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Abstract

This paper introduces distributed optimization approaches, with the aim of improving the
computational efficiency of an integrated optimization problem for large-scale railway net-
works. We first propose three decomposition methods to decompose the whole problem
into a number of subproblems, namely a geography-based (GEO), a train-based (TRA),
and a time-interval-based (TIN) decomposition respectively. As a result of the decomposi-
tion, couplings exist among the subproblems, and the presence of these couplings leads to
a non-separable structure of the whole problem. To handle this issue, we further introduce
three distributed optimization approaches. An Alternating Direction Method of Multipliers
(ADMM) algorithm is developed to solve each subproblem through coordination with the
other subproblems in an iterative manner. A priority-rule-based (PR) algorithm is proposed
to sequentially and iteratively solve the subproblems in a priority order with respect to the
solutions of the other subproblems solved with a higher priority. A Cooperative Distributed
Robust Safe But Knowledgeable (CDRSBK) algorithm is presented, where four types of
couplings are defined and each subproblem is iteratively solved together with its actively
coupled subproblems. Experiments are conducted based on the Dutch railway network to
comparatively examine the performance of the three proposed algorithms with the three
decomposition methods, in terms of feasibility, computational efficiency, solution quality,
and estimated optimality gap. Overall, the combinations GEO-ADMM, TRA-ADMM, and
TRA-CDRSBK yield better performance. Based on our findings, a feasible solution can be
found quickly by using TRA-ADMM, and then a better solution can be potentially obtained
by GEO-ADMM or TRA-CDRSBK at the cost of more CPU time.

Keywords
Distributed optimization, Decomposition, Integration of real-time traffic management and
train control, Mixed-integer linear programming (MILP), Large-scale



1 Introduction

Real-time traffic management is of great importance to limit the negative consequences
caused by perturbations occurring in real-time railway operations. Train control problem
reflects the traffic control by defining speed profiles to let the delayed trains reach the sta-
tions at the times specified by the traffic management problem. Due to the real-time nature,
a solution is required in a very short computation time for dealing with delayed and canceled
train services and for evacuating delayed and stranded passengers as quickly as possible.

The real-time traffic management problem has been studied extensively in the litera-
ture, and we refer to the review papers by Cacchiani et al. (2014) and Corman and Meng
(2015). There are many optimization approaches available for the railway traffic man-
agement problem, using different formulation methods, e.g., the alternative-graph-based
method by D’ Ariano et al. (2007) and the cumulative flow variable based method by Meng
and Zhou (2014), and having different focuses, e.g., considering multiple classes of running
traffic in Corman et al. (2011) and integrating train control in Luan et al. (2018). These
approaches often lead to large and rather complex optimization problems, especially when
considering microscopic details or when integrating traffic management with other prob-
lems (e.g., train control problem). They mostly have excellent performance on small-scale
cases, where optimality can be achieved in a short computation time. However, when en-
larging the scale of the case, the computation time for finding a solution or for proving the
optimality of a solution increases exponentially in general.

Distributed optimization approaches have gained a lot of attention to face the need for
fast and efficient solutions for problems arising in the context of large-scale networks, such
as utility maximization problems. We refer to Nedic and Ozdaglar (2010) and Meinel et al.
(2014) for more details. The main idea is to solve the problems either serially or in parallel
to jointly minimize a separable objective function, usually subject to coupling constraints
that force the different problems to exchange information during the optimization process.
In the literature, these approaches have been widely studied in many fields. In transportation
systems, they have been explored for controlling road traffic (Findler and Stapp, 1992), for
managing air traffic (Wangermann and Stengel, 1996), and for railway traffic (Kersbergen
et al., 2016). Kersbergen et al. (2016) focused on the railway traffic management problem
with macroscopic details and considered a geography-based decomposition. Lamorgese
et al. (2016) proposed a Benders’-like decomposition within a master/slave scheme to ad-
dress the train dispatching problem. The master and the slave problems correspond to a
macroscopic and microscopic representation of the railway.

Bad computational efficiency is one limitation that (integrated) optimization approaches
have for large-scale networks. Overcoming this limitation will promote the application of
such optimization approaches in practice. Thus, we aim at improving the computational
efficiency of solving such (integrated) optimization problems by using distributed optimiza-
tion approaches. The optimization problem that we focus on in this paper is a mixed-integer
linear programming (MILP) problem, developed in our previous work (Luan et al., 2018),
where the traffic-related variables (i.e., a set of times, orders, and routes to be followed by
trains) and the train-related variables (i.e., speed trajectories) are optimized simultaneously.

In this paper, we consider three decomposition methods, namely a geography-based
(GEO) decomposition, a train-based (TRA) decomposition, and a time-interval-based (TIN)
decomposition. The GEO decomposition consists of first partitioning the whole railway net-
work into many elementary block sections and then clustering these block sections into a



given number of regions. An integer linear optimization approach is proposed to cluster
the block sections with the objective of minimizing the total number of train service inter-
connections among the regions and of balancing the region sizes. Consequently, several
subproblems are obtained, and each region corresponds to one subproblem. For the TRA
decomposition, we decompose an F'-train problem into F' subproblems, and each subprob-
lem includes one individual train only. The TIN decomposition makes a division of the
time horizon into equal-interval pieces, and each time-interval piece corresponds to one
subproblem, which consists of all events (i.e., train departures and arrivals) that are esti-
mated to happen in this time-interval. No matter which decomposition method is used,
couplings always exist among subproblems, and the presence of these couplings leads to
a non-separable structure of the whole optimization problem. To handle the issue of the
couplings, we introduce three distributed optimization approaches. The first one is an Al-
ternating Direction Method of Multipliers (ADMM) algorithm, where each subproblem is
solved through coordination with the other subproblems in an iterative manner. The second
one is a priority-rule-based (PR) algorithm, where the subproblems are sequentially and it-
eratively solved in a priority order (based on train delays) with respect to the solutions of
the other subproblems that have been solved with a higher priority. The third one is a Co-
operative Distributed Robust Safe But Knowledgeable (CDRSBK) algorithm, where four
types of couplings are defined and each subproblem is iteratively solved together with its
actively coupling subproblems. Experiments are conducted based on the Dutch railway net-
work to comparatively test the performance of the three proposed algorithms with the three
decomposition methods, in terms of feasibility, computational efficiency, solution quality,
and estimated optimality gap.

The reminder of this paper is organized as follows. In Section 2, we briefly introduce
an MILP problem that we focus on in this paper, which addresses the integrated problem of
real-time traffic management and train control. Section 3 introduces three decomposition
methods, where a number of subproblems are obtained. In Section 4, three distributed opti-
mization approaches are developed for handling the couplings among the resulting subprob-
lems. Section 5 examines the performance of the proposed algorithms and decomposition
methods, through experiments on the Dutch railway network. Finally, the conclusions and
suggestions for future research are given in Section 6.

2 An MILP Approach for Addressing the Integration of Traffic Man-
agement and Train Control

An MILP approach has been developed in our previous work (Luan et al., 2018) for ad-
dressing the integrated problem of real-time traffic management and train control. This
MILP approach incorporates the representations of microscopic traffic regulations and train
speed trajectories into a single MILP optimization problem of the following form:
miny Z(\) =c¢' -\ (la)
st. A-A<b (1b)
with variable A € R", matrix A € R™*", and vectors ¢ € R", b € R™. The objective
function Z(\) in (1a) minimizes the weighted sum of the total train delay times at all visited
stations and the energy consumption of the train movements. The vector A contains both
the traffic-related variables and train-related variables for describing the train movements on
block sections, in particular, the arrival times a, departure times d, train orders 6, incoming
speeds v™, cruising speeds v°™", outgoing speeds v°"t, approach time 72PP*°3h and clear



time 7°°" | In (1b), all constraints (inequalities and equalities) are represented for ensuring
the train speed limitations, for enforcing the consistency of train transition times and speeds,
for guaranteeing the required dwell times, for determining train blocking times, and for
respecting the block section capacities. The MILP problem (1a)-(1b) can be solved by
a standard MILP solver, e.g., CPLEX or Gurobi. Interested readers are referred to the
optimization problem named Prgpo in Luan et al. (2018) for a more detailed description.

3 Problem Decomposition

Three decomposition methods, i.e., the geography-based (GEO), the train-based (TRA), and
the time-interval-based (TIN) decomposition, are described in Sections 3.1-3.3 respectively.
Section 3.4 discusses the decomposition result, i.e., subproblems and couplings. Figure 1
comparatively illustrates the three decomposition methods in a time-space graph, where
black lines indicate train paths and red dashed lines indicate boundaries of subproblems.

3.1 Geography-Based Decomposition

The GEO decomposition partitions the whole railway network into a given number of re-
gions. Consider a railway network composed of a set of block sections F and a set of sched-
uled trains F traversing this network. We could easily partition the whole network into | E|
units, by means of a geography-(i.e., block section)-based decomposition; however, this
could result in a large number of subproblems with couplings. In general, a larger number
of subproblems implies more couplings among them, which makes coordination difficult
and which may affect the overall performance of the system; therefore, we cluster these ele-
mentary block sections into a pre-defined number |R| of regions, where R = {1, 2, ..., |R|}
is the set of regions. Figure 1(b) illustrates a 2-region example of the geography-based
decomposition; as shown, the timetable is split in the dimension of space.

To distribute |E| different units into |R| groups, there are |R|!?l ways, e.g., up to 10°
ways for distributing 20 units into 2 groups only. Thus, in our case, a huge number of the
GEO decomposition results are available. To obtain the optimal decomposition result, an
integer linear programming (ILP) approach is proposed in Appendix B, with the objective of
minimizing the number of couplings among regions (i.e., the total number of train service
interconnections) and balancing the region sizes (i.e., the absolute deviation between the
number of block sections contained in an individual region and the average value |E|/|R)).

For the GEO decomposition with a pre-defined number of regions, there are two impact
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(a) Train timetable (b) Geography-based (GEO) (c) Train-based (TRA) (d) Time-interval-based (TIN)

Figure 1: Illustration of the three decomposition methods in a time-space graph



factors: the network layout and the train routes planned in the original timetable. This
implies that the optimal decomposition result is same for all delay cases.

When applying the GEO decomposition, some trains may traverse from one region to
another region. The time and speed that a train leaves one region should equal the time
and speed that the train arrives at the other region. Therefore, the time and speed transition
constraints are the complicating constraints for the GEO decomposition, which cause the
couplings among regions (i.e., subproblems). The time and speed transition constraints of
the MILP problem (1) are formulated in (15a)-(15b) of Appendix A.

3.2 Train-Based Decomposition

The TRA decomposition simply splits a | F'|-train problem into | F'| subproblems, and each
subproblem corresponds to a 1-train problem, as illustrated in Figure 1(c). Thus, for a
given instance, only one decomposition result is available. The only impact factor of the
TRA decomposition is the involved trains. Brinnlund et al. (1998) used such train-based
decomposition for addressing train timetabling problem by using Lagrangian relaxation.
When applying the TRA decomposition, each train is independently scheduled in each
subproblem, so that trains may use the same infrastructure at the same time, resulting in
conflicts. Therefore, the capacity constraint is the complicating constraint for the TRA
decomposition. The capacity constraint is formulated in (15¢)-(15d) of Appendix A.

3.3 Time-Interval-Based Decomposition

The time-interval-based (TIN) decomposition makes a division of a train timetable in the
dimension of time, based on a given size of time interval, as illustrated in Figure 1. The
TIN decomposition is implemented with consideration of disruptions (delays). We inde-
pendently schedule all trains by taking disruptions into account, generating an infeasible
timetable, where train conflicts exist. With this infeasible timetable, we estimate the times
that all events (e.g., train departure and arrival) may happen. Each event is then assigned to
one time interval based on its estimated happen time. As a result, the subproblem of each
time interval includes all events that are estimated to happen in this time interval. The TIN
decomposition result mainly depends on the given size of time interval and the estimated
train schedule, which can be different in delay cases.

One train service consists of a set of events indicating the departures and arrivals of the
train on block sections. When applying the TIN decomposition, these events may be split
into more than one time intervals. Thus, same to the GEO decomposition (where trains
may traverse from region to region), the time and speed when a train leaves a time interval
should be consistent with those when the train enters the next time interval, i.e., the time
and speed transition constraints are complicating constraints, as formulated in (15a)-(15b)
of Appendix A. Moreover, as the TIN decomposition is based on an estimated infeasible
timetable, an event assigned to time interval ¢ maybe further scheduled to the next time
interval t+ 1, causing conflicts with the events in time interval ¢+ 1. Therefore, the capacity
constraint in (15c)-(15d) is also a complicating constraint for the TIN decomposition.

3.4 Subproblems and Couplings

Let us denote S as the set of the |S| resulting subproblems, e.g., |S| = |R| for the GEO
decomposition. No matter which decomposition method is used, we can always divide the



constraints of the MILP problem (1) into two categories, i.e., local constraints and compli-
cating constraints. A local constraint is only related to a single subproblem, so that it leads
to a separable structure of an optimization problem. A complicating constraint is associated
with at least two subproblems, so that it results in a non-separable structure. We thus rewrite
(1b) into a general form of the followin% local and comphcatlng constraints:
oc. )\ < ploc (2a)
APL N < pev! (2b)
with matrices A°¢ € R™1 %" and A°P' € R™2*" and vectors b'°¢ € R™! and b°P! € R,
A detailed explanation of the complicating constraints of the MILP problem (1) is given
in Appendix A. Let us denote Q, = {q1,q2, .. Gm, } as the set of m,, subproblems that
have couplings with subproblem p. The subproblem p € S of the MILP problem (1) is
formulated as

miny, Z,(\,) = c;— “Ap (3a)
st APC N, < b (3b)
APLX, + AP N < 0P Vg € Q, (3c)

where A;p; and ACp; are selectlon matnces for selectmg the coupling variables between
subproblems p and ¢. Since each coupling constraint in (3c) includes the variables A,
and ), of two subproblems p and g, we cannot explicitly add them to any individual sub—
problem. Instead we can determine and exchange values of the coupling variables among
subproblems in an iterative way. The train(s) of one subproblem p can obtain an agreement
through iterations that inform the train(s) of its coupling subproblems ¢ € ), about what
subproblem p prefers the values of coupling variables to be. To achieve this agreement, for
a single subproblem p, we have to compute the optimal coupling variables (inputs) for its
coupling subproblems g € @), as well, rather than only focusing on computing optimal local
variables. Moreover, for its coupling subproblems ¢ € (), we need to compute both the
optimal local variables and coupling variables (outputs). Through exchanging these desired
coupling variables, the values of these outputs and inputs should converge to each other,
and a set of local inputs that is overall optimal should be found. Distributed optimization
approaches are developed for reaching this agreement in Section 4.

4 Distributed Optimization Approaches

This section introduces three distributed optimization approaches to address the issue of
couplings among subproblems, namely the Alternating Direction Method of Multipliers
(ADMM) algorithm, the priority-rule-based (PR) algorithm, and the Cooperative Distributed
Robust Safe But Knowledgeable (CDRSBK) algorithm, presented in Sections 4.1-4.3 re-
spectively. A key challenge in distributed optimization algorithms is to ensure that the
solution generated for a single subproblem leads to feasible solutions that satisfy the com-
plicating constraints with other subproblems.

4.1 Alternating Direction Method of Multipliers Algorithm

The alternating direction method of multipliers (ADMM) algorithm (see e.g., Boyd et al.,
2011) solves problems in the following form:

min, , f(z)+ g(2) (4a)
st. A-x+B-z=10, (4b)



with variables z € R™ and z € R™, matrices A € RP*™ and B € RP*™ and vector b € RP.
Assume that the variables x and z can be split into two parts, with the objective function
separable across this splitting. We can then form the augmented Lagrangian relaxation as

Ly(z,z,y)=f(z)+g9(z)+y" (A2 +B-z—b)+5-|[A-z+B-2-0b|3, (5
where y is the dual variable (Lagrangian multiplier), the parameter p > 0 indicates the
penalty multiplier, and ||-||, denotes the Euclidean norm. The augmented Lagrangian func-
tion is optimized by minimizing over x and z alternately or sequentially and then evaluating
the resulting equality constraint residual. By applying the dual ascent method, the ADMM
algorithm consists of the following iterations:

't = argmin, L,(z, 2", y"), (6a)
2= argmin, L,(z" ", 2, y"), (6b)
Y=yt p(A- 2T B2 —b) (6¢)

where 7 is the iteration counter. In the ADMM algorithm, the variables = and z are updated
in an alternating or sequential fashion, which accounts for the term alternating direction.

The ADMM algorithm can obviously deal with linear equality constraints, but it can also
handle linear inequality constraints. The latter can be reduced to linear equality constraints
by replacing constraints of the form A -z < bby A - z 4+ s = b, adding the slack variable
s to the set of optimization variables, and setting Z(s) = 0, if s > 0, otherwise, setting
Z(s) = oco. Alternatively, we can also work with an equivalent reformulation of problem
(3), where we replace the complicating constraint (3¢) by

Cp(/\pa)‘q) =0 (7

where Cp(Ap, Ag) = max {0, AP} - X, + APl X, — bePl} with component-wise maxi-
mum. In such a way, we can transform the inequality constraints into equality constraints.

Now we can apply the ADMM algorithm, and the augmented Lagrangian formulation
of the MILP problem (1) can be described as follows:

Ly =Y e |20+ 5, [0 G ) + 516000 | ®

The iterations to compute the solution of the MILP problem (1) based on the augmented
Lagrangian formulation (8) include quadratic terms; therefore, the function cannot directly
be distributed over subproblems. Inspired by Negenborn et al. (2008), for handling this
non-separable issue, the function (8) can be approximated by solving | S| separate problems
of the form

miny, Zp(Ap) + quQp Tp(Ags Yp.g) ©)
subject to (3b) for the train movements of single subproblem p, where the additional term
Jp(+) deals with coupling variables.

We now define the term J,(-) by using a serial implementation. We apply a block
coordinate descent approach (Beltran Royoa and Heredia, 2002; Negenborn et al., 2008).
The approach minimizes the quadratic term directly in a serial manner. One subproblem
after another minimizes its local and coupling varialnles while the variables of the other

subproblems stay fixed. At iteration ¢, let us denote Q; C @y as the set of those coupling
subproblems (of subproblem p) that have been solved before solving subproblem p.
The serial implementation uses the information from both the current iteration 7 and the

last iteration i — 1. With the information A, = )\((Ii) computed in the current iteration % for

(i-1)
q

subproblems ¢ € Q; and the information Xq =\ obtained in the last iteration ¢ — 1



for the other subproblems ¢ € @Q,\Q?%, we can solve (9) for subproblem p by using the
following function:
Tp(\tp.g) =Yg Cop, Ag) + g 11C (A, A1 (10)
The second term of (10) penalizes the deviation from the coupling variable iterates that
were computed for the subproblems before subproblem p in the current iteration ¢ and by
the other subproblems during the last iteration ¢ — 1.
The solution procedure of the ADMM algorithm is described as follows:

The solution procedure of the ADMM Algorithm

Initialization: Set the iteration counter ¢ := 1, the penalty multiplier p := 1, the Lagrange
multipliers y(*) := 0, and all elements in the latest solution set Sy := {\,|p € S} to be
empty. Denote the maximum number of iterations as ™.

1: for iteration ¢ := 1,2, ..., I"™** do

(@)

2: Randomly generate the orders of subproblems, denoted as POr der-

3 for subproblem j := 1,2, ..., |S]| do

4: Solve subproblem p := Po(rZI or(J), consisting of objectlve function (9) and con-
straint (3b), by taking the available solutions in S for all g € Q’ into account.

5: Denote the obtained solution of subproblem p as )\I(f), and update the latest
solution set So1 by adding or setting \, := AS).

6: end for

7: Update the Lagrange multipliers by y§,2, = ( D4 p-C, (/\ ), )\ff*l)) for all
peSandq € Q).

8: Break the iterations if the difference of the coupling variables at the current iteration

step ¢ is less than the expected gap ¢, i.e., ||C||, < €, where € is a small positive scalar
and ||-|| , denotes the infinity norm.
9: end for

By applying the ADMM algorithm, we solve the subproblems p € S in an iterative
manner, with respect to the local constraint (3b) of a single subproblem p and taking the
solutions of all coupling subproblems (i.e., the variable )\, for ¢ € ), obtained in either the
current iteration or the last iteration) into account. In (8), only the local objective Z,, for a
single subproblem p is minimized, not the global objective Ep <5 Zp for all subproblems.

In order to further improve the performance of the ADMM algorithm, we can consider
a cost-to-go function Z;tg()\p) into the objective function of each subproblem, which pro-
vides an estimation of the train running to its destination. Then, the objective function (9)
for subproblem p € S can be rewritten as follows:

miny, Z,(Ap) + ZCtg +Z VAR (11)
For instance, with the GEO decomposition, we can deﬁne the cost-to-go function as the
deviation between the actual and planned departure time from the block section where a
train leaves a region. Thus, an original timetable with more details is needed, where the
departure and arrival times are given not only for stations but also for block sections.

4.2 Priority-Rule-Based Algorithm

The ADMM algorithm incorporates the complicating constraint (3¢) into the objective func-
tion and strives to make the information consistent among subproblems (i.e., each subprob-



lem takes the information of the other subproblems into account) in an iterative manner.
However, convergence cannot be guaranteed for non-convex optimization problems, so that
a feasible solution may not be available. Therefore, we need to explore other distributed
optimization approaches. We next introduce a priority-rule-based (PR) algorithm.

The main idea of the PR algorithm is to optimize train schedules of the subproblems in a
sequential manner according to problem priorities, with respect to the solutions of the other
subproblems that have already been solved in the current iteration. The problem priorities
are determined by the train delay times of the subproblems, e.g., we solve the subproblem
with the largest delay time first. Note that the result could be different even with the same
problem priorities, as multiple optimal solutions may exist for each subproblem. These
different optimal solutions with the same objective value for one subproblem could result in
different objective values for the other subproblems.

By applying the PR algorithm, the complicating constraint (3c) for the subproblem p €
S can be rewritten as follows:

AP N, + AR N SR Vg € Qy (12)

with the solution )\, = /\éi) computed in the current iteration ¢ for all subproblems g € @,.
The solution procedure of the PR algorithm is described as follows:

The solution procedure of the PR Algorithm

Initialization: Set the iteration counter ¢ := 1, the local upper bound 0%?])3 := M, and the

global upper bound OS)% := M, where M is a sufficient large positive number. Initialize

the problem priorities pY arbitrarily. Denote the maximum number of iterations as ™.

prior
1: for iteration i := 1,2, ..., I™** do
2: Sort subproblems in set .S in a descending order by their problem priorities Pé;i ),
denoted as P(S?ier.

3 Set the solution set Syo1 := {\,[p € S} to be empty.

4: for subproblem j := 1,2, ..., |S]| do

5: Solve subproblem p := Po(i)ier (j), including objective function (3a) and con-
straints (3b) and (12), with respect to the available solutions in Sy for all ¢ € @.

6: Denote the obtained solution of subproblem p as )\(i), and update the solution
set Sgo1 by adding Xp = )\Z(f).

end for
Compute the local upper bound 08])3, and update the global upper bound by

i o ~(i—1 i
oty - { o, HOla? >l
UB * ol=D .
ug > Otherwise
i)

9: Update the problem priorities Périor by the train delay times of the subproblems.

10: Break the iterations if the global upper bounds are not improved for a given number
of iterations x, i.e., 08])3 = O&;”).
11: end for

In the priority-rule-based algorithm, we solve each subproblem p € S in a sequential
manner according to the priorities of the subproblems, with respect to the local constraint
(3b) and the outputs )\, of the coupling subproblems ¢ € @, in (12). Similar to the ADMM



algorithm, only the local objective Z,, is minimized when solving subproblem p, rather than
the global objective Ep cr Zp for all subproblems. Constraint (12) ensures that the coupling
variables of subproblem p satisfy those of its coupling subproblems ¢ € (), obtained in
the current iteration. For the first solved subproblem in each iteration, the complicating
constraint (12) is relaxed.

4.3 Cooperative Distributed Robust Safe but Knowledgeable Algorithm

The third algorithm considered in this paper is the Cooperative distributed robust safe but
knowledgeable (CDRSBK) algorithm, introduced by Kuwata and How (2011) to address
trajectory planning problems. In the CDRSBK algorithm, four types of couplings among
subproblems are defined for a subproblem p € S, as illustrated in Figure 2.

@ qu;ct

® 4c0\0"
Figure 2: Four types of couplings defined in the CDRSBK algorithm

Type_1 indicates a non-active coupling between subproblem p € S and its neighbor;
Type_2 indicates an active coupling between subproblem p and its neighbor; Type_3 indi-
cates the coupling between the active coupling neighbors of subproblem p and their neigh-
bors; and Type_4 indicates the coupling between two active coupling neighbors of subprob-
lem p. Let us denote (), as the set of all coupling neighbors of subproblem p and denote
Q;Ct as the set of subproblem p’s neighbors that have an active coupling with subproblem p.
The interpretation of active and non-active couplings can be different for different decom-
position methods. We discuss the details regarding their implementations in Section 4.4.

By applying the CDRSBK algorithm, the subproblem p € S of the MILP problem
(3a)-(3c) can be reformulated as

min  Z,(A,) + quQact Zq(j‘q + Ty - &) (13a)
st Ay Ay <bY° (13b)
Ag- (N + Ty &) < bg°, Vg € Q5" (13¢)
APL- N + AL X S BEPL Vg € Q\Qp (13d)
ASPL- D+ AL (Mg + Ty - &) < bR, Vg € Qi (13¢)

ARy Do+ AP (Vg + Ty - &) <P, Vo € Q5™ g €t (13

APl Oy + Ty - €ay) + AR - Oy + Ty - €g,) S U, (13g)

VCI1»(12 € Q;Ctv q2 S quaql S qu
In (13a), the objective function of both subproblem p and its actively coupled subprob-

lems ¢ € Q;Ct are included. Constraints (13b)-(13c) represent the local constraints of
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subproblem p and its actively coupled subproblems ¢ € Q;Ct respectively. In (13d)-(13g),
coupling constraints (3c) are rewritten for the four types of couplings among subproblems
respectively. When solving subproblem p, besides the local variable A, the variable &, is
also optimized for its actively coupled subproblems ¢ € Qg“ on the communicated solution
Ay» as follows: -

A=A+ Ty & (14)
parameterized with a matrix T;, which is formed to allow the variable &, to change only the
rows corresponding to the active complicating constraints. This can be also interpreted as
allowing a change for the constraint that has a non-zero Lagrange multiplier. In (13a), the
objectives of a single subproblem p and its actively coupled neighbors ¢ € Q;Ct are both
minimized.

The solution procedure of the CDRSBK algorithm is described as follows:

The solution procedure of the CDRSBK Algorithm

Initialization: Set the iteration counter 7 := 1, the local upper bound 08])3 := M, and the

global upper bound 08])3 := M, and all elements in the latest solution set Sgo := {5\1,|p €
S} to be empty. Denote the maximum number of iterations as 7™,

1: for iteration i := 1,2, ..., I™** do

2 Randomly generate the orders of subproblems, denoted as Po(ﬁzier.

3: for subproblem j :=1,2,...,|S| do
4 Solve subproblem p := P(S()ier (j) and its actively coupling subproblems g €

ZCt, consisting of objective function (13a) and constraints (13b)-(13g), by taking the
available solutions in set Sqo) for all 0 € (Q,\Qa") U (Q4\Q5°") into account.

5: Denote the obtained solutions of subproblem p and its actively coupling sub-
problems g € Qg“ as )\,(,Z) and /\t(f) (which is obtained by (14)) respectively, and update
the latest solution set S0 by adding or setting X, := A5’ and A, := A for all
q€ Q.

: end for ,
Compute the local upper bound 08%3, and update the global upper bound by

i o A(i—1 i

00 . 0%])3, if OgB ) S 083
uB 08]; D , otherwise

8: Break the iterations if the global upper bounds are not improved for a given number

of iterations k, i.e., 081)3 = O[(Ji];'{).
9: end for

In each iteration, the CDRSBK algorithm actually solves each subproblem, with addi-
tional objectives and coupling constraints that include the changeable (local) variables of its
actively coupled subproblems g € Qg“. If the variables of its actively coupled subprob-
lems are unchangeable, i.e., A, = A, when &, has no impact on the variables, the coupling
constraints are automatically satisfied and could be omitted.

4.4 Remarks on the Implementation of the Decomposition Methods and Algorithms

Here we give some remarks for the implementation of the proposed decomposition methods
and algorithms, e.g., interpreting the active and non-active couplings in the CDRSBK algo-
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rithm for different decomposition methods and giving some tips for achieving feasibility.

Remark 1 (Train orders in the ADMM algorithm with the GEO decomposition and
the TIN decomposition) It is essential to ensure that train orders in subproblems are fea-
sible, in order to avoid unnecessary iterations and to achieve fast convergence. To do this,
we keep a consistency of the train orders that are interrelated, e.g., if two trains cannot
overtake on a sequence of block sections, then the train orders of these two trains on these
block sections are interrelated and must be same.

Remark 2 (The CDRSBK algorithm & the GEO decomposition) If two regions are con-
nected by tracks, i.e., they are neighbors, then we consider that a coupling exists between
the two subproblems of these two regions. A coupling between two subproblems is consid-
ered to be active (Type_2) if there is any train traverse between the two regions of the two
subproblems; otherwise, the coupling is recognized as non-active coupling (Type_2). For
coupling Type_3 and Type_4, we follow their general definitions, i.e., the couplings between
an active coupling neighbor and its coupling neighbors are labeled as Type_3 coupling and
the coupling between two active coupling neighbor is labeled as Type 4.

Remark 3 (The CDRSBK algorithm & the TRA decomposition) If two trains use the
same infrastructure (block section), then we consider that a coupling exists between the two
subproblems of these two trains. If a conflict exists between these two trains, then their
coupling is recognized as an active coupling; otherwise, their coupling is considered to be
non-active. For coupling Type_3 and Type_4, we follow their general definitions. In the TRA
decomposition, we often have many trains that use the same infrastructure; but conflicts
may never happen among some of them, e.g., a train scheduled in the early morning has
little chance to conflict with another train scheduled in the late afternoon. Thus, to further
reduce the problem complexity for large-scale networks, we provide two more options for
defining coupling Type_l and Type_3. We denote the option described above as Opt_I. The
difference between Opt_1 and Opt_2 is in the definition of coupling Type_3: in Opt_2, we
label the couplings between an active coupling neighbor and its active coupling neighbor
as Type_3. Based on Opt_2, we discard all Type_1 couplings, which results in Opt_3, i.e.,
when and only when a conflict happens between two trains, a coupling exists between them
and is recognized as active coupling (Type_2). However, we still have Type_3 and Type 4
couplings in Opt_3 by following their general definitions. An illustrative example is provided
in Appendix C to graphically explain these three options.

Remark 4 (The CDRSBK algorithm & the TIN decomposition) Due to the nature of
the TIN decomposition, the relation among subproblems is relatively simple in this case.
Couplings exist only between two consecutive subproblems (i.e., two subproblems of two
consecutive time intervals t and t + 1) and are all recognized as active couplings (Type_2).
As a result, according to the general definition of the four types of couplings, the couplings
between a consecutive subproblem and its consecutive subproblem are considered as Type_3
(e.g., for subproblem t, a Type_3 coupling exists between subproblems t + 1 and t + 2), and
Type_1 and Type_4 couplings do not exist. Moreover, for guaranteeing a feasible solution
in the first iteration, solving subproblems in a time sequence (i.e., for time intervals t =
1,2, 3.... in sequence) is recommended.

12
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5 Case Study
5.1 Set-Up

We consider a line of the Dutch railway network, connecting Utrecht (Ut) to Den Bosch (Ht),
of about 50 km length, with 9 stations, as shown in Figure 3. The network comprises 42
nodes and 40 cells. We consider one hour of heterogeneous traffic with 15 trains. Moreover,
we considered different numbers of regions for the GEO decomposition, ranging from 2
to 6, and we consider 4 time intervals for the TIN decomposition, i.e., 300s, 600s, 900s,
and 1200s. In the result presentation, we present the average result of 15 delay cases with
randomly generated primary delays. The maximum number of iterations is set to 200, 100,
and 30 for the ADMM, PR, and CDRSBK algorithm respectively. A larger number is set for
the ADMM algorithm because it needs some iterations to converge, and a smaller number
is set for the CDRSBK algorithm because it often finds a feasible solution very fast and its
solution is updated multiple times in one iteration. In the case study, we consider the weight
¢ = 0.55 for the ILP problem proposed in Appendix B for the GEO decomposition, which
is appropriate for getting a result with an acceptable difference of the size of regions.

We adopt the CPLEX solver version 12.6.3 implemented in the MATLAB (R2018a)
TOMLAB toolbox to solve the MILP problems. The experiments are performed on a com-
puter with an Intel® Core™ i7 @ 2.00 GHz processor and 16GB RAM.

5.2 Experimental Results

This section shows the (average) results of 15 delay cases from the viewpoints of feasibility,
estimated optimality gap, solution quality, and computational efficiency.

Figure 4 presents the number of cases that we can find feasible solutions within the
maximum number of iterations. We can conclude that, for achieving feasibility, the TRA
decomposition performs best among the three decomposition methods, and the CDRSBK
algorithm is the best among the three algorithms. Considering a larger number of regions for
the GEO decomposition or considering a smaller time interval for the TIN decomposition
can make feasibility difficult to achieve, as they lead to a larger number of couplings among
subproblems.

In Figure 5, an estimated optimality gap for each decomposition method and each al-
gorithm is given. As shown, the estimated optimality gap of the GEO decomposition is
3.52%, the lowest among the three decomposition methods, and the CDRSBK algorithm
has the smallest estimated optimality gap (only 1.11%) among the three algorithms. A large
estimated optimality gap does not reflect a bad solution quality; it may be caused by a loose
lower bound, as in the case of the TRA decomposition.
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Figure 5: Estimated optimality gap of the three decomposition methods and three algorithms

Figure 6 shows the cumulative computation time (on the X-axis) and the objective value
(on the Y-axis). The cumulative computation time is the CPU time consumed for finding
the best feasible solution. Dashed circles around symbols indicate that feasible solution(s)
can be found for all 15 delay cases by using the corresponding decomposition method and
algorithm. When focusing on the three decomposition methods (represented by colors), the
GEO decomposition (in pink) leads to a large range in computation time and a small range
in objective value. This implies that the GEO decomposition results in small differences
in the solution quality, but the computational efficiency is quite different for different algo-
rithms. For the TRA decomposition (in blue) and the TIN decomposition (in green), ranges
still exist in the two dimensions, and their results show a general trade-off between solution
quality and computational efficiency. Let us now focus on the three algorithms (indicated by
symbols). The CDRSBK algorithm (indicated by diamonds) overall yields the best solution
quality, and the computation efficiency becomes much better when the TRA decomposition
is applied. The performance of the ADMM and PR algorithms is highly variable. For the
ADMM algorithm (indicated by circles), the best solution quality is achieved when using
the GEO decomposition, and the best computation efficiency is achieved when the TRA de-
composition is adopted. The PR algorithm (indicated by triangles) has the best performance
on solution quality when the GEO decomposition is used and on computational efficiency
when the TIN decomposition is applied. A black dashed circle around a symbol indicates
that feasible solution(s) can be found for all 15 delay cases by using the corresponding
decomposition method and algorithm. Moreover, the lower bound of the TRA decompo-
sition (indicated by a blue cross symbol) is the loosest, which leads to its large estimated
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optimality gap in Figure 5.

Overall, the CDRSBK algorithm with the TRA decomposition, the ADMM algorithm
with the GEO decomposition, and the ADMM algorithm with the TRA decomposition have
good overall performance. All these three combinations can find feasible solutions for all
delay cases. In comparison, the first two combinations have the best performance on so-
lution quality and a satisfactory performance on computational efficiency. The last combi-
nation shows the best computational efficiency (roughly half-shorter computation time than
the first two combinations) but at the cost of relatively bad solution quality.

Moreover, when using the CDRSBK algorithm together with the TRA decomposition,
Opt_3 described in Section 4.4 yields the best performance on both solution quality and
computational efficiency. For Opt_1, Opt_2, and Opt_3, the average objective value for the
15 delay cases is 7934.43, 7334.86, and 7217.08 respectively, and the average cumulative
computation time is 255.19 seconds, 224.64 seconds, and 104.75 seconds.

6 Conclusions

We have introduced distributed optimization approaches, aiming at improving the compu-
tational efficiency of the integrated optimization problem for large-scale railway networks.
Three decomposition methods have been presented to split the whole optimization problem
into several subproblems, and three distributed optimization approaches have been proposed
for dealing with the couplings among subproblems.

The performance of the proposed approaches has been examined in terms of feasibility,
estimated optimality gap, solution quality, and computational efficiency. The TRA decom-
position and the CDRSBK algorithm have the best performance from the perspective of fea-
sibility. The GEO decomposition and the CDRSBK algorithm yield the smallest estimated
optimality gap. The CDRSBK algorithm with the TRA decomposition and the ADMM al-
gorithm with the GEO decomposition achieve the best performance on solution quality and
satisfactory performance on computational efficiency. The ADMM algorithm with the TRA
decomposition shows the best computational efficiency but gives a relatively bad solution.

For practical applications, a promising two-step procedure can be used: first generate a
feasible solution in short time (e.g., by applying the ADMM algorithm) and then improve
the solution quality (by using the CDRSBK algorithm) based on that feasible solution if
time permits. This leads to one direction of the future research on exploring the interactions
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of algorithms and decompositions so that we can play with their advantages, in order to
further achieve best overall solution. Moreover, we are going to test the performance of the
proposed approaches on larger-scale railway instances.
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Appendix A The complicating constraints in the MILP problem (1)

As explained in Section 3, there are some complicating constraints in the MILP optimiza-
tion problem (1), causing the couplings among subproblems and making a non-separable
structure of the whole problem.

When applying the GEO decomposition, the complicating constraints are the time and
speed transition constraints, which can be written as follows:

dyij =ag;kVf€F (i,j) € Ef, (j,k) € Ef (15a)

VP =0 LY f € FL (i) € By, (4, k) € Ey (15b)
Constraint (15a) enforces the transition time between two adjacent block sections, i.e., the
departure time of train f on the preceding block section (4, j) equals the arrival time of train
f on the successive block section (j, k), if two adjacent block sections (4, j) and (7, k) are
used consecutively by train f. Constraint (15b) ensures the consistency of the train speed
between two adjacent block sections, i.e., the incoming speed of train f on block section
(4, k) equals to its outgoing speed on the preceding block section (3, j).

When applying the TRA decomposition, the couplings result from the competitive use
of infrastructure by trains, i.e., the capacity constraint is the complicating constraint, formu-
lated as follows:

Qg — T?};jgrjoach _ Tsigﬁet + (1 _ af.,f’,i,j) M > df,i,j + T](;,}f;r + 7_rel7

R . (15¢)
vava,GF»f#f/»pf:pf’v(l’j)EEf’(Z’])6Ef’?
roach sig.s T r
apga = Tplge T (L= O pag) M 2 dpag + TRET AT oy

VieF [T el f# [ pr#ps(i,]) € Ef,(j,i) € Ep.
where M is a sufficiently large positive number, 7518-5°t is the setup, sight, and reaction time
to lock a block section before the arrival of a train, and 77 is the release time to unlock
a block section after the departure time of a train. Constraints (15¢) and (15d) ensure that
any pair of trains using one block section in the same or different direction respectively are
conflict-free, by avoiding the overlap between the block section release time for a preceding
train and the block section occupancy time for a successive train.

For the TIN decomposition, all constraints in (15) can be complicating constraints.

Appendix B An integer linear programming approach for the
geography-based decomposition

The set E; contains the sequence of block sections composing the route of train f, and
|E ;| represents the number of block sections along the route of train f. The binary vector
B¢ indicates whether two consecutive block sections along the route of train f belong to

different regions, e.g., if (37); = 1, then the ' and (j + 1)™ block sections in set E;
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belong to different regions, otherwise, (8f); = 0. The binary vector . indicates the
assignment of all block sections for region r, e.g., if (a,.); = 1, then the i*" block section in
set E is assigned to region r, otherwise, («-); = 0. The route matrix By € ZUEsI=1) x| E|
indicates that train f traverses a sequence of block sections, e.g., if train f traverses from the
15% block section to the 3" block section in the set £, then By = [ 1 0 -1 0 .. ].
The integer vector z € (Z 1)/l indicates the index of regions that each block section ¢ € F
belongs to. We use || - |1 to denote the 1-norm. The objective function is formulated as
|E]

follows:
. |R|
S

where the weight ¢ € [0, 1] is used to balance the importance of the two objectives. The first
term serves to minimize the train service interconnections among regions, and the second
term aims at balancing the region sizes.

We consider four constraints, presented as follows:

‘(B f- M) j’
|R| -1
guarantees that (37); > 0 if the two consecutive block sections along the route of train f

HaTHl -

<(By);, VfeFje{l, .., |E—-1}, (17)

belong to different regions, i.e., ‘(Bf . ,u)j‘ > 0.

wie€{l, ... IR}, Vie{l,.. |E|}, (18)

enforces that the indices of the resulting regions cannot exceed the pre-defined number of
regions, while

(047")1‘ S 1 |,u’i_r|

R -1

vred{l, .., |R|},ie{L, .., |E|}, (19)

and

larlli =1, Vred{l,.. |R|}, (20)
are used to avoid solution in which no block section is assigned to some region(s). Specifi-
cally, in (19), if the i*h block section in set E is assigned to region r, i.e., 1; = 7, then the
binary variable («;-); = 1; otherwise, (a-); = 0. In (20), we ensure that at least one block
section is assigned to each region. As a result, (19) and (20) imply that the number of the
resulting regions must equal the given number |R|. An illustrative example is provided in
Appendix C to explain the above formulations.

Appendix C An illustrative example

In this appendix, we use a small instance to explain the proposed decomposition methods
and algorithms. As illustrated in Figure 7, the instance includes 4 trains following the pre-

3trainroutes: 1->4 -~ - - —2- - - - - - - > etrainf:1->2->3->4

A

e 5 e, 3 e 4 etrainf,:2->5->6

Figure 7: A small instance
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Figure 8: Subproblems and couplings

defined routes, i.e., train f; : 1 = 2 — 3 — 4, train fy and f3: 1 — 2 — 5 — 6, and train
f4 1253 —4.

We now illustratively explain the formulation of the ILP problem proposed in Ap-
pendix B. We can write the set of block sections as £ = {ej, ea,e3,€4,e5}. The route
matrix By, and the variable vector By, for train f; and the variable vector u for block
sections can be expressed as

By, = (1) 11 8 _01 8],6f1:“g£;;}’andu:[m pe ps pa ps |

Consider the consecutive block sections e; and es in the route of train f7; the (17) results in

the inequality llﬁal?‘ < (By,)1. If the two block sections belong to the same region, i.e.,

p1 = o, then we will have (8, )1 = 0 (as we are solving a minimization problem). If block
sections e; and e; belong to different regions, i.e., i1 # po, then we will have (8, )1 = 1,
as the left-hand side of the inequality is strictly in range [0, 1) and By, is an integer matrix.

Constraints (19)-(20) are used to avoid the solutions like p=[ 1 1 1 1 1 ]T.

We now illustrate the three decomposition methods. Let us assume |R| = 5, i.e., 5
regions and each region contains only one block section, and denote 7" as the number of
subproblems for the TIN decomposition. By applying the three propose decomposition
methods, the resulting subproblems and (primary) couplings can be shown in Figure 8.
As illustrated, the GEO decomposition results in 5 subproblems, corresponding to 5 block
sections respectively; the TRA decomposition leads to 4 subproblems, corresponding to 4
trains respectively; and the TIN decomposition gives 7" subproblems connected in an order
of time horizon.

We now illustrate the three options for defining the four types of couplings in the
CDRSBK algorithm with the TRA decomposition. Let us assume an infeasible timetable
shown in Figure 9(a), which can be generated by independently scheduling trains one-by-
one without considering their couplings. The three options are illustrated in Figure 9(b)-
Figure 9(d) respectively. Let us now focus on train f; (i.e., subproblem f7) to explain. In
Opt_1, couplings between f; and f5 is recognized as active coupling (Type_2), because train
/1 has conflict with train f5 in the timetable shown in Figure 9(a). Both f5 and f3 are ac-
tively coupling subproblem of f1; so a Type_3 coupling exists between f, and f3. Train f;
and train f4 use completely different block sections. So subproblem f; only has couplings
with fy and f3, and their couplings are recognized as a Type 3 coupling for subproblem
f1. Train f, uses same block sections with all the other trains, but only has conflict with
train f1; therefore, when we focus on train fs, the coupling between f5 and f; is consid-
ered to be Type_2 and the coupling between f5 and f3 (and f,) is recognized as Type_1. In
Opt_2, still focusing on subproblem fi, as the coupling between fo and f4 is a non-active
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Figure 9: Three options of the CDRSBK algorithm with the TRA decomposition

coupling (Type_1, when focusing on subproblem f; or f), we consider the Type 3 coupling
between fo and f; do not exist, as same as the Type_3 coupling between f3 and fy. In
Opt_3, we consider no coupling if no conflict, which can be simply explained as removing
all Type_1 couplings based on the coupling architecture of Opt_2. However, Type_3 and
Type_4 couplings are generally defined, same to Opt_1 (and Opt_2).
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