can be larger than the dwell time providing a buffer
time.

• Headway time constraints

dk ≥ τh,(k,l) + β(1 − u(k,l)) + dl ∀k, l ∈ Te

dl ≥ τh,(k,l) + βu(k,l) + dk ∀k, l ∈ Te

dk ≥ τh,(k,l) + β(1 − u(k,l) + ck) + dl ∀l ∈ Te, ∀k ∈ T e

dk ≥ τh,(k,l) + β(1 − u(k,l) + cl) + dl ∀l ∈ T e, ∀k ∈ Te

dk ≥ τh,(k,l) + β(1 − u(k,l) + cl + ck) + dl ∀l, k ∈ T e

dl ≥ τh,(k,l) + β(u(k,l) + ck) + dk ∀l ∈ Te, ∀k ∈ T e

dl ≥ τh,(k,l) + β(u(k,l) + cl) + dk ∀l ∈ T e, ∀k ∈ Te

dl ≥ τh,(k,l) + β(u(k,l) + cl + ck) + dk ∀k, l ∈ T e

ak ≥ τh,(k,l) + β(1 − u(k,l)) + al ∀k, l ∈ Te

al ≥ τh,(k,l) + βu(k,l) + ak ∀k, l ∈ Te

ak ≥ τh,(k,l) + β(1 − u(k,l) + ck) + al ∀l ∈ Te, ∀k ∈ T e

ak ≥ τh,(k,l) + β(1 − u(k,l) + cl) + al ∀l ∈ T e, ∀k ∈ Te

ak ≥ τh,(k,l) + β(1 − u(k,l) + cl + ck) + al ∀k, l ∈ T e

al ≥ τh,(k,l) + β(u(k,l) + ck) + ak ∀l ∈ Te, ∀k ∈ T e

al ≥ τh,(k,l) + β(u(k,l) + cl) + ak ∀l ∈ T e, ∀k ∈ Te

al ≥ τh,(k,l) + β(u(k,l) + cl + ck) + ak ∀k, l ∈ T e

(6)

where τh,(k,l) is the headway time between two depar-
tures (arrivals) of train runs, k and l, which run on
the same track e; while u(k,l) is the binary headway
ordering variable. If the train runs belong to Te ⊂ TND,
no cancellation variable is present in the formulation
and two alternatives are considered: (1) if u(k,l) = 1,
then the departure (arrival) of train run k has to be larger
than or equal to the sum of the departure (arrival) of
train run l and the headway time τh,(k,l), otherwise (2)
if u(k,l) = 0, the departure of train run l has to be larger
than or equal to the sum of the departure of train run k
and the headway time τh,(k,l). If the train runs belong
to T e ⊂ TD, a cancellation variable ci is included in
the constraints along with a large negative constant β.
When the cancellation variable takes the value 1, there
is no longer any coupling between dk (ak) and dl (al).

• Short-turn constraints
Consider a station s ∈ SST, where SST is the set of
stations where trains can be short-turned during the full
blockade, and two train runs i and j with the respective
proceeding train run q(i) and preceding train run p(j). If
q(i) and p(j) are canceled (i.e., cq(i) = 1 and cp(j) =
1), the arrival ai with i ∈ Is (where Is is the set of
incoming train runs in station s during the full blockade)
can be combined in station s with the departure dj with
j ∈ Os (where Os is the set of outgoing train runs from
s during the full blockade) so that continuity is ensured
to the transportation service.
The short-turn is then modeled with the following
constraint:

dj ≥ ai + τturn,(i,j) + β(3 − cp(j) − cq(i) − b(i,j))

∀i ∈ Is, ∀j ∈ Os, ∀s ∈ SST
(7)

∑
i∈Is

b(i,j) + cj + (1 − cp(j)) = 1 ∀j ∈ Os∑
j∈Os

b(i,j) + ci + (1 − cq(i)) = 1 ∀i ∈ Is

 ∀s ∈ SST (8)

where τturn,(i,j) is the short-turn time, i.e., the time
necessary for the short-turn operation, and b(i,j) is the
binary short-turn variable. The inequality constraint (7)
imposes that train run j and i can be connected only
if both are not canceled and if the short-turn variable
b(i,j) is equal to 1, then the departure dj can take place



only after the arrival ai has occurred and τturn,(i,j)
has elapsed. Furthermore, the equality constraints (8)
impose that each arrival should be assigned to a unique
departure and vice versa.

• Shunting constraints
Consider a station s ∈ SST,S where SST,S is the set
of stations where trains can be short-turned or shunted
from/to the shunting yard. The following shunting vari-
able is introduced: yin,i ∈ {0, 1}, i ∈ Is which is used
to assign to a planned departure the rolling stock in the
shunting yard, and yout,j ∈ {0, 1}, j ∈ Os which is
used for shunting the rolling stock of an arriving train.
Then, it holds that

yin,i + (1 − cq(i)) + ci +
∑

j∈Os

b(i,j) = 1 ∀i ∈ Is

yout,j(1 − cp(j)) + cj +
∑
i∈Is

b(i,j) = 1 ∀j ∈ Os

 ∀s ∈ SST,S

(9)

The macroscopic model is then composed by the con-
straint sets (1) to (9), which can characterize the nomi-
nal and the disrupted behavior of the system neglecting
some practical and essential restrictions of the real
system. Such a limitation is here overcome by extending
the macroscopic model to a mesoscopic representation
of the system. In particular, the following constraint sets
are included:

• Capacity constraints
In the following constraints, the capacity limit of the
stations at each end of the disruption is taken into
account. In particular, a short-turn on platform variable
bp,(i,j) ∈ {0, 1} is introduced, with i ∈ Is, j ∈ Os,
and p ∈ Ps, where Ps is the set of platforms for
the considered station s ∈ SST,S. Then the following
capacity constraint holds:

b(i,j) =
∑
p∈Ps

bp,(i,j), with s ∈ SST,S (10)

meaning that a short-turn can be assigned to only one
platform.

• Ordering constraints
If arrival ai with i ∈ Is is connected to departure
dj with j ∈ Os and assigned to platform p ∈ Ps

(bp,(i,j) = 1) and arrival ak with k ∈ Is is connected to
departure dl with l ∈ Os and assigned also to platform
p ∈ Ps (bp,(k,l) = 1), it is necessary to decide their
order. Then, the ordering on platform variable ω(x,y) is
introduced, whose value is set to one when the arrival
ay with y ∈ Is, has to be scheduled after the departure
dx with x ∈ Os.
Hence, the ordering constraints are modeled as follows:

ai ≥ dl + τord,(i,l) + β(1− ω(l,i))

ak ≥ dj + τord,(k,j) + β(1− ω(j,k))
(11)

−1 + β(2− bp,(i,j) − bp,(k,l)) + ω(l,i) + ω(j,k) ≥ 0

∀i, k ∈ Is,∀j, l ∈ Os, p ∈ Ps,∀s ∈ SST,S

(12)
where τord,(i,l) is the minimum ordering time imposed
between arrival ai and departure dl. The same holds

forτord,(i,l). The platform ordering constraint (12) im-
poses that if the short-turns (i, j) and (k, l) are assigned
to the same platform p, then only one ordering variable
among ω(l,i) and ω(j,k) can assume the value 1.

Then the mesoscopic model consists in the constraint
sets from (1) to (12). Given the railway system, the MILP
rescheduling problem (both in the macroscopic and in the
mesoscopic fashion) can be written in the standard form as
follows:

minimize f = gTx

subject to Ax ≤ z
(13)

with g a constant weight vector and x the decision variables
vector. The elements of the weight vector g can assume dif-
ferent values depending on the purpose of the optimization.

More in detail, the MILP problem based on the mesoscopic
model can be written as follows:

minimize f = gTx

subject to A1x ≤ z1
(14)

where x =
[
dT aT cT uT bT yT ωT

]T
is

the decision variables vector and includes the departure,
arrival, cancellation, headway ordering, short-turn, short-turn
on platform, and ordering on platform variables. The con-
straints set includes equations (1) to (12), i.e., the timetable,
running time, continuity, headway time, short-turn, shunting,
capacity, and ordering constraints.

The MILP problem based on the macroscopic model can
be written as:

minimize f = gTx

subject to A2x ≤ z2
(15)

where the constraints set includes equations (1) to (9), i.e.,
the timetable, running time, continuity, headway time, short-
turn, and shunting constraints. Note that for the macroscopic
optimization problem the short-turn on platform and the
ordering variables are canceled.

IV. THE BI-LEVEL ALGORITHM

The bi-level algorithm consists in two consecutive steps
(i.e., Step 1 and Step 2) in which the two MILP problems
presented in the previous section are sequentially solved and
the rescheduled timetable for the mesoscopic problem is
obtained. In particular, in Step 1 the rescheduling horizon
is set, the macroscopic MILP problem (15) is solved and
the optimal decision variables vector x̄ is obtained. Then,
in Step 2 the mesoscopic MILP problem (14) is set and the
cancellations and non-admissible short-turnings of Step 1 are
used to simplify its resolution, by reducing the search space.
In particular, the mesoscopic model is modified by adding
to the constraint set a number of n+m equality constraints.
The first n equality constraints assign the value 1 to the
cancellation variables that assume the value 1 in the vector
x̄. The remaining m equality constraints assign the value 0
to the short-turn variables that assume the value 0 in the



results vector x̄. Consequently also the corresponding short-
turns on platform variables are set to 0. In other words, the
cancellations of train runs assigned in Step 1 are kept in the
optimization problem of Step 2 and the short-turns of train
runs that are not-admissible in Step 1 are kept infeasible in
the optimization problem of Step 2. The optimization stops
when a stop criterion is satisfied, e.g., the difference between
two consecutive solutions is lower than a certain value ∆.

V. A CASE STUDY

In this section the bi-level algorithm is used for the
rescheduling of the railway traffic in the Dutch railway
network. The occurrence of a full blockade between the
two consecutive stations Dordrecht (Dor) and Lage-Zwaluwe
(Lzw) is here considered, where the Moerdijk Bridge is
often blocked due to recurrent adverse weather conditions.
Figure 1 shows the lines of the network (black lines –
tot. 76), the stations (blue circles – tot. 66), the area that
is directly affected by the disruption and where trains can
be canceled, short-turned, or shunted (white lines), and the
disrupted train section (signaled with a red cross). In the case
of a full blockade, trains can be short-turned in Dordrecht
(Lage-Zwaluwe) and passengers travel by bus from this
station to Lage-Zwaluwe (Dordrecht) during the disruption.
The nominal timetable considered for the case-study regards
all train lines that run during the afternoon of a weekday,
excluding extra runs for rush-hours. Table I reports the
train lines considered in the case study that are directly
affected by the blockade: all of them run twice every hour
in both directions. Due to capacity limitations at the turning
stations Dordrecht (six platforms) and Lage-Zwaluwe (four
platforms) or because some trains cannot be turned for a
return trip, trains of affected lines might need to be canceled
before reaching their final destination. In the case study the
trains of the affected lines (white lines in Fig. 1) can be
canceled. Further away from the disruption, trains from these
lines must keep running just as trains from all other lines.

The bi-level algorithm is then executed considering the
following rescheduling problem settings: simulation window
SW=300 min; rescheduling horizon RH=200 min; disruption
length tdisr = 120 min (disruption start time tds = 100
and disruption end time tde = 220); recovery time after
the disruption of 30 minutes; headway time τh = 3 min;
minimum time for a short turning τturn = 5 min; ordering
time τord = 3 min; minimum dwell time τdw = 2 min;
constant β = −1000, stop criterion ∆ = 0.01. Here, the
focus is on the minimization of the delays spreading over
the network, as well as the minimization of the cancellations
and of the shunting actions. Hence, the constant vector is

set as g =
[
1T 1T λT 0T 0 γT 0T

]T
where

the weight vector λ = 100 for the canceling variables and
γ = 250 for the shunting variables, so as to minimize
cancellations and shunting actions. Note that each element
of the vector g is still a vector and has the same dimension
as the corresponding decision variable vector in x.

The dimensions, in terms of number of constraints and
variables, of the two MILP problems are reported in Table

TABLE I
LINES AFFECTED BY THE DISRUPTION.

Line Origin Destination Times/hr Blocked
IC1900 Den Haag Venlo 2 Yes
IC2151 Amsterdam CS Vlissingen 2 Yes
IC2249 Amsterdam CS Dordrecht 2 No
SPR5000 Den Haag CS Breda 2 Yes
SPR5100 Den Haag CS Roosendaal 2 Yes

Fig. 1. Main Dutch railway network and disruption (red cross). DH
CS=Den Haag CS, Rot=Rotterdam, Dor=Dordrecht, Lzw= Lage Zwaluwe,
Rsd=Rosendaal, Bre=Breda, Ehv=Eindhoven, Vnl=Venlo.

II. The results of the algorithm are presented in Figures 2 to
4. Figure 2 reports the rescheduled timetable for a significant
portion of the disrupted zone. In particular, it shows a time-
distance diagram of all train runs on the route from stations
Den Haag CS to Venlo, i.e., a route that is shared among
all of the disrupted lines listed in Table I (IC1900 in orange,
IC2151 in dashed orange, IC2249 in green, SPR 5000 in
light blue, SPR 5100 in blue) and lines IC3600 (Roosendaal-
Zwolle in light violet), IC5200 (Tilburg-Eindhoven in vio-
let), IC600 (Amsterdam CS-Rotterdam CS, in light green),
IC2138 (Amsterdam CS-Dordrecht in red), and SPR6000
(Breda-Utrecht, in teal). Trains that overtake each other
are allowed because of multiple tracks available between
stations. Train runs that take place between minute 0 and 100
are shown in grey and are not involved in the rescheduling.
Short-turnings and assignments between arrival and depar-
ture events are shown in brown. Figure 3 shows the schedule
for the six platforms of station Dordrecht while Figure 4
shows the schedule for the four platforms of station Lage-
Zwaluwe. It is worth noting that for both stations a feasible
schedule is found with no overlaps between consecutive
dwell periods and respecting the headway time dwells.
Moreover, it has to be noticed that the rescheduling process
is not limited to the disruption period but continues until the



Fig. 2. The rescheduled graphical timetable.

Fig. 3. The platform assignment in station Dordrecht.

Fig. 4. The platform assignment in station Lage Zwaluwe.

nominal timetable is again suitable, thanks to the inclusion
of the recovery time.

The problem is solved with the Gurobi solver in 90 s, on
an Intel Quadcore 2.4 Ghz and 8 Gb Ram. The resulting
computation time can be further reduced by considering an
optimization of the code and/or its execution on a dedicated
and more performant computer. Nevertheless, the computa-
tion time is significantly less than the 18 minutes time span
necessary for the resolution of the full mesoscopic MILP
problem without the bi-level algorithm. The resulting arrival
delay is on average equal to 4.71 minutes while the maximum
arrival delay is equal to 7.00 minutes. The percentage of
delayed train runs stands at 2.62% over 1070 total train runs,

TABLE II
MILP PROBLEMS DIMENSIONS.

Macroscopic MILP model
No. of constraints 90124
No. of variables 9719
Mesoscopic MILP model
No. of constraints 187344
No. of variables 11201

while the number of canceled train runs is equal to 0 and
the number of shunting actions is equal to 1. It has also
to be noticed that the resolution with the bi-level algorithm
leads to results comparable to that of the full mesoscopic
problem both in terms of delays, percentage of delayed train
runs, and cancellations. This reveals that, despite the capacity
constraints, the method results in a high performance of the
system.

VI. CONCLUSIONS

In this paper it is proposed a bi-level railway reschedul-
ing algorithm that allows obtaining a feasible rescheduled
timetable in a short computation time in case of disruption
based on mesoscopic modeling. The method has been tested
on a disruption scenario for the Dutch railway network and
results are promising both in terms of delay minimization and
computation time. Further research will explore the robust-
ness of the technique to various types of disruptions. It shall
also extend the method to the case of multiple simultaneous
disruptions and/or to the case of multiple consecutive stations
involved in a single disruption.
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