
Delft University of Technology
Delft Center for Systems and Control

Technical report 19-018

Integrated condition-based track
maintenance planning and crew
scheduling of railway networks∗

Z. Su, A. Jamshidi, A. Núñez, S. Baldi, and B. De Schutter

If you want to cite this report, please use the following reference instead:
Z. Su, A. Jamshidi, A. Núñez, S. Baldi, and B. De Schutter, “Integrated condition-
based track maintenance planning and crew scheduling of railway networks,” Trans-
portation Research Part C, vol. 105, pp. 359–384, Aug. 2019. doi:10.1016/j.trc.2019.
05.045

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/19_018.html

https://doi.org/10.1016/j.trc.2019.05.045
https://doi.org/10.1016/j.trc.2019.05.045
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/19_018.html


Integrated condition-based track maintenance planning and crew
scheduling of railway networks

Zhou Sua,∗, Ali Jamshidib, Alfredo Núñezb, Simone Baldia, Bart De Schuttera

aDelft Center for Systems and Control, Mekelweg 2, Delft, The Netherlands
bSection of Railway Engineering, Stevinweg 1, Delft, The Netherlands

Abstract

We develop a multi-level decision making approach for optimal condition-based maintenance
planning of a railway network divided into a large number of sections with independent stochas-
tic deterioration dynamics. At higher level, a chance-constrained Model Predictive Control
(MPC) controller determines the long-term section-wise maintenance plan, minimizing condi-
tion deterioration and maintenance costs for a finite planning horizon, while ensuring that the
deterioration level of each section stays below the maintenance threshold with a given probabilis-
tic guarantee in the presence of parameter uncertainty. The resulting large MPC optimization
problem containing both continuous and discrete decision variables is solved using Dantzig-Wolfe
decomposition to improve the scalability of the proposed approach. At a lower level, the optimal
short-term scheduling of the maintenance interventions suggested by the high-level controller and
the optimal routing of the corresponding maintenance crew is formulated as a capacitated arc
routing problem, which is solved exactly by transforming it into a node routing problem. The
proposed approach is illustrated by a numerical case study on the optimal treatment of squats of
a regional Dutch railway network. Simulation results show that the proposed approach is robust,
non-conservative, and scalable.

Keywords: railway infrastructure, condition-based maintenance planning, chance-constrained
optimization, distributed optimization

1. Introduction

Maintenance is crucial to guarantee the reliability, availability, and safety of a railway net-
work. In this paper we focus on track maintenance, which takes more than 40% of the annual
maintenance budget in the Dutch railway network (Zoeteman et al., 2014), and billions of dollars
in the US (Peng and Ouyang, 2012). One important track maintenance intervention is grinding,
which is applied to treat squats, a type of rolling contact fatigue, that first appear on rail surface
and can lead to rail breakage if not treated properly. Early-stage squats can be effectively treated
by grinding, while for severe squats, rail replacement is the only option. Another important track
maintenance intervention is tamping, which is intended for ballast degradation and which repairs
track irregularities by correcting track geometry parameters (Ling et al., 2014; He et al., 2015).
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An example of ballast defect is shown in Figure 1.
Condition-based maintenance (Kobbacy and Murthy, 2008; Ben-Daya et al., 2016), where

Figure 1: Severely wore ballast stones under an old sleeper. Compared with the new ballast stones nearby with
sharp edges, the wore ballast stones have become rounded in shape and covered by dusts. This problem is called
the ”foul” of the ballast, meaning that the ballast stones have been crushed, provide less drainage, move less and
have less elasticity, leading to a reduction in their friction dissipation.

maintenance decisions are made according to the observed “condition” of the asset, has received
growing popularity in various fields (Jardine et al., 2006; Fararooy and Allan, 1995). Unlike
the time-based maintenance strategy (e.g. the current cyclic track maintenance strategy in the
Netherlands), condition-based maintenance is efficient as it can avoid unnecessary maintenance,
reducing the maintenance costs. The resources saved from unnecessary maintenance (e.g. avail-
able maintenance time) can then be allocated to perform necessary maintenance for severely
deteriorated parts, improving the safety of the whole asset (Gebraeel et al., 2005). Condition-
based maintenance is considered as the most promising maintenance strategy, as most system
failures are preceded by one or more indicative signals (Ahmad and Kamaruddin, 2012). In this
paper we consider condition-based maintenance optimization based on a mathematical model
describing the deterioration process of the condition of the asset. The model can be either deter-
ministic, e.g. (Wen et al., 2016; Famurewa et al., 2015), or stochastic, e.g. (Mercier et al., 2012;
Vale and Ribeiro, 2014). Condition-based maintenance focuses on the time planning of mainte-
nance interventions. How to optimally schedule the correspondent maintenance crew, including
all necessary equipment and personnel, to perform the planned maintenance interventions on a
railway network, taking into account the limited track possession time, is also of great concern
for a maintenance contractor. The optimal scheduling of maintenance crew is usually formulated
as a variant of the Vehicle Routing Problem (VRP)(Dantzig and Ramser, 1959), as by Heinicke
et al. (2015) and Peng and Ouyang (2014).

1.1. Problem setting

We consider a railway network composed of multiple stations and lines, where a line is defined
as the part of track between two stations. Each line is further divided into multiple sections.
The degradation level of each section is represented by its condition, which can be quantified by
performance indicators like reliability. The condition is usually evaluated from various parameters
like visual lengths and crack depths of a squat, or track geometry parameters like alignment and
longitudinal level. Many parameters are measured by maintenance contractors, but only a few
of them are crucial in track maintenance decision making. For example, more than 30 track
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(a) A small railway network containing one
maintenance base to store the machines, three
stations, three lines and five sections.
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(b) Stochastic deterioration dynamics of one track section
(section 1). The solid blue line represents the average sce-
nario. The dashed orange and red lines represent the worst-
case scenario and best-case scenario, respectively.
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(c) Maintenance plan for the small network. Option 1 is
no maintenance, option 2 is grinding, and option 3 is rail
replacement.
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(d) Sections to be ground at the 6th month
(marked in bold).

Figure 2: Illustrative example for the problem description.

parameters are measured for the Swedish railway network, but only 5 track geometry parameters
are considered significant for track irregularity (Al-Douri et al.). Different types of maintenance
interventions, with different effects and costs, can be applied to improve the condition of a section.
In this paper, for each section, a discrete-time deterioration model is developed to describe the
deterioration process of its condition. The sampling time is usually long (at least one month), due
to the slow deterioration dynamics of railway infrastructures. Various parameter uncertainties
(e.g. random degradation rate) are taken into account in the stochastic deterioration model.
Each type of maintenance intervention is performed by a specific maintenance crew. We define a
maintenance operation as a round tour of the maintenance crew departing from and returning to
a maintenance base, where the heavy machinery, like a grinding machine, can be stored. We also
consider a fixed setup cost, including the cost of machinery and personnel, for each maintenance
operation. Furthermore, we define a time period, which usually ranges from one week to one
month, as the smallest time unit a maintenance operation can be performed. Each type of
maintenance intervention has also a time budget, which specifies the maximal track possession
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time allocated to this specific maintenance intervention per time period. We consider flexible
time budgets, i.e. in addition to the given time budgets, the maintenance contractor can request
extra maintenance time with additional costs from the infrastructure manager.
We use the example of optimal treatment of squats on a small railway network (Figure 2a)to
illustrate the maintenance problem considered in this paper. The condition deterioration and
effects of rail grinding and replacements of each section can be illustrated by the schematic plot
in Figure 2b. The sampling time is three months and the planning horizon is two years. Because
of all the randomness in the deterioration dynamics, e.g. measurement errors and environmental
influences, deterministic models that capture only the expected deterioration dynamics can lead
to an over-optimistic maintenance plan with too few or too late maintenance intervention. As
shown in Figure 2b, if maintenance planning is only based on the average deterioration scenario,
the maintenance agent might not see the urgency of grinding on the 6th month, as there is
still some safety margin between the average degradation level and the maintenance threshold.
However, the worst-case degradation level at that time step has almost reached the maintenance
threshold, and the actual degradation level is also very close to the threshold. In practice, this
might lead to hazards like rail breakage. An example of the maintenance plan within the two-
year planning horizon for the small railway network is shown in Figure 2c. At the 6th month,
Section 1, 2 and 4 need to be ground within the next three months. This short-term maintenance
task is shown in Figure 2d. For each month, a 6-hour time slot is available for grinding. This
time slot can be extended to 10 hours with additional cost. A flat rate of 10 ke must be paid
by the maintenance contractor to rent the grinding machine for up to 10 hours. The real-world
optimization problem can then be stated as:

• Which maintenance option should be applied to each section of the network every three
months within the two-year planning horizon, in order to minimize the total condition
deterioration and maintenance costs, and to keep the degradation level of each section
below the maintenance threshold?

• How to schedule the grinding crew, including the grinding machine and technicians, to
complete all the grinding operations planned every three months, considering the trade-off
between additional cost for extra maintenance time and the setup costs, e.g. the cost to
rent the grinding machine?

1.2. Multi-level maintenance optimization

In this paper we develop an integrated multi-level approach that covers both the long-term
condition-based maintenance planning, and the short-term scheduling of maintenance crews, for
a large-scale railway network. This multi-level approach is illustrated by the schematic plot
in Figure 3. A maintenance intervention planning problem, and maintenance crew scheduling
problems, are solved at the high level and low level, respectively. Based on the stochastic de-
terioration model, a Model Predictive Control (MPC) (Camacho and Alba, 2013; Rawlings and
Mayne, 2009) approach is developed at the high level to determine the optimal maintenance in-
tervention plan for the whole network, minimizing condition deterioration and maintenance costs
over a prediction horizon. The MPC optimization problem is formulated as a chance-constrained
optimization problem to keep the condition deterioration under a given threshold with a proba-
bilistic guarantee. This probabilistic guarantee makes chance-constrained MPC much safer than
deterministic MPC, where only the nominal dynamics (e.g. average scenario) is considered. It is
also less conservative than robust MPC. A robust approach that considers the worst-case degra-
dation scenario can indeed provide a theoretical guarantee that the degradation level of a section
can never exceed the maintenance threshold. However, the resulting maintenance plan will be
over-conservative as the probability of the worst-case scenario is in general small in practice.
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We propose the chance-constrained approach because it provides a balance between robustness
and safety. It also provides a probabilistic guarantee on constraint satisfaction. Moreover, by
adjusting the violation level the user can find the best trade-off between robustness and safety
(as a smaller violation level leads to more conservative maintenance plan). In addition to the
chance-constrained safety constraints on the condition of all the track sections, the MPC opti-
mization problem also contains workload constraints that set a threshold on the maximal number
of sections that can be treated by each type of maintenance intervention at one time step. The
workload constraints are included out of concern of limited resources like available track pos-
session time for maintenance. To improve the scalability of the proposed approach, distributed
optimization scheme is applied to solve the MPC optimization problem containing both contin-
uous and discrete decision variables.
At each decision step of the high-level problem, a maintenance crew scheduling problem is solved
at the low level to obtain the optimal routes and scheduling of the maintenance crew in order
to execute the maintenance plan determined at the high level. The low-level maintenance crew
scheduling problem is triggered whenever the corresponding intervention is suggested by the high-
level controller, and its planning horizon equals to the high-level sampling time. The objective
of the low-level problem is to minimize the total setup costs of maintenance operations, the total
travel costs of the maintenance crew, and the penalty costs associated with additional mainte-
nance time (if there is any), over the whole network, while ensuring the planned intervention is
completed before the next sampling time step. A feedback is sent from the low level to the high
level when the low-level maintenance crew scheduling problem is infeasible, i.e. when the planned
interventions obtained from the high level cannot be fulfilled before the next sampling time step
due to lack of resources, e.g. available track possession time for maintenance. In this case we
reduce the workload threshold on the corresponding maintenance intervention by one, and solve
the high-level problem again. If the new high-level problem is feasible, the new intervention plan
is applied to the low-level problem again. If the high-level problem becomes infeasible because
of the tighter workload constraints, indicating that the available resources are not sufficient to
keep the degradation levels of all the sections under a safety threshold, a new low-level problem
is solved with increased resources, i.e. longer or more maintenance time slots. This iterative
procedure between two levels continues until the low-level problem becomes feasible.

1.3. Contributions and structure of the paper

The major contributions of this paper include:

• An integrated multi-level approach for both long-term condition-based maintenance plan-
ning and short-term maintenance crew scheduling;

• A distributed optimization scheme to improve the scalability of the proposed approach for
large-scale railway networks;

• A chance-constrained formulation to achieve a robust but non-conservative maintenance
plan, in the presence of model uncertainties.

This paper is organized as follows: the state-of-the-art on railway maintenance optimization is
presented in Section 2. The background on distributed MPC and chance-constrained optimiza-
tion is provided in Section 3. We define the high-level maintenance intervention planning problem
and the low-level maintenance crew scheduling problem, and propose methods to solve them, in
Section 4 and Section 5, respectively. The proposed multi-level approach is demonstrated by a
numerical case study for optimal treatment of squats on a regional Dutch railway network in
Section 6. Finally, we conclude our work and provide future directions in Section 7.
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Figure 3: Schematic plot of the proposed multi-level approach.

2. Maintenance optimization of railway infrastructures: state-of-the-art

Condition-based maintenance planning has been extensively discussed in literature and we
restrict our scope to model-based approaches. A linear model is used by (Wen et al., 2016) for
the natural degradation of track quality, and a Mixed Integer Linear Programming (MILP)
problem is formulated by (Wen et al., 2016) to optimize tamping for a railway line over a
finite planning horizon. An exponential model is employed for track geometry deterioration
by (Famurewa et al., 2015) to minimize total track possession time caused by tamping over a
finite planning horizon, while keep the track geometry quality within a safe limit. The optimal
condition-based tamping is formulated as an MILP problem by (Gustavsson, 2015), including
the setup costs of tamping operations. Note that the deterioration models used in (Wen et al.,
2016; Famurewa et al., 2015; Gustavsson, 2015) are all deterministic models considering only
nominal deterioration behavior. The resulting maintenance strategies are not designed to be
robust with the presence of various randomness like model uncertainties, measurement error,
and missing data. In this case stochastic models, which describe the deterioration dynamics
either by a stochastic process, or by a random-variable model (Frangopol et al., 2004), are
preferred because of the robustness of the resulting maintenance strategy. A binary Mixed
Integer Nonlinear Programming (MILNP) problem is developed by (Vale and Ribeiro, 2014)
for optimal condition-based maintenance planning based on a stochastic deterioration model
characterized by the Dagum probabilistic distributions. Other notable examples of condition-
based track maintenance optimization approach based on stochastic deterioration models include
(Mercier et al., 2012), where a bi-variate Gamma process describing the evolution of both the
longitudinal and transverse levels is developed for the optimal planning of tamping operations
for a French high-speed line, and (Quiroga and Schnieder, 2012), where a grey-box model is
proposed to describe the aging process of track geometry. A fuzzy Takagi-Sugeno internal model
is used by (Jamshidi et al., 2017b) to capture the most important dynamics of squats evolution
over time, and the effects of grinding and rail replacement are also modeled considering different
representative scenarios. In our paper, we also use a stochastic deterioration model for condition-
based maintenance planning. Similar to (Vale and Ribeiro, 2014), we capture the stochasticity
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of the deterioration process using a model with uncertain parameters. However, unlike (Vale and
Ribeiro, 2014), we make no assumption on the probability distribution of the random parameters.
This makes our approach applicable to more generic track defects.
In literature, the maintenance crew scheduling problem is usually formulated as a variant of
VRP. For example, in (Heinicke et al., 2015) the optimal scheduling of different maintenance
tasks with various priorities over a railway network is formulated as a VRP with customer
costs. In (Peng and Ouyang, 2014), the optimal clustering of small maintenance jobs into major
projects is also recast as a VRP to minimize the total duration of all maintenance projects.
Another popular approach for optimal scheduling of maintenance activities is the time-space
network (Peng and Ouyang, 2012). A comparison between the VRP approach and the time-space
network model for the scheduling of maintenance activities is provided in (Gorman and Kanet,
2010). Other approaches for the scheduling of maintenance activities over a railway network
include the network-flow model proposed in (Boland et al., 2013), and the MINLP formulation
developed in (Zhang et al., 2013). The maintenance schedule and the train timetable should be as
compatible as possible to minimize the cost of traffic disruption. In most papers on maintenance
scheduling, e.g. (Higgins, 1998; Budai et al., 2006), a timetable is already available, and the
aim is to minimize disruption cost or timetable changes. On the other hand, (Boland et al.,
2013) and (Savelsbergh et al., 2015) start with a given maintenance plan, and adjust the train
schedule accordingly to maximize the traffic throughput. Recently, an integrated approach has
been developed by Lidén and Joborn (2017) for the joint optimization of train timetabling and
maintenance scheduling. Its focus is to optimally schedule the traffic-free maintenance time
windows that are sufficient for the regular maintenance activities and the desired amount of
train traffic. However, the maintenance time windows can only be chosen from a set of available
options, limiting the flexibility of the proposed approach.
Integrated approaches covering condition-based maintenance planning and crew scheduling are
scarce in literature. One example is the traveling maintainer problem (Camci, 2014, 2015) for
geographically distributed assets, e.g. railway switches, using prognostic information obtained
from real-time condition-based monitoring. The resulting MINLP problem is solved by heuristics.
However, the traveling maintainer problem is designed for general geographically distributed
assets, and does not take into account practical issues related to railway track maintenance,
e.g. the time to perform a maintenance intervention and the disruption to the train traffic.
In addition, it does not consider uncertainties in the maintenance decision making. In our
previous work (Su et al., 2017), we have developed a multi-level approach for both condition-
based maintenance planning and the clustering of individual track defects, taking into account
the disruption cost to train traffic. However, the approach proposed there is only designed
for a single railway line. From a computational perspective, most condition-based maintenance
planning problems, e.g. (Gustavsson, 2015; Wen et al., 2016; Su et al., 2017), are solved by a
centralized optimization scheme, which is not tractable for large-scale railway networks. As a
consequence, the lack of an integrated, scalable approach for maintenance optimization under
uncertainty for large-scale railway networks in literature is a key motivation for the current
paper. In the literature, distributed control methods have been applied to distributed control
methods applied to railway traffic control problem, e.g. the distributed optimal control method
based on dual decomposition for automatic train regulation of large-scale metro networks (Li
et al., 2018), the distributed MPC approach based on model-based partitioning for train traffic
control (Kersbergen et al., 2016), and the augmented Lagrangian relaxation and the alternating
direction method of multipliers applied to the cooperative planning of freight transport in (Li
et al., 2017). In the current paper, we investigate distributed optimization approach based on
Dantzig-Wolfe decomposition to split the computational burden among many subproblems.
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3. Preliminaries

In this section we introduce the methods used in the high-level problem. First, we provide
a brief survey in Section 3.1 on MPC for hybrid systems with both continuous and discrete dy-
namics, and distributed solution methods for MILP problems. Chance-constrained optimization,
which is used to address the stochastic deterioration dynamics, is explained in Section 3.2. Two
solution methods for chance-constrained optimization problems, the widely-used scenario-based
approach, and the robust scenario-based approach adapted in this paper, are also introduced.

3.1. MPC and distributed MILP

MPC is a popular control strategy that has been widely applied to several real-world prob-
lems like supply chain management (Schildbach and Morari, 2016; Nandola and Rivera, 2013),
risk management of irrigation canals (Zafra-Cabeza et al., 2011), and drinking water network
management (Grosso et al., 2014). MPC is an online control approach using a receding horizon
principle. An optimization problem is solved at each sampling time step over a prediction horizon.
Only the first entry of the resulting sequence of control action is applied, and a new optimization
problem is solved at the next time step with updated information. The prediction horizon should
be long enough to avoid myopic solutions, but not too long to avoid over conservative solutions.
The generic deterioration of a railway infrastructure is one example of a hybrid system because
the choice of maintenance activities can only take discrete values. In (Su et al., 2016), the hybrid
deterioration model is transformed into a standard Mixed Logical Dynamical (MLD) (Bemporad
and Morari, 1999) system, resulting in a Mixed Integer Linear Programming (MILP) problem to
be solved at every time step. Time Instant Optimization (TIO) (De Schutter and De Moor, 1998)
is applied by (Su et al., 2017) to transform the MPC optimization problem with both continuous
and discrete decision variables into a nonsmooth nonlinear optimization problem with only con-
tinuous variables. Because an NP-hard problem must be solved at each time step, hybrid MPC
is in general very computationally demanding for large-scale systems. For the sake of scalability,
a distributed optimization scheme is usually adopted. However, there is a lack of distributed
implementations of hybrid MPC in literature (Maestre and Negenborn, 2013). A distributed
MPC method based on primal decomposition is developed in (Luo et al., 2017) for a class of
hybrid systems with discrete control inputs, global constraints, and limited information share
between local controllers. Recently, a practical approach of a class of networked hybrid MPC is
proposed by Mendes et al. (2017) who first determine the value of the binary decision variables in
the local problem, and then transform the Mixed Integer Quadratic Programming (MIQP) MPC
optimization problem into a set of Quadratic Programming (QP) problems through distributed
coordination. Although the solutions of both approaches are suboptimal, numerical experiments
show that the loss of optimality is small for the corresponding application. However, unlike the
real-world problems mentioned in (Luo et al., 2017; Mendes et al., 2017), where some restrictions
on the information exchange prohibit the implementation of a centralized optimization scheme,
we adopt a distributed optimization scheme purely out of computational concerns. We apply the
MLD framework to transform the hybrid deterioration dynamics, resulting in an MILP problem
to be solved at each time step. Decomposition methods are used to divide the computational
burden of the centralized MPC optimization problem among subproblems that are easier to solve.
Benders decomposition (Benders, 1962), and Dantzig-Wolfe decomposition (Dantzig and Wolfe,
1960) are the most widely-used decomposition methods for large-scale Linear Programming (LP)
and Mixed Integer Programming (MIP) problems. The choice of decomposition method depends
on the structure of the original problem. Benders decomposition is more suitable for problems
coupled through common variables (complicating variables), while Dantzig-Wolfe decomposition
is designed for problems coupled through common constraints (complicating constraints).
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Dantzig-Wolfe decomposition is widely used to solve large-scale LP problems. However, for MILP
problems, Dantzig-Wolfe decomposition method only solves an LP relaxation of the original prob-
lem. Exact solutions to the original problem can be found by combining branch-and-bound with
column generation, known as the branch-and-price (Barnhart et al., 1998) algorithm. One typ-
ical application of Dantzig-Wolfe decomposition is the vehicle routing problem and its variants
(Feillet, 2010). The maintenance scheduling and routing problem of offshore wind farms has
been formulated as a VRP with side constraints by Irawan et al. (2017) and solved efficiently us-
ing Dantzig-Wolfe decomposition. Dantzig-Wolfe decomposition has been used by Edlund et al.
(2011) and Sokoler et al. (2014) for distributed implementation of the MPC optimization prob-
lem, which is an LP problem. Applications of Dantzig-Wolfe decomposition to MILP-MPC are
relatively few. One example is (Gunnerud and Foss, 2010), where a suboptimal solution of the
MILP problem is obtained through column generation.

3.2. Chance-constrained optimization

Let (Θ , B(Θ), Pθ) denote a probability space where Θ is a metric space with Borel σ-algebra
B(Θ) and probability distribution Pθ. We consider the following generic chance-constrained
optimization problem

min
v∈V

Eθ[J(v, θ)] (1)

subject to: Pθ[g(v, θ) ≤ 0] ≥ 1− ϵ, (2)

where θ ∈ Θ ⊆ Rnθ is a random vector containing all the uncertainties, and the parameter
ϵ ∈ [0, 1] is the allowed violation level of the chance constraint. Moreover, we call a solution
v∗ ∈ V an ϵ-level solution if it is feasible for the chance constraint (2). For the moment, we only
assume that the deterministic decision variable v is bounded, and make no assumption on the
probability distribution of the random parameter θ.

3.2.1. Scenario-based Approach

The standard scenario-based approach (Calafiore and Campi, 2006) approximates the chance
constraint with a finite number of randomized scenarios, i.e. replacing the chance constraint (2)
by the following set of deterministic hard constraints:

g(v, θ(h)) ≤ 0 ∀h ∈ H, (3)

where θ(h) denotes the realization of uncertainties of the h-th scenario in the scenario set H. The
optimal solution of the scenario-based optimization problem (1),(3) is also a random variable as
the scenarios are generated randomly. A confidence level β is associated with the scenario-based
optimization problem to provide a probability bounds on its optimal solution. For a given β, the
size of the scenario set H must be large enough to ensure that the optimal solution of (1),(3) is
also an ϵ-level solution of the chance-constrained optimization problem (1)-(2) with a probability
at least 1− β.
The focus of scenario-based approach is to find a lower bound on the size of the scenario set
for a given violation and confidence level. Various scenario reduction techniques (e.g. (Henrion
et al., 2009; Campi and Garatti, 2011; Li and Floudas, 2014, 2016; Chamanbaz et al., 2016)) have
been applied to the standard scenario-based approach. A sampling-and-discarding approach is
developed by Campi and Garatti (2011) that quantifies the trade-off between performance and
feasibility. A mixed-integer programming problem is formulated by Li and Floudas (2014) for the
optimal scenario-reduction problem to minimize the probabilistic distance and performance dif-
ference of the original and the reduced scenario distributions. Recently, some sequential scenario
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reduction techniques e.g. (Li and Floudas, 2016; Chamanbaz et al., 2016), have been developed
for convex uncertain problems. The idea behind these sequential approaches is to verify the
“temporary” scenario set at each time step against the given violation and confidence levels, and
to increase the size of scenario set until it is validated.
Most proposed bounds on the size of the scenario set are only applicable to convex chance-
constrained problems. For instance, it is assumed by (Calafiore and Campi, 2006), (Calafiore,
2010), (Campi and Garatti, 2008) and (Zhang et al., 2015) that the chance constraint must
be convex in the decision variable for any possible realization of the uncertainties. Even the
scenario-based approach proposed by Grammatico et al. (2016) for non-convex control design
also requires the chance constraints to be convex. Performance and feasibility bounds for a
class of non-convex chance-constrained problems, including mixed-integer programming prob-
lems with integer decision variables in the chance constrains, are provided by Esfahani et al.
(2015). However, the feasibility bound is very conservative and not applicable to large-scale
non-convex chance-constrained problems.

3.2.2. Robust Scenario-based Approach

In this paper, we adopt the approach proposed by (Margellos et al., 2014), which lies be-
tween a scenario-based method and a robust optimization approach. This two-phase approach
first solves a scenario-based optimization problem to obtain a set B∗ covering a given fraction
(determined by the violation level) of the probability mass of the uncertainty with a certain confi-
dence, and then solves a robust version of the original chance-constrained optimization problem,
where the uncertainty lies in the intersection of B∗ and the uncertainty space Θ . As in our
case B∗ is a strict subset of Θ in most situations, the result of this two-phase approach is less
conservative than the direct robust approach, where the whole uncertainty space Θ is considered.
Here we briefly summarize this two-phase approach, which will be used in Section 4.2 to approx-
imate the chance-constrained MPC problem by a deterministic optimization problem. First we
solve the following standard scenario-based problem (as described in Section 3.2.1) for a given
violation level ϵ and confidence level β:

min
{(τ i, τ i)}

nθ
i=1

nθ∑
i=1

τ i − τ i (4)

subject to: (θ)
(h)
i ∈ [τ i, τ i] ∀h ∈ H, ∀i ∈ {1, . . . , nθ}, (5)

where (θ)i represents the i-th entry of the random vector θ, and H is the set of random scenarios.
The size of H is chosen according to the following condition (Alamo et al., 2010):

|H|≥
⌈
1

ϵ
· e

e− 1

(
2nθ − 1 + ln

1

β

)⌉
, (6)

which ensures that the chance constraint Pθ [(θ)i ∈ [τ i, τ i]] ≥ 1− ϵ is satisfied with a confidence
β for each i ∈ {1, . . . , nθ}.
Let {(τ∗i , τ∗i )}

nθ
i=1 denote the optimal solution of the scenario-based problem (4)-(5). We can

then construct a hyperbox B∗ =×nθ

i=1
[τ∗i , τ

∗
i ] ⊂ Θ , and solve the following robust optimization

problem:

min
v∈V

1

|H|

|H|∑
h=1

J(v, θ(h)) (7)

subject to: max
θ∈B∗

g(v, θ) ≤ 0. (8)
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The optimal solution of this robust optimization problem is an ϵ-feasible solution of the chance-
constrained problem (1)-(2) with probability at least 1− β.
As discussed by Margellos et al. (2014), although this multi-level approach does not require
convexity in the decision variable or in the uncertainty to be valid, it is tractable only when the
associated robust optimization problem is tractable.

4. High-level maintenance intervention planning

We consider the optimal maintenance intervention planning for a network of railway track
divided into n sections over a given planning horizon. Each section is viewed as a subsystem.
The subsystems are coupled by global resource constraints, e.g. limited track possession hours.
Here we briefly outline the procedure of the high-level MPC approach. First, a deterioration
model with uncertain parameters is developed for each subsystem in Section 4.1. Then for each
subsystem, we formulated a local chance-constrained MPC optimization problem in Section 4.2.
This chance-constrained optimization problem is then approximated by a much larger deter-
ministic optimization problem using a robust scenario-based approach. The general nonlinear
deterioration dynamics in each scenario is then approximated by a piecewise-affine model, which
is transformed into a standard Mixed Logical Dynamical (MLD) (Bemporad and Morari, 1999)
model in Section 4.3. Finally, the MLD-MPC optimization problem for the whole system is
formulated in Section 4.4 by summing up all the local objective functions and constraints of all
the sections, and including the global workload constraints related to limited resources. Dantzig-
Wolfe decomposition is applied in Section 4.5 to solve the resulting large MLD-MPC optimization
problem more efficiently.

4.1. Model of Subsystems

In this section, we describe the deterioration model of a subsystem considering a generic

defect, e.g. squats or ballast defects. Let the two-dimensional vector xj,k =
[
xcon
j,k xaux

j,k

]T
denote

the state of subsystem j at time step k of the planning horizon. In particular, the first entry xcon
j,k

represents the condition1 of section j, while the second entry xaux
j,k is an auxiliary state to address

the inefficiency of maintenance interventions, e.g. tamping becomes less effective the more it is
applied to the same track. The condition xcon

j,k and auxiliary state xaux
j,k lie within the bounded

interval [xcon
j , xcon

j ] and [xaux
j , xaux

j ], respectively. Let Uj = {1, . . . , N} denote the set containing
the N possible maintenance options (including the “no maintenance” option represented by 1)
that can be applied to subsystem j. The stochastic deterioration dynamics of each subsystem j
can then be represented by the following generic model:

xj,k+1 = fj(xj,k, uj,k, θj,k)

=


f1
j (xj,k, θj,k) if uj,k = 1 (no maintenance)

fq
j (xj,k, θj,k) if uj,k = q ∀q ∈ {2, . . . , N − 1}
fN
j (θj,k) if uj,k = N (full renewal)

(9)

∀j ∈ {1, . . . , n},

in which the vector θj,k ∈ Θj ⊂ Rnθj contains the realizations of the uncertain parameters (e.g.
degradation rate) in subsystem j at time step k. Moreover, Θj is a bounded hyperbox.

1A higher value of xcon
j,k indicates a worse condition.

11



As shown in (9), N independent functions are needed to describe the state dynamics correspond-
ing to the N maintenance options. In particular, the function f1

j , which corresponds to the “no

maintenance” option, describes the natural degradation of the subsystem. The function fN
j does

not depend on the current state, as full renewal indicates replacing a section by a new section of
track. The effect of other maintenance interventions (e.g. tamping or grinding) on the subsystem
in general depends on the current state of the track. For instance, grinding is effective only
for early-stage squats. We consider each function fq

j , q = 1, . . . , N to be in general nonlinear
with respect to the state xj,k. The deterioration model (9) can describe the stochastic degra-
dation dynamics of the most typical railway track maintenance defects like squats and ballast
defects. In practice, this general nonlinear model can be identified by a piecewise-affine model
using historical data on track measurement (e.g. visual length of each squat in a track section,
degradation trend from alignment measurements, etc.).

4.2. Chance-constrained MPC

In this section we present the chance-constrained MPC optimization problem for each sub-
system, and apply the scenario-based robust approach developed in Margellos et al. (2014) to
approximate each local chance-constrained MPC problem with a deterministic problem. Let NP

denote the prediction horizon, and define:

x̃j,k = [x̂T
j,k+1|k . . . x̂T

j,k+N
P
|k]

T

ũj,k = [uj,k . . . uj,k+N
P
−1]

T

θ̃j,k = [θTj,k . . . θTj,k+N
P
−1]

T,

where x̂j,k+l|k = [x̂con
j,k+l|k x̂

aux
j,k+l|k]

T denotes the estimated state of subsystem j at time step k+ l,
based on information available at time step k. Vectors x̃con

j,k and x̃aux
j,k can be defined similarly as

x̃j,k. The estimated state x̂j,k+l|k can be calculated recursively using (9), and x̃j,k can be viewed

as a function that depends on ũj,k, θ̃j,k and is parameterized by the current state xj,k, i.e.

x̃j,k = f̃j(ũj,k, θ̃j,k; xj,k). (10)

The objective of each local MPC controller is to minimize the trade-off between condition dete-
rioration and maintenance costs within the prediction window, i.e.

Jj(x̃j,k, ũj,k) = JDeg
j (x̃j,k) + ϕjJ

Maint
j (ũj,k), (11)

in which

JDeg
j (x̃j,k) = ∥Px̃j,k∥1, (12)

and

JMaint
j (ũj,k) =

N
P
−1∑

l=0

N∑
q=1

cMaint
q,j Iuj,k+l=q. (13)

The parameter ϕj captures the trade-off between condition deterioration and maintenance cost

in subsystem j. Note that condition deterioration JDeg
j and maintenance cost JMaint

j should be
properly transformed to the same scale. As condition of a track section is usually quantified by
reliability or other performance indicators, one can scale condition deterioration by transforming
performance loss into monetary loss, e.g. by setting a failure cost. The notation ∥·∥1 represents
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the 1-norm. The parameter cMaint
q,j is the cost of the q-th maintenance intervention. The chance-

constraint optimization problem for subsystem j at time step k can then be formulated as:

min
ũj,k

Eθ̃j,k
[Jj(x̃j,k, ũj,k)] (14)

subject to: Pθ̃j,k

[
max

l=1,...,N
P

x̂con
j,k+l|k(ũj,k, θ̃j,k; xj,k) ≤ xcon

max

]
≥ 1− ϵj (15)

x̃j,k = f̃j(ũj,k, θ̃j,k; xj,k), (16)

where ϵj is the violation level of the chance constraint of subsystem j, and the function f̃j can be
obtained by successive substitution of (9). The local cost function (14) is stochastic because x̃j,k,
the estimated state in the prediction horizon, is dependent on the realizations of the uncertain
parameters θ̃j,k. The chance constraint (15) states that the probability that the worst estimated
condition within the planning horizon does not exceed the maintenance threshold xcon

max is at least
1− ϵj .
Note that the local chance constraint (14) is non-convex in the decision variables, as in the
MPC formulation of the railway maintenance intervention planning problem, the control action
is discrete because the available options for maintenance can only take discrete values. This is
why we approximate the local chance-constrained problem (14)-(15) with a confidence level βj

using the two-phase scenario-based robust approach (Margellos et al., 2014) (see Section 3.2.2
for more details). Let B∗

j denote the hyperbox obtained by solving the scenario-based problem

(4)-(5) for each dimension of θ̃j,k. Let Hj denote the set of random scenarios of subsystem j,
and define:

x̃
(h)
j,k = f̃j(ũj,k, θ̃

(h)
j,k ; xj,k) (17)

for any h ∈ Hj . The resulting robust optimization problem can then be written as:

min
ũj,k, x̃

(h)
j,k

1

|Hj |
∑
h∈Hj

Jj(x̃
(h)
j,k , ũj,k) (18)

subject to: max
θ̃j,k∈B∗

j∩Θ̃j

max
l=1,...,N

P

x̂con
j,k+l|k(ũj,k, θ̃j,k; xj,k) ≤ xcon

max (19)

x̃
(h)
j,k = f̃j(ũj,k, θ̃

(h)
j,k ; xj,k) ∀h ∈ Hj , (20)

where (18) approximates the expectation of Jj . As proved by Margellos et al. (2014), any
feasible solution of the robust optimization problem (18)-(19) is also an ϵj-solution of the chance-
constrained MPC problem (14)-(16) with a probability of at least βj .
We define the following worst-case scenario

θ̃
(w)
j,k ∈ argmax

θ̃j,k∈B∗
j∩Θ̃j

max
l=1,...,N

P

x̂con
j,k+l|k(ũj,k, θ̃j,k; xj,k). (21)

The robust constraint (19) can then be replaced by:

Pj x̃
(w)
j,k (ũj,k, θ̃

(w)
j,k ; xj,k) ≤ xcon

max, (22)

where Pj is a selecting matrix satisfying Pj x̃j,k = x̃con
j,k . We then define Sj = Hj ∪{w} as the set

containing all scenarios that need to be considered to approximate the chance-constrained MPC
optimization problem (14)-(16) by the deterministic optimization problem (18),(20),(22).
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As the convexity of the estimated condition x̂con
j,k+l|k is crucial in computing the worst-case scenario

θ̃
(w)
j,k , and x̂con

j,k+l|k is obtained recursively using the system dynamics (9), we now provide a
theorem to check the convexity of each x̂con

j,k+l|k for a given deterioration model. For convenience,
we rewrite the vector-valued multi-variable function fj in the following form:

fj(xj,k, uj,k, θj,k) =

[
f con
j (xcon

j,k , x
aux
j,k , uj,k, θj,k)

faux
j (xcon

j,k , x
aux
j,k , uj,k, θj,k)

]
. (23)

We have the following theorem on the convexity of x̂con
j,k+l|k and x̂aux

j,k+l|k:

Theorem 1. If f con
j and faux

j are convex in θj,k and convex and non-decreasing in xcon
j,k and

xaux
j,k , then the functions x̂con

j,k+l|k and x̂aux
j,k+l|k are both convex in θ̃j,k, for any l ∈ {2, . . . , N

P
}.

The proof is given in Appendix A.

4.3. Mixed Logical Dynamical Systems

We consider the following state dynamics for each scenario s ∈ Sj :

x
(s)
j,k+1 = fj(x

(s)
j,k, uj,k, θ

(s)
j,k). (24)

As stated in Section 4.1, for each maintenance option q ∈ {1, . . . , N}, the function fq
j (·, θ

(s)
j,k) is in

general nonlinear with respect to x
(s)
j,k. This nonlinear function can be approximated by function

fq,PWA
j , which is piecewise-affine with respect to xs

j,k. In this way a piecewise-affine model fPWA
j

can be obtained to approximate (24). This approximation model can then be transformed into
the following standard Mixed Logical Dynamical (MLD) system (Bemporad and Morari, 1999):

x
(s)
j,k+1 = A

(s)
j x

(s)
j,k +B

(s)
j,2 δ

(s)
j,k +B

(s)
j,3z

(s)
j,k (25)

E
(s)
j,2 δ

(s)
j,k + E

(s)
j,3 z

(s)
j,k ≤ E

(s)
j,4x

(s)
j,k + E

(s)
j,5 , (26)

where the vector δ
(s)
j,k contains all binary variables, and the vector z

(s)
j,k contains all continuous

auxiliary variables. In this way we obtain linear state dynamics with binary control actions for
each scenario, as a preparation for applying decomposition methods for LP/MILP problems.

4.4. Centralized MLD-MPC problem

Define δ̃
(s)
j,k = [(δ

(s)
j,k)

T . . . (δ
(s)
j,k+NP−1)

T]T and δ̃j,k = [(δ̃
(1)
j,k )

T . . . (δ̃
(|Sj |)
j,k )T]T. The vectors z̃

(s)
j,k

and z̃j,k are defined in the same way. The local robust scenario-based MPC optimization problem
(18),(22),(20) for subsystem j can then be formulated as an MILP problem:

min
δ̃j,k,z̃j,k

 1

|Hj |
∑
h∈Hj

∥x̃(h)
j,k ∥1

+ wj∥Qj δ̃j,k∥1 (27)

subject to: x̃
(s)
j,k = Ã

(s)
j xj,k + B̃

(s)
j,2 δ̃j,k + B̃

(s)
j,3zj,k ∀s ∈ Sj (28)

Ẽ
(s)
j,2 δ̃j,k + Ẽ

(s)
j,3 z̃j,k ≤ Ẽ

(s)
j,4xj,k + Ẽ

(s)
j,5 ∀s ∈ Sj (29)

δ̃j,k ∈ {0, 1}NP
·nδj (30)

z̃j,k ∈ RN
P
·nzj , (31)

and constraint (22),
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where Qj is a matrix with nonnegative entries. The first term in the objective function (27) cor-
responds to the mean of the accumulated condition deterioration within the prediction horizon,
while the second term corresponds to the total maintenance cost. Constraints (28) and (29) are
the N

P
-prediction model derived from the MLD dynamics (25)-(26).

If we define δ̃k = [δ̃1,k . . . δ̃n,k]
T and z̃k = [z̃1,k . . . z̃n,k]

T, then the centralized MPC optimization
problem can be formulated as:

min
δ̃k,z̃k

n∑
j=1

cj,1δ̃j,k + cj,2z̃j,k (32)

subject to:

n∑
j=1

Rj δ̃j,k ≤ r (33)

Fj,1δ̃j,k + Fj,2z̃j,k ≤ lj ∀j ∈ {1, . . . , n} (34)

δ̃k ∈
n×

j=1

{0, 1}NP
nδj (35)

z̃k ∈
n×

j=1

RN
P
·nzj . (36)

Each cost vector in the objective function (32) can be obtained by substituting (28) into (27).
Constraint (33) is the global constraint on the available resources, e.g. limited track possession
time for maintenance, and constraints (34) summarize the local constraints (22),(28)-(29) for
each subsystem.

4.5. Dantzig-Wolfe decomposition
The centralized MPC problem (32)-(36) is intractable for large-scale systems, e.g. railway

network divided into many sections. This is why decomposition methods are used to improve
the tractability of the MPC problem, thus improve the scalability of the proposed approach.
Notice that without the global constraint (33), the centralized MPC problem can be solved by
solving the n independent problems (27)-(31) for each subsystem j. This is typical for a railway
maintenance intervention planning problem, where the maintenance decision for each section of
track in a railway network is restricted by limited resources (e.g. available track possession time
for maintenance or available machinery and personnel.) We apply Dantzig-Wolfe decomposition,
which has initially been developed for LP problem with coupling constraints, to improve the
scalability of the proposed MPC approach. First we define

Pj,k = {(δ̃j,k, z̃j,k) ∈ {0, 1}NP
nδj × RN

P
nzj : Fj,1δ̃j,k + Fj,2z̃j,k ≤ lj}, (37)

which is the feasible region of the local MPC optimization problem for subsystem j. Let Gj,k

denote the extreme points of the convex hull of Pj,k. We call Gj,k the generating set of subsystem

j at time step k. Let δ̃
[g]
j,k and z̃

[g]
j,k denote the values of δ̃j,k and z̃j,k of the extreme point g ∈ Gj,k,

respectively. According to Minkowski’s theorem, each point in a compact polyhedron can be
represented by a convex combination of its extreme points, which are called columns. Let µj,g

denote the weight on the column g ∈ Gj,k, and let µj denote the vector containing all the weights
for columns in the generating set Gj,k. Furthermore, define µ = [µT

1 . . . µT
n ]

T. The Dantzig-Wolfe
reformulation of the centralized MPC problem (32)-(36) can then be written as:

min
µ

n∑
j=1

∑
g∈Gj,k

(cj,1δ̃
[g]
j,k + cj,2z̃

[g]
j,k)µj,g (38)
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subject to:

n∑
j=1

∑
g∈Gj

(Rj δ̃
[g]
j,k)µj,g ≤ r (39)

∑
g∈Gj

µj,g = 1 ∀j ∈ {1, . . . , n} (40)

µj,g ≥ 0 ∀g ∈ Gj,k, ∀j ∈ {1, . . . , n} (41)

δ̃j,k =
∑

g∈Gj,k

δ̃
[g]
j,kµj,g ∈

n×
j=1

{0, 1}NP
nδj . (42)

Problem (38)-(42) is called the Dantzig-Wolfe reformulation by convexification. The disadvantage
of this formulation is that the binary condition is imposed on the old decision variable δ̃j,k, as
shown in (42). However, as proved by Jans (2010), if the global constraint in the original binary
MILP problem involve only binary variables, then the binary condition on the original variables
can be directly transferred to the new variable µ. As the global constraint (33) contains only
binary decision variables, we can then replace constraints (41)-(42) by the following equivalent
binary condition on the new decision variable µ:

µj,g ∈ {0, 1} ∀g ∈ Gj,k, ∀j ∈ {1, . . . , n}. (43)

Note that (43) is not included in the formulation (44)-(47) as the master problem is a linear
relaxation of the Dantzig-Wolfe reformulation. The reformulated problem (38)-(40),(43) is still
intractable, as the dimension of each generating set Gj,k grows exponentially with the dimension

of the old variable δ̃j,k. We use column generation to tackle this difficulty.

4.5.1. Column generation

Column generation (Vanderbeck and Wolsey, 2010) solves the linear relaxation of the Dantzig-
Wolfe reformulation. We call this relaxed problem (38)-(41) the master problem. First we start
with an initial partial generating set Gs

j,k ⊂ Gj,k for each subsystem j and solve the following
restricted master problem:

min
µ

n∑
j=1

∑
g∈Gs

j,k

(cj,1δ̃
[g]
j,k + cj,2z̃

[g]
j,k)µj,g (44)

subject to:

n∑
j=1

∑
g∈Gs

j,k

(Rj δ̃
[g]
j,k)µj,g ≤ r (45)

∑
g∈Gs

j,k

µj,q = 1 ∀j ∈ {1, . . . , n} (46)

µj,g ≥ 0 ∀g ∈ Gs
j,k, ∀j ∈ {1, . . . , n}. (47)

Each initial generating set Gs
j,k should be chosen to ensure the feasibility of the restricted master

problem. This can be done by starting with the optimal solution of each subproblem j as the
initial partial generating sets Gs

j,k. If these initial partial generating set lead to an infeasible
restricted master problem, i.e. violation of the global resource constraint (45), we use the big-M
method and introducing artificial variables (similar to Phase I in the simplex method) to obtain
a feasible initial solution for the restricted master problem. Let µ∗ denote the optimal solution
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of this restricted master problem. The dual of problem (44)-(47) can be written as:

max
λ,π

−rλ+

n∑
j=1

πj (48)

subject to: λ(−Rj δ̃
[g]
j,k) + πj ≤ cj,1δ̃

[g]
j,k + cj,2z̃

[g]
j,k (49)

∀g ∈ Gs
j,k, ∀j ∈ {1, . . . , n}

λ ≥ 0 (50)

π ∈ Rn. (51)

Let (λ∗, π∗) denote the optimal solution of the dual problem (48)-(51). We then define the
following pricing subproblem for each subsystem j:

ρj = min
g∈Gj,k

cj,1δ̃
[g]
j,k + cj,2z̃

[g]
j,k + λ∗(Rj δ̃

[g]
j,k)− π∗

j

= min
(δ̃j,k, z̃j,k)∈Pj,k

cj,1δ̃j,k + cj,2z̃j,k + λ∗(Rj δ̃j,k)− π∗
j , (52)

where ρj is called the reduced cost of subproblem j. The pricing problem (52) is an MILP because
it determines the new column to enter the restricted master problem (44)-(47). It can be solved
by state-of-the-art MILP solvers like Cplex or Gurobi. We add the new column, which is the
optimal solution of (52), to the partial generating set Gs

j,k only if the corresponding reduced
cost is negative. The restricted master problem (44)-(47) and its dual (48)-(51) are solved again
including the new columns, and the new optimal dual solution (λ∗, π∗) is sent to each pricing
subproblem. The iteration terminates when all reduced costs are 0, and the optimal solution of
the restricted master problem corresponds to the optimal solution of the master problem.

4.5.2. Upper and lower bounds

Upper and lower bounds can be implemented to the basic column generation algorithm to
achieve faster convergence. Any binary solution of the restricted master problem encountered
in the column generation procedure provides an upper bound of the objective function value of
the Dantzig-Wolfe reformulation and the centralized MPC optimization problem. A lower bound
can be obtained by the Lagrangian dual function of the centralized MPC problem:

q(λ∗) = inf
(δ̃k, z̃k)∈×n

j=1 Pj,k

n∑
j=1

(cj,1δ̃j,k + cj,2z̃j,k) + λ∗(

n∑
j=1

Rj δ̃j,k − r)

= −λ∗r +

n∑
j=1

(ρj + π∗
j ). (53)

In addition to checking whether all reduced costs are 0, the upper and lower bounds provides
another convergence criterion, i.e. whether the two bounds meet. The primal upper bounds are
in general very weak, especially in the beginning of the column generation procedure, when the
sets of columns are small. The dual bounds might oscillate, as the optimal solution of the dual
of the restricted master problem might change drastically when a new column is added. Typical
remedies for the erratic behavior of the dual bounds include warm start e.g. (Sokoler et al., 2014),
which provides a good dual bound at the beginning of the iteration, and stabilization techniques
(Rousseau et al., 2007; Gschwind and Irnich, 2016), which add penalizing terms to (53) to avoid
drastic change in the Lagrangian dual bounds. Another improvement of the standard column
generation algorithm is the primal-dual column generation technique developed by Gondzio et al.
(2013), which uses suboptimal primal and dual solutions of the restricted master problem to
improve the stability of the iteration.
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4.5.3. Inexact method

If the optimal solution of the master problem (38)-(41) obtained by column generation is
also binary, then we have found the optimal solution of the Dantzig-Wolfe reformulation and the
original MILP problem. However, the solution obtained through column generation is in gen-
eral fractional. As stated by Gunnerud and Foss (2010), a feasible2 suboptimal solution of the
Dantzig-Wolfe reformulation can be obtained by solving the restricted master problem (44)-(47)
as a binary MILP problem, using the sets of columns obtained at the end of column generation.
Furthermore, a lower bound, and possibly an upper bound (depending on whether a binary solu-
tion is encountered during the iteration) are also provided by the column generation procedure.
Exact solutions to the Dantzig-Wolfe formulation can be found by combining branch-and-bound
with column generation, known as the branch-and-price (Barnhart et al., 1998) algorithm.

5. Low-level maintenance crew scheduling

The low-level problem is triggered whenever a maintenance intervention is suggested for at
least one section of the whole network by the high-level MPC controller. Each type of main-
tenance intervention, e.g. grinding, is associated with a distinct low-level problem. Its goal is
to find the optimal schedule to perform the planned maintenance activities, and the optimal
route for the maintenance crew, minimizing the total setup costs of maintenance operations, the
traveling costs of the maintenance crew, and the penalty cost on extra maintenance time (if any).

5.1. The arc routing problem

First we define the Capacitated Arc Routing Problem with Flexible Capacity (CARPFC),
which is composed of:

• a connected undirected graph G = (V, E);

• a depot node 0 ∈ V;

• a cost matrix C defining the travel cost associated with each edge;

• a set of required edges R ⊆ E that must be serviced by a vehicle;

• a demand qij for each required edge {i, j} ∈ R;

• a set T (fleet) containing all available vehicles;

• a fixed setup cost cSetup associated with each vehicle;

• a flexible capacity Qt ∈ [Q, Q] associated with each vehicle t ∈ T ;

• a capacity-related cost QExtra,t = ν(Qt − Q) for any vehicle t ∈ T , where ν is a positive
parameter.

The CARPFC can then be defined as finding an optimal set of routes of the fleet starting and
ending at the same depot, and the optimal capacities of the vehicles, that minimizes the total
setup costs and travel costs of vehicles, and the costs related to the extra capacity, while ensuring
that each required edge is serviced exactly once by a vehicle, and the edge demand is satisfied
without exceeding the vehicle capacity.

2Feasibility can be guaranteed, as long as the restricted master problem is binary feasible with initial sets of
columns, or a binary solution is encountered during the iteration.
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To recast the low-level maintenance crew scheduling problem into a CARPFC, we map the
physical network into a virtual graph G = (V, E). The stations are mapped into nodes in V, and
the lines are mapped into edges in E . In particular, the maintenance base is mapped into the
depot node 0. The travel cost of each edge is proportional to the length of the line. Furthermore,
the lines in which at least one section is to be maintained before the next time step, are mapped
into the required edges in R. The demand of a required edge is interpreted as the estimated
time to complete the maintenance activity on the corresponding line. Each time period in the
low-level planning horizon corresponds to a vehicle in the CARPF, and the maintenance time
budget per time period is translated as the capacity of the vehicle. The maintenance time budget
is considered to be flexible within a given range, e.g. Q = 6 hours and Q = 10 hours per time
period. This flexible maintenance time budget, which provides the maintenance contractor extra
maintenance time at extra costs, further reduces the chance of having an infeasible low-level
problem.

5.2. The node routing problem
We transform the arc routing problem described in Section 5.1 into an equivalent node routing

problem because of the abundance of solution methods for node routing problems. We choose
the approach developed by Baldacci and Maniezzo (2006). The transformed complete undirected
graph is denoted by Ĝ = (V̂, Ê), with a new cost matrix Ĉ. Each endpoint of a required edge
in R of the original graph becomes a customer node in V̂ of the transformed graph, resulting
in a node routing problem instance of 2|R| customer nodes. We refer the readers to (Baldacci
and Maniezzo, 2006) for the detailed transformation procedure. Furthermore, we partition V̂
into the set of virtual depots T , and the set of customer nodes Ĉ. Each virtual depot is a
duplicate of the depot in the original graph, and corresponds to a vehicle t ∈ T . We introduce
the virtual depots to ensure that each tour is performed by one vehicle with a specific capacity.
The demand of a customer node i ∈ Ĉ in the transformed graph is denoted by q̂i. In this section
we only provide the MILP formulation of the Capacitated Vehicle Routing Problem with Flexible
Capacity (CVRPFC), which is a node routing counterpart of the CARPFC described in Section
5.1.
We define the binary decision variable:

xij =

{
1 if node j is visited directly after node i;

0 otherwise
(54)

for any i, j ∈ V̂, and

zit =

{
1 if customer i is visited by a vehicle from depot t

0 otherwise
(55)

for any node i ∈ Ĉ and t ∈ T .
We use the Miller-Tucker-Zemlin (MTZ) subtour elimination constraints (Miller et al., 1960),
and define a continuous node potential variable ui for each customer node i ∈ Ĉ. Because of the
multiple virtual depots corresponding to heterogeneous vehicles, cycle imposement constraints
are needed to ensure that each resulting route starts and ends at the same virtual depot, i.e. each
round tour is made by the same vehicle. For this purpose, we choose the node-current based cycle
imposement constraints (Burger et al., 2018), and define the continuous node current variable ki
for each node i ∈ V̂.
The CVRPFC can then be expressed as:

min
∑

{i, j}∈Ẽ

c̃ijxij +
∑
t∈T

∑
j∈Ṽ

(
cSetup + ν(Qt −Q)

)
xtj , (56)
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where the first term corresponds to the travel costs, and the second term computes the total setup
costs of the vehicles, including the costs related to the extra capacity, subject to the following
assignment constraints: ∑

j∈Ṽ

xij =
∑
j∈Ṽ

xji = 1 ∀i ∈ Ĉ (57)

∑
i∈Ṽ

xit =
∑
j∈Ṽ

xtj ≤ 1 ∀t ∈ T , (58)

the following path continuity constraints

zit − zjt ≤ 1− xij − xji ∀t ∈ T , i, j ∈ Ĉ, i ̸= j (59)

zjt − zit ≤ 1− xij − xji ∀t ∈ T , i, j ∈ Ĉ, i ̸= j (60)

that ensure any two consecutive customers on a resulting tour are visited by the same vehicle;
the labeling constraints

xtj + xjt − zjt ≤ 0 ∀t ∈ T , j ∈ Ĉ (61)

that ensure the first and last visited customer by a vehicle is associated with the corresponding
virtual depot; the MTZ subtour elimination constraints

ui − uj +Qxij + (Q− q̂i − q̂j)xji ≤ Q− q̂i ∀i, j ∈ Ĉ, i ̸= j (62)

the node-current based cycle imposement constraints

kt = t ∀t ∈ T (63)

ki − kj ≤ (|T |−1)(1− xij) ∀i, j ∈ Ṽ, i ̸= j (64)

kj − ki ≤ (|T |−1)(1− xij) ∀i, j ∈ Ṽ, i ̸= j (65)

the bounds for the continuous decision variables

q̂i ≤ ui ≤
∑
t∈T

Qtzit ∀i ∈ Ĉ (66)

1 ≤ ki ≤ |T | ∀i ∈ Ṽ, (67)

and finally the integrality constraints on the binary decision variables:

xij ∈ {0, 1} ∀i, j ∈ V̂ (68)

zit ∈ {0, 1} ∀i ∈ Ĉ, ∀t ∈ T . (69)

Note that the problem (56)-(69) is a MINLP, as the flexible capacity Qt is also a decision
variable, leading to the nonlinear terms Qtxt,j in the objective (56) and Qtzit in constraints
(66). Following the procedure developed by Bemporad and Morari (1999); Williams (1993), we
introduce the following continuous auxiliary decision variables:

yit = zitQt, ϕtj = xtjQt (70)

for t ∈ T , i ∈ Ĉ, j ∈ Ṽ, to eliminate the nonlinear terms. This results the following equivalent
linear constraints (Bemporad and Morari, 1999):

yit ≤ Qzit, ϕtj ≤ Qxtj (71)
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yit ≥ Qzit, ϕtj ≥ Qxtj (72)

yit ≤ Qt −Q(1− zit), ϕtj ≤ Qt −Q(1− xtj) (73)

yit ≥ Qt −Q(1− zit), ϕtj ≥ Qt −Q(1− xtj) (74)

that are equivalent to (70).
The MILP formulation of the CVRPFC can then be written as:

min
∑

{i, j}∈Ẽ

c̃ijxij +
∑
t∈T

∑
j∈Ṽ

νftj + (cSetup − νQ)xtj (75)

subject to: q̂i ≤ ui ≤
∑
t∈T

yit ∀i ∈ Ĉ (76)

and constraints (57)-(65), (67)-(69), (71)-(74).

6. Case Study

6.1. Settings

A numerical case study on the optimal treatment of squats is performed on a part of the Dutch
railway network containing Randstad Zuid and the middle-south region. This network contains
10 stations3 and 13 lines, which are divided into 53 sections of 5 km, as shown in the schematic
plot in Figure 4. A squat (Figure 5) is a type of rail contact fatigue, the evolution of which
depends on the dynamic wheel-rail contact (Esveld, 2001). It first appears one the rail surface,
and evolves into a network of cracks underneath the rail surface over time. If not treated properly,
it can lead to hazards like rail breakage. For illustration purpose, two maintenance interventions,
rail grinding and replacement, are considered for the treatment of squats. Jamshidi et al. (2017b)
report from field observation that grinding, which removes the irregularities on the rail surface,
is effective for early-stage squats with visual length less than 20 mm, but for late-stage squat
with visual length more than 50 mm, replacement is the only option. Effectiveness is also related
to the grinding depth to reduce residual damages.
We adopt the big data analysis approach developed by Jamshidi et al. (2017a) to calculate the
failure probability of each squat. The failure probability, which is initially calculated from the
visual length, estimates the probability that a given squat might lead to rail failure within the
next million gross tons (MGT) step, which is 3 months in this case study. For this reason, the
time step is also 3 months in the high-level MPC controller. The prediction horizon NP = 3, i.e.
9 months, and the planning horizon is 20, i.e. 5 years.
A simulation model is developed to describe the evolution of failure probability of each individual
squat. The details of the simulation model are given in Appendix B. The risk level, i.e. the
condition, of a section of rail can then be calculated from the failure probabilities of all squats
within the section4. By definition, the condition of each section is within the range [0, 1]. A
prediction model, which describes the dynamics of the condition of a section, can be obtained by
piecewise-affine identification based on the simulated data produced by the simulation model. Let
U = {1, 2, 3} denote the set of all possible maintenance actions that can be applied to a section
of rail, with 1, 2, 3 representing “no maintenance”, “grinding”, and “replacing”, respectively.
Replacing a section is 30 times as expensive as grinding. The parameter λ, which captures the

3Intermediate stations are out of the scope of this case study.
4We assume the failure of each squat is independent from that of other squats.
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Roosendaal (9)

Breda (10)
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Dordrecht (7)
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Leiden Centraal (1)

Alphen a/d Rijn (2)

Woerden (5)

Gouda (4)

18 km
(section 7-10)
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(section 11-14)
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(section 15-17)
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(section 18-23)
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Figure 4: The part of the Dutch railway network including Randstad Zuid and the middle-south region considered
in the case study. The number next to a station is its index, while the maintenance base indexed as “0”. The
sections of each track line is indexed starting from the station with the smaller index.
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Figure 5: A severe squat on the rail surface.

trade-off between condition degradation and maintenance cost, takes a value of 100. Finally, we
define the number of grinding operations on section j since the last replacement as the auxiliary
variable xaux

j,k in the prediction model.
The prediction model of section j, in accordance with the generic model (9), can then be expressed
as:

xcon
j,k+1 = f con

j (xcon
j,k , uj,k, θj,k)

=


fDeg
j (xcon

j,k , θj,k) if uj,k = 1 (no maintenance)

fGr
j (xcon

j,k , θj,k) if uj,k = 2 (grinding)

0 if uj,k = 3 (replacing)

(77)

and

xaux
j,k+1 = faux

j (xaux
j,k , uj,k)

=


xaux
j,k if uj,k = 1 (no maintenance)

xaux
j,k + 1 if uj,k = 2 (grinding)

0 if uj,k = 3 (replacing).

(78)

The threshold value xcon
max in the chance constraint (15) is 0.95. As each grinding operation

removes a certain depth of rail (e.g. 2 mm), grinding can only be applied consecutively to the
same section for a limited number of times. So we have the following deterministic constraints
on the auxiliary variable:

xaux
j,k+l ≤ xaux

max ∀j ∈ {1, . . . , n}, ∀l ∈ {1, . . . , N
P
}, (79)

where xaux
max = 10 in this case study.

The following global constraint is imposed on the maximal number of sections that can be ground
at one time step:

n∑
j=1

Iuj,k=1 ≤ nGr
max ∀l ∈ {1, . . . , NP}, (80)

where nGr
max = 20 in this case study.

The function fDeg
j , which describes the natural degradation of the condition, and the function
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Figure 6: Piecewise-affine identification of one prediction model with 95% nonsimultaneous observation confidence
bound (indicated by the blue and red dashed lines). The data points for the identification are generated by
aggregating the simulated failure probabilities of individual squats using the simulation model.

fGr
j , which describes the effect of grinding on section j, are both piecewise-affine functions, as

shown in the example in Figure 6. To determine a piecewise-affine approximation of fDeg
j , we

partition the condition space of section j, i.e. X con
j = [0, 1], into three intervals X con

j,1 , X con
j,2 , and

X con
j,3 . The natural degradation of condition can then be expressed by the following piecewise-

affine function:

fDeg
j (xcon

j,k ) =



yintj,1 +
yintj,2 − yintj,1

xswi
j,1

xcon
j,k if xcon

j,k ∈ X con
j,1 = [0, xswi

j,1 )

yintj,2 +
yintj,3 − yintj,2

xswi
j,2 − xswi

j,1

(
xcon
j,k − xswi

j,1

)
if xcon

j,k ∈ X con
j,2 = [xswi

j,1 , x
swi
j,2 )

yintj,3 +
yintj,4 − yintj,3

1− xswi
j,2

(
xcon
j,k − xswi

j,2

)
if xcon

j,k ∈ X con
j,3 = [xswi

j,2 , 1],

(81)

where xswi
j,1 and xswi

j,2 are the two switching points, and yintj,1, yintj,2, yintj,3, and yintj,4 are the four
interpolation points.
The function fGr

j can also be represented by the following piecewise-affine function with three
intervals:

fGr
j (xcon

j,k ) =



0 if xcon
j,k ≤ xeff

j
ysevj

xsev
j − xeff

j

(
xcon
j,k − xeff

j

)
if xeff

j < xcon
j,k ≤ xsev

j

ysevj +
ymax
j − ysevj

1− xsev
j

(
xcon
j,k − xsev

j

)
if xcon

j,k > xsev
j .

(82)

Five simulation models are used to generate the simulated data for piecewise-affine approxima-
tion, resulting in five different prediction models, the parameters of which are presented in Table
1. The uncertain parameters of the deterioration model (77)-(78) of section j are collected in
the vector θj,k = [yintj,1 . . . y

int
j,4 ysevj ymax

j ]T. The confidence level βj and violation level ϵj are both
0.1 for any section j = 1, . . . , n, resulting in 591 random scenarios per section.
For illustration purpose we only trigger the low-level maintenance crew scheduling problem for
grinding. The travel cost between any two station is 100e per kilometer. Two 6-hour mainte-
nance time slots are available for grinding within one time step (3 months). A fixed setup cost
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Table 1: Parameters of the functions fDeg
j and fGr

j for five different models. Both the nominal values and the

95% nonsimultaneous confidence bounds (given in the square brackets) are provided for all uncertain parameters.

Parameter Model
1 2 3 4 5

xswi
j,1 0.512 0.526 0.543 0.363 0.563

xswi
j,2 0.683 0.784 0.781 0.621 0.798

yintj,1 0.107 [0.086, 0.128] 0 [0,0] 0.051 [0.040, 0.063] 0.076 [0.036, 0.115] 0.058 [0.049,0.068]

yintj,2 0.783 [0.776, 0.790] 0.849 [0.845, 0.853] 0.815 [0.809. 0.821] 0.624 [0.615, 0.633] 0.805 [0.900, 0.809]

yintj,3 0.929 [0.924, 0.934] 0.975 [0.967, 0.983] 0.972 [0.966, 0.977] 0.859 [0.853, 0.865] 0.963 [0.958, 0.968]

yintj,4 1 [0.997, 1.003] 1 [0.997, 1.004] 1 [0.998, 1.002] 1 [0.994, 1.006] 1 [0.998, 1.002]

xeff
j 0.156 0.177 0.172 0.141 0.106

xsev
j 0.899 0.810 0.880 0.938 0.882

ysevj 0.506 [0.494, 0.518] 0.516 [0.505, 0.527] 0.502 [0.490, 0.514] 0.506 [0.490, 0.521] 0.443 [0.432, 0.455]

ymax
j 0.957 [0.944, 0.970] 0.991 [0.981, 1] 0.977 [0.965, 0.990] 0.922 [0.905, 0.939] 0.944 [0.931, 0.956]

of 100ke is associated with each maintenance time slot. Furthermore, extra time for grinding in
addition to the given 6-hour time slot can be requested with an hourly cost of 10ke. However, a
maximum length of 10 hours is imposed on each maintenance time slot. The minimum amount
of maintenance time spent on a railway line corresponds to the number of sections to be ground
before the next time step.
The multi-level approach is implemented in Matlab R2016b, on a desktop computer with an Intel
Xeon E5-1620 eight-core CPU and 64 GB of RAM, running a 64-bit version of SUSE Linux En-
terprise Desktop 12. The high-level MILP problem at each time step is solved distributedly using
the Dantzig-Wolfe decomposition method described in Section 4.5. If the solution obtained at
the end of the column generation procedure is fractional, we solve the resulting restricted master
problem as a binary MILP problem. The CVRPFC problem at the low level is solved directly.
All the MILP and LP problems at the two levels are solved using CPLEX 12.7.

6.2. Discussion of results

A representative run is conducted to demonstrate how the proposed multi-level approach
works. The partial results of the high-level MPC controller from the line between Den Haag and
Rotterdam are shown in Figure 7. As the deterioration dynamics and initial risk level of each
section is different, the resulting intervention plan is also very different for different sections. For
example, replacing is suggested at the first time step for section 27, because its initial risk level is
already very high (almost 0.6). On the contrary, grinding is firstly suggested at time step 8, i.e.
24th month within the 5-year planning horizon for section 26, as its initial risk level is almost 0.
The next grinding operation is suggested at least 18 months after a replacement, as the growth
of the risk level is very slow for a newly replaced section of rail. A maintenance intervention is
usually suggested when the risk level is sufficiently high, i.e. over 0.8, to justify the high cost
of track maintenance operations. Unlike time-based cyclic maintenance approach, the interval
between two consecutive interventions is flexible and ranges from 6 to 9 months.
The simulation results of the whole case study network at a representative time step are shown
in Figure 8. From Figure 8a we can clearly see that no section in the whole network has a risk
level exceeding the critical threshold at time step 7, indicating the network is safe at the current
time step. Furthermore, the simulated risk levels of all the sections in the next time step are also
below the threshold, ensuring the safety of the whole network three months later.
The risk level at time step 7 is the outcome of the intervention at time step 6. As shown in Figure
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(a) Risk level per section calculated from the individual squat dynamics.
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Figure 7: High-level simulation results for the line between Den Haag and Rotterdam.
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Figure 8: High-level simulation results for the whole railway network at time step 6.
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Figure 9: Result of the low-level maintenance crew scheduling problem at the 6th time step. The railway lines
that must be ground within the next time step (3 months) are marked in bold. For each railway line that requires
grinding, the exact sections to be ground, and the minimum time to grinding them also provided. The dashed and
the dotted arrows show the resulting itinerary of the first and second tour of the maintenance crew, respectively.

8b, 11 sections are to be ground (as indicated by the number of sections where maintenance
option u = 2) and 2 sections are to be replaced (as indicated by the number of sections where
maintenance optionu = 3) within the three months between time step 6 and 7. The results
of the low-level crew scheduling problem to execute these planned grindings over the railway
network are shown in Figure 9. The planned grindings are performed in two different operations.
In the first grinding operation, the maintenance crew starts from the maintenance base and
drives to Dordrecht. The maintenance crew then spends 2 hours grinding section 38 and 40
between Dordrecht and Lage Zwaluwe. It then traverses the “triangle” formed by Lage Zwaluwe,
Roosendaal, and Breda, spending one hour grinding one section at each edge of the triangle.
Finally the maintenance crew drives the same way back from Lage Zwaluwe to the maintenance
base. The total maintenance time in this grinding operation is 5 hours, which is less than the
allocated 6-hour maintenance slot. No additional cost for extra maintenance time is incurred for
this operation. Similarly, a second tour is made by the maintenance crew to grind the remaining
6 sections in the other part of the network, as shown by the dotted line in Figure 9. No additional
cost for extra maintenance time is incurred for this operation neither.
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Figure 10: Computational comparison of centralized MPC and distributed MPC based on the Dantzig-Wolfe
decomposition for a prediction horizon NP = 3.

6.3. Comparison with centralized MPC

A computational comparison is performed between the centralized MPC approach and the
proposed distributed MPC approach. The only difference between the two approaches is that
the MPC optimization problem is solved directly by an MILP solver in the centralized MPC
approach, and distributedly using Dantzig-Wolfe decomposition method in the distributed MPC
approach. We generate 14 MPC optimization problems for 14 fictional railway networks with
a number of sections ranging from 10 to 140. The current states and values of uncertain pa-
rameters are randomly generated following a normal distribution. The trend of the CPU time
with an increasing number of sections is plotted in Figure 10. For the first 13 test instances, the
distributed approach always takes shorter CPU time than the centralized approach. Moreover,
the centralized approach fails when the number of sections becomes 140, due to memory related
issues, while the distributed approach can still find a solution within 40 minutes.
As the distributed approach based on Dantzig-Wolfe decomposition is inexact, for each test in-
stance we also check its relative loss of optimality, compared to the global optimum provided
by the centralized approach. For the first 13 test instances, the distributed approach is able to
achieve global optimality. As the centralized approach becomes intractable when the number
of sections reaches 140, we cannot conclude whether the distributed approach finds the global
optimum for the largest test instance.

6.4. Comparison with alternative approaches

In this section we compare the results of the proposed chance-constrained MPC approach
to two alternative approaches, namely, the nominal MPC approach and the cyclic approach.
The only difference between the nominal MPC approach and the chance-constrained MPC ap-
proach is that the nominal approach considers only the mean values of the uncertain parameters
in the deterioration model. So it can be viewed as a deterministic counterpart of the chance-
constrained MPC approach. The cyclic approach uses a time-based maintenance strategy, and
performs grinding and replacing at a fixed optimal interval. Unlike the two MPC approaches,
the cyclic approach is an offline approach, i.e. an optimal maintenance intervention plan for
the whole planning horizon is computed beforehand and applied to the infrastructure network
without updating it using real-time measurements or simulation. The formulation and solution
approach of the cyclic approach is presented in Appendix C.
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We created ten test instances in which the values of the uncertain parameters are randomly gen-
erated following a Gaussian distribution. Three criteria, safety, cost-effectiveness, and computa-
tional efficiency, are applied to evaluate the three approaches. Safety is measured by constraint
violation v, which is calculated as following:

v = max

(
xcon
worst − xcon

max

xcon
max

, 0

)
, (83)

where xcon
worst is the highest risk level for all sections within the entire planning horizon. Cost-

effectiveness is measured by closed-loop performance, which can be calculated by the summation
of all the n local objectives (11) evaluated over the entire 5-year planning horizon. Finally,
computational efficiency is measured by the CPU time required to solve all the high-level5 opti-
mization problems at all time steps. We only compare the CPU time of the two MPC approaches,
since the cyclic approach is an offline approach in which only one optimization problem must
be solved for the entire planning horizon. The summary of the comparison between the three
approaches is presented in Table 2.

Table 2: A comparison between the proposed chance-constrained MPC approach (with subscript “CC”), the
nominal approach (with subscript “Nom”), and the cyclic approach (with subscript “Cyc”).

Run Constraint violation
Closed-loop
performance

CPU time (h)

vCC (%) vNom(%) vCyc (%)
JCC

JCyc
(%)

JNom

JCyc
(%) JCyc TCC TNom

1 0 0.063 0 39.335 34.148 670502 5.671 0.003
2 0 0.006 0 38.127 36.577 670504 5.075 0.003
3 0 0.353 0 37.635 35.043 670503 5.062 0.003
4 0 0.129 0 37.606 33.344 670502 5.703 0.003
5 0 0 0 36.354 34.536 670502 5.141 0.003
6 0 0.082 0 36.413 35.803 670502 5.802 0.003
7 0 0.021 0 39.425 36.250 670503 5.134 0.003
8 0 0.053 0 38.440 35.028 670500 5.126 0.003
9 0 0.0344 0 40.244 33.359 670503 5.088 0.003
10 0 0.172 0 38.902 34.656 670503 5.082 0.003

According to Table 2, the proposed chance-constrained approach is safe, as it has no constraint
violation for the 10 test runs. It is also cost-effective, as the closed-loop performance is less than
40% of the reference cyclic approach in almost every test run. Note that in theory there is
still a small probability (typically ϵ=0.1) that the degradation level of a section will exceed
the maintenance threshold. A smaller violation level ϵ should be used if a more robust, but
also more conservative, maintenance plan is desired by the practitioner. However, the chance-
constrained MPC approach is also the slowest in terms of CPU time. It is almost 1700 times
slower than the nominal MPC approach. This is because a much larger MILP problem (571
times as large as that of the nominal MPC approach) must be solved at each time step due to
the consideration of high-dimensional parameter uncertainty. However, the long computation
time does not impair its real-time implementability, as track degradation is a very slow process
(3-month sampling time in the case study). The nominal MPC approach is fast and scores the

5This is because the same formulation for the low-level problems are used for all three approaches.
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best in closed-loop performance. However, as it does not take into account any uncertainty,
the resulting intervention plan is unsafe, as shown by the constraint violations, which indicates
degradation levels exceeding the maintenance threshold, in nine out of ten test runs. On the
contrary, the cyclic maintenance approach results in very conservative intervention plans which
tend to “over-maintain” the asset. The resulting intervention plans are safe (i.e. there is no
constraint violation), but not cost-effective (i.e. they gave the worst closed-loop performance).
From the comparison with two alternative approaches, we can conclude that the proposed chance-
constrained MPC approach is the most suitable one for track maintenance planning, as it is safe,
cost-effective, and real-time implementable.

7. Conclusions and future work

In this paper we have developed an integrated approach for both long-term condition-based
maintenance planning and short-term maintenance crew scheduling of a railway infrastructure
network. Uncertainties in the deterioration dynamics are taken into account in condition-based
maintenance planning, and distributed optimization scheme is adopted to improved the scalabil-
ity of the proposed approach. An exact MILP formulation is proposed for the optimal scheduling
and routing of maintenance crews with flexible maintenance time slot. This integrate approach
can be applied to the optimal treatment of typical track defects like squats and ballast defects.
The proposed approach has been illustrated by a numerical case study of the optimal treatment
of squats for a regional Dutch railway network. Comparison with the centralized approach shows
that the adopted distributed optimization scheme based on Dantzig-Wolfe decomposition is scal-
able. Comparison with two alternative approach shows that the proposed approach yields an
excellent trade-off between safety and cost-effectiveness.
In this paper one performance indicator is used to describe the track condition, which is suitable
for rail grinding operations. However, in practice multiple indicators might be required to cap-
ture all the important parameters related to track health, so that other maintenance activities
could also be considered such as tamping to improve alignment, and maintenance of critical
track components such as switches and crossings, and insulated rail joints. To manage different
maintenance tasks at the same time will require the inclusion of additional constraints to avoid
planning maintenance activities that exclude each other. In this case, the proposed approach can
be extended by considering multiple deterioration functions for each track section, and combin-
ing all the performance indicators in the constraints and objective function. A challenge will be
the definition of trade-offs between all performance indicators, so as to capture their relevance
to maintenance planning ( e.g. to guarantee the health condition of a crossing is more impor-
tant than grinding a light surface defect). The definition of weights can be avoided by solving
a multi-objective optimization version of the problem to address multiple performance criteria
optimization. In the future, time-varying models can be considered to describe the changing
deterioration process of the railway infrastructure in different seasons. Heterogeneous compo-
nents, e.g. rail and switches, would also be considered in the maintenance optimization. Multiple
types of typical track defects (e.g. head checks, corrugation, and ballast degradation) should also
be considered to capture the critical interactions between different maintenance interventions
(e.g. grinding and tamping) on the same railway network. Instead of formulating one low-level
crew scheduling problem for each type of maintenance intervention, a more optimal schedule can
be obtained by formulating the scheduling and routing of all maintenance interventions in the
railway network as one single optimization problem, which can be a very large MILP if many
maintenance interventions are considered. Distributed optimization methods or efficient heuris-
tics/metaheuristics can be investigated for this challenging problem. Another improvement on
the low-level problem is to consider multiple intermediate depots (Crevier et al., 2007) for the
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low-level planning horizon. This will make the proposed approach more applicable to large-scale
railway networks, which in practice usually contain multiple maintenance bases, and the mainte-
nance crew can depart from one base and stop in another base in one maintenance operation, and
in the next maintenance period can start from the maintenance base where it stops previously.
Finally, joint train scheduling and condition-based maintenance planning can be considered. A
more optimal maintenance plan and time table can by obtained by solving a joint optimization
problem. This is challenging not just because of the computational complexity, but also the
short-term nature of train scheduling and the long-term effects of maintenance. To address these
issues, a multi-level approach can be considered to incorporate the fast train traffic dynamics
and the slow railway infrastructure degradation.
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B., 2017a. A big data analysis approach for rail failure risk assessment. Risk Analysis 37,
1495–1507.
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Appendices
A. Proof of Theorem 1

Proof. We prove Theorem 1 by induction. First we prove that xcon
j,k+1|k and x̂aux

j,k+1|k are convex

in θ̃j,k. By definition we have

xcon
j,k+1|k(ũj,k, θ̃j,k) = f con

j (xcon
j,k , x

aux
j,k , uj,k, θj,k)

x̂aux
j,k+1|k(ũj,k, θ̃j,k) = faux

j (xcon
j,k , x

aux
j,k , uj,k, θj,k).

Because f con
j and faux

j are both convex in θj,k, x̂con
j,k+1|k and x̂aux

j,k+1|k are also convex in θj,k.
Moreover, as x̂con

j,k+1|k and x̂aux
j,k+1|k have no dependence on θj,k+2, . . . , θj,k+N

P
, we have x̂con

j,k+1|k

and x̂aux
j,k+1|k both convex on θ̃j,k.

Then we prove that for any p ≤ l − 1, if x̂con
j,k+p|k and x̂aux

j,k+p|k are both convex on θ̃j,k, then

x̂con
j,k+p+1|k and x̂aux

j,k+p+1|k are also convex on θ̃j,k.

Since x̂con
j,k+p|k and x̂aux

j,k+p|k are both convex on θ̃j,k, for any w1, w2 ∈ ΘN
P and α ∈ [0, 1], we

have:

x̂con
j,k+p|k(ũj,k, αw1 + (1− α)w2) ≤ αx̂con

j,k+p|k(ũj,k, w1) + (1− α)x̂con
j,k+p|k(ũj,k, w2)

x̂aux
j,k+p|k(ũj,k, αw1 + (1− α)w2) ≤ αx̂aux

j,k+p|k(ũj,k, w1) + (1− α)x̂con
j,k+p|k(ũj,k, w2).

Denote (v)i as the i-th entry of vector v. Because f con
j is non-decreasing in xcon

j,k and xaux
j,k , we

have:

x̂con
j,k+p+1|k(ũj,k, αw1 + (1− α)w2)

= f con
j (x̂con

j,k+p|k(ũj,k, αw1 + (1− α)w2), x̂
aux
j,k+p|k(ũj,k, αw1 + (1− α)w2), uj,k+p+1, (αw1 + (1− α)w2)p+1)

≤ f con
j

(
αx̂con

j,k+p|k(ũj,k, w1) + (1− α)x̂con
j,k+p|k(ũj,k, w2), αx̂

aux
j,k+p|k(ũj,k, w1) + (1− α)x̂con

j,k+p|k(ũj,k, w2),

ũj,k, (αw1 + (1− α)w2)p+1

)
Moreover, because f con

j (·, ·, ũj,k, ·) is convex for any ũj,k, and

(αw1 + (1− α)w2)p+1 = α(w1)p+1 + (1− α)(w2)p+1,

we have

f con
j

(
αx̂con

j,k+p|k(ũj,k, w1) + (1− α)x̂con
j,k+p|k(ũj,k, w2), αx̂

aux
j,k+p|k(ũj,k, w1) + (1− α)x̂con

j,k+p|k(ũj,k, w2),

(84)

ũj,k, (αw1 + (1− α)w2)p+1

)
(85)

≤ αf con
j (x̂con

j,k+p|k(ũj,k, w1), x̂
aux
j,k+p|k(ũj,k, w1), ũj,k, (w1)p+1) (86)

(1− α)f con
j (x̂con

j,k+p|k(ũj,k, w2), x̂
aux
j,k+p|k(ũj,k, w2), ũj,k, (w2)p+1) (87)

= αx̂con
j,k+p+1|k(ũj,k, w1) + (1− α)x̂con

j,k+p+1|k(ũj,k, w2) (88)

Thus x̂con
j,k+p+1|k is convex in θ̃j,k. Similarly, we can prove x̂aux

j,k+p+1|k is also convex in θ̃j,k.
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B. Simulation model

The simulation model, that describes the evolution of the failure probability of one individual
squat over time, is based on the big data analysis approach developed by Jamshidi et al. (2017a).
The probability that squat i at time step k might lead to rail failure can be calculated by:

ξi,k = (fProb ◦ fCr ◦ fM)(Li,k−1, Li,k), (89)

where Li,k−1 and Li,k are two consecutive measurements on the visual length of squat i. The
function fM computes the estimated MGT from two consecutive measurements/simulated data
on visual lengths, and the function fCr estimates the crack length growth from the estimated
MGT. Finally, the function fProb calculates the failure probability from the crack growth length.
We use the same functions as in the case study by Jamshidi et al. (2017a).

For identification of function fDeg
j and fGr

j , we create 200 pseudo sections, where the number
of squats within a section is a random number with a mean value of 10 and standard deviation
of 2. Let NSq denote the number of squats in a section of rail. The failure probability of one
section of rail can then be calculated by:

xcon
k = 1−

NSq∏
i=1

(1− ξi,k). (90)

The following squat evolution model is used to simulated the dynamics of the visual length of
an individual squat i:

Li,k+1 =

{
aLi,k + b if not treated

max(ϕ(Li,k − Leff), 0) if ground
, (91)

where a, b, and ϕ are all generated parameters from a normal distribution. For each squat i within
a section, we can simulate three consecutive measurements of the visual length, i.e. Li,k−1, Li,k

and Li,k+1, and calculate its failure probability at time step k and k+1, namely, ξi,k and ξi,k+1,
respectively. The condition of the section at time step k and k + 1 can then be calculated
using (90). Five sets of squat evolution models are used, resulting in five different condition
deterioration models, which are randomly assigned to the 53 sections following a uniform discrete
distribution in the case study.

C. Cyclic maintenance approach

In this section we describe the cyclic maintenance approach used in Section 6.4 as a com-
parison to the proposed MPC approach. Let t0,j and TGr,j denote the time instant of the first
replacement and the fixed cycle of grinding for the j-th section, respectively. Furthermore, we
assume that replacement is performed after r times of consecutive grinding since the last replace-
ment on section j. Let kend denote the planning horizon. The offline optimization problem the
cyclic maintenance approach can be formulated as:

min
t0, TGr, r

kend∑
k=1

n∑
j=1

xcon
j,k + λ

3∑
q=2

cMaint
q,j Iuj,k=q (92)

subject to

xj,k+1 = fj(xj,k, uj,k; E(θj,k)) ∀j ∈ {1, . . . , n}, ∀k ∈ {0, . . . , kend − 1} (93)
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xcon
j,k ≤ xcon

max, xaux
j,k ≤ xaux

max ∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . , kend} (94)

uj,k =


2, if (k − t0,j)mod round(TGr,j) = 0

3, if k = t0,j or (k − t0,j)mod round(rTGr,j) = 0

1, otherwise

(95)

∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . , kend}
1 ≤ t0,j ≤ Tmax ∀j ∈ {1, . . . , n} (96)

1 ≤ Tj,Gr ≤ Tmax ∀j ∈ {1, . . . , n} (97)

1 ≤ µj ≤ µmax ∀j ∈ {1, . . . , n}. (98)
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