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Safety assessment of automated vehicles: how to determine whether we
have collected enough field data?

Erwin de Geldera,b, Jan-Pieter Paardekoopera, Olaf Op den Campa, and Bart De Schutterc

Abstract— Objective: The amount of collected field data from
naturalistic driving studies is quickly increasing. The data
are used for, amongst others, developing automated driving
technologies (such as crash avoidance systems), studying driver
interaction with such technologies, and gaining insights into the
variety of scenarios in real-world traffic. Since the collection
of data is time consuming and requires high investments and
resources, questions like “do we have enough data?”, “how
much more information can we gain when obtaining more
data?”, and “how far are we from obtaining completeness?”
are highly relevant. In fact, deducing safety claims based on
collected data, e.g., through testing scenarios based on collected
data, requires knowledge about the degree of completeness
of the data used. We propose a method for quantifying the
completeness of the so-called activities in a dataset. This enables
us to partly answer the aforementioned questions.

Method: In this paper, the (traffic) data are interpreted as a
sequence of different so-called scenarios that can be grouped
into a finite set of scenario classes. The building blocks of
scenarios are the activities. For every activity, there exists a
parametrization that encodes all information in the data of
each recorded activity. For each type of activity, we estimate a
probability density function (pdf) of the associated parameters.
Our proposed method quantifies the degree of completeness of
a data set using the estimated pdfs.

Results: To illustrate the proposed method, two different case
studies are presented. First, a case study with an artificial
dataset, of which the underlying pdfs are known, is carried
out to illustrate that the proposed method correctly quantifies
the completeness of the activities. Next, a case study with real-
world data is performed to quantify the degree of completeness
of the acquired data for which the true pdfs are unknown.

Conclusion: The presented case studies illustrate that the
proposed method is able to quantify the degree of completeness
of a small set of field data and can be used to deduce whether
sufficient data have been collected for the purpose of the field
study. Future work will focus on applying the proposed method
to larger datasets. The proposed method will be used to evaluate
the level of completeness of the data collection on Singaporean
roads, aimed at defining relevant test cases for the autonomous
vehicles’ road-approval procedure that is being developed in
Singapore.

I. INTRODUCTION

The amount of collected field data from driving studies
is increasing rapidly and these data are extensively used
for the research, development, assessment, and evaluation
of driving-related topics; for example, see Broggi et al.
(2013), Dingus et al. (2016), Elrofai et al. (2018), Gelder and
Paardekooper (2017), Klauer et al. (2006), Krajewski et al.
(2018), Ploeg et al. (2018), Pütz et al. (2017), Sadigh et al.
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(2014), Williamson et al. (2011), and Zofka et al. (2015).
For any work that depends on data, it is important to know
how complete the data are. As mentioned by various authors
(Alvarez et al. 2017; Geyer et al. 2014; Stellet et al. 2015),
especially when deducing safety claims based on collected
data, e.g., through testing scenarios based on collected data,
we require knowledge about the degree of completeness of
the dataset used. Hence, questions like “do we have enough
data?” are highly relevant when our work and conclusions
depend on the data. Furthermore, since the collection of
data is time-consuming and requires high investments and
resources, we should ask ourselves “how much more data
do we need?” or “how much more information can we gain
when obtaining more data?”

The aforementioned questions are already explored in
other fields (Blair et al. 2004; Guest et al. 2006; Marks
et al. 2018; Wang et al. 2017; Yang et al. 2012), but the
question of how much data are enough regarding traffic-
related applications is less frequently answered. Wang et al.
(2017) appear to be the first in literature to point out
and discuss issues concerning the amount of data needed
to understand and model driver behaviors. They propose
a statistical approach to determine how much naturalistic
driving data are enough for understanding driving behaviors.
For scenario-based assessments (Alvarez et al. 2017; Elrofai
et al. 2018; Geyer et al. 2014; Ploeg et al. 2018; Stellet et al.
2015), however, the approach of Wang et al. (2017) might
not be applicable, because they only consider the individual
measurements at consecutive time instants instead of taking
into account the whole driving scenario. Hence, there is
a need for a quantitative measure for the completeness of
a dataset that takes into account the different scenarios a
vehicle encounters in real-world traffic.

We describe a method for quantifying the completeness of
a data set. The data are interpreted as a sequence of different
scenarios that can be grouped into a finite set of scenario
classes. Activities, such as “braking” and “lane change,”
form the building blocks of the scenarios (Elrofai et al.
2018). For every activity, we create a parametrization that
encodes the information in the data of this activity. For each
type of activity, we estimate a probability density function
(pdf) of the associated parameters. Our proposed method
approximates the degree of completeness of a data set using
the expected error of the estimated pdf. The smaller this
error, the higher the degree of completeness.

To illustrate the proposed method, two different case
studies are presented. The first case study involves artificial
data of which the underlying distributions are known. Be-
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cause the underlying distributions are known, we can show
that the proposed method correctly quantifies the degree of
completeness. Next, a case study with real-world data is
performed to quantify the degree of completeness of the
acquired data for which the underlying distributions are
unknown. Additionally, we show how we can estimate the
required amount of data to meet a certain requirement.

The article is structured as follows. In Section II, we
describe in more detail what the problem for which a solution
is proposed in Section III. The two case studies are presented
in Section IV. After a discussion in Section V, this paper is
concluded in Section VI.

II. PROBLEM DEFINITION

The required amount of data depends on the use of the
data (Wang et al. 2017). For example, when investigating
(near)-accident scenarios from naturalistic driving data, more
data might be required compared to studying nominal driving
behavior, because of the low probability of having a (near)-
accident scenario in naturalistic driving data. Therefore, in
this paper, the goal is to define a quantitative measure for
the completeness of the data that can be used to determine
whether the data are enough.

To define the problem of quantifying the completeness of
the data, few assumptions are made:

1) The data are interpreted as an endless sequence of sce-
narios, where scenarios might overlap in time (Elrofai
et al. 2018). Several definitions of the term scenario
in the context of traffic data have been proposed in
literature, e.g., by Elrofai et al. (2018, 2016), Geyer
et al. (2014), and Ulbrich et al. (2015). Because we
want to differentiate between quantitative and quali-
tative descriptions, the definition of the term scenario
is adopted from Elrofai et al. (2018) as it explicitly
defines a scenario as a quantitative description: “A
scenario is a quantitative description of the ego vehicle,
its activities and/or goals, its dynamic environment
(consisting of traffic environment and conditions) and
its static environment. From the perspective of the
ego vehicle, a scenario contains all relevant events.”
Extracting scenarios from data received significant
attention and the applied methods are very diverse.
For example, Elrofai et al. (2016) use a model-based
approach to detect scenarios in which the ego vehi-
cle is changing lane, whereas Kasper et al. (2012)
use Bayesian networks to detect scenarios with lane
changes of other vehicles around the ego vehicle. Xie
et al. (2018) use a random forest classifier for extract-
ing various scenarios and Paardekooper et al. (2019)
employ rule-based algorithms for scenario extraction.

2) Just as Elrofai et al. (2018), we assume that a scenario
consists of activities: “An activity is considered [to be]
the smallest building block of the dynamic part of the
scenario (maneuver of the ego vehicle and the dynamic
environment).” An activity describes the time evolution
of state variables. For example, an activity can be
“braking”, where the activity describes the evolution

of the speed over time. Furthermore, “the end of an
activity marks the start of the next activity” (Elrofai
et al. 2018).

3) Though a scenario refers to a quantitative description,
these scenarios can be abstracted by means of a
qualitative description, referred to as scenario class;
see also Elrofai et al. (2018) and Ploeg et al. (2018).
An example of a scenario class could have the name
“ego vehicle braking”; that is, this scenario qualita-
tively describes a scenario in which the ego vehicle
brakes. An actual (real-world) scenario in which the
ego vehicle is braking would fall into this scenario
class. It is assumed that all scenarios can be categorized
into these scenario classes. This assumption does not
limit the applicability of this paper, though it might
require a large number of scenario classes to describe
all scenarios that are in the data.

4) It is assumed that all scenarios that fall into a specific
scenario class can be parametrized similarly. As a
result, the specific activities that constitute the scenario
are also parametrized similarly. As with the previous
assumption, this does not limit the applicability of
this article. However, it might constrain the variety of
scenarios that fall into a scenario class.

Using these assumptions, we can describe the problem
of quantifying the completeness of a dataset into three
subproblems:

1) How to quantify the completeness regarding the sce-
nario classes?

2) How to quantify the completeness regarding all sce-
narios that fall into a specific scenario class?

3) How to quantify the completeness regarding the activ-
ities?

The first step towards quantification of the completeness
of the data is to assess the completeness of the activities. The
next step is to quantify the completeness of the scenarios, i.e.,
the combinations of activities. The final step is to quantify
the completeness of the scenario classes. In this article, the
first step, i.e., the third subproblem, is addressed. Because
of the different approach required for answering the first and
second subproblem, those will be addressed in a forthcoming
paper.

III. METHOD

In this section, we present how to quantify the complete-
ness regarding the activities. As explained in Section II,
all scenarios that fall into a specific scenario class are
parametrized similarly. Therefore, all similar types of ac-
tivities are also parametrized similarly. For example, all
activities labeled “braking” are parametrized similarly. In the
remainder of this section, we assume that all activities that
we are dealing with are a similar type of activities, such that
they are parametrized similarly.

Let n denote the number of activities such that we have n
parameter vectors that describe these activities, denoted by
Xi ∈ Rd with i ∈ {1, . . . ,n} and d denoting the number of
parameters for one activity. We will estimate the underlying
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distribution of Xi. Let f (·) denote the true probability density
function (pdf) and let f (x) denote the probability density
evaluated at x. Similarly, let f̂ (·;n) denote the estimated pdf
using n parameter vectors.

To quantify the completeness of the collection of the n
activities, we use the estimated pdf f̂ (·;n). For example,
suppose that f̂ (x;n) equals f (x) for all x ∈ Rd . In this case,
it would be reasonable to say that the n activities give a
complete view of the variety and the distribution of the
different activities that are labeled similarly. On the other
hand, when f̂ (x;n) is very different from f (x), it would be
reasonable to say that the opposite is the case, i.e., the n
scenarios do not give a complete view. One common measure
for comparing the estimated pdf with the true pdf is the Mean
Integrated Squared Error (MISE):

MISE f (n) = E
[∫

Rd

(
f (x)− f̂ (x;n)

)2
dx
]
. (1)

The index f indicates that the MISE is calculated with
respect to the pdf f (·).

A low MISE indicates a high degree of completeness
whereas a high MISE indicates a low degree of completeness,
because the expected integrated squared error is high. There-
fore, the MISE can be used to quantify the completeness of
set of activities that are of a similar type. The problem is,
however, that Eq. (1) depends on the true pdf f (·) which is
unknown. So the MISE of Eq. (1) cannot be evaluated.

In the remainder of this section, we will explain how the
MISE of Eq. (1) can be estimated when Kernel Density
Estimation (KDE) is employed. First, KDE will be explained.
Next, in Section III-B, a method is presented for estimating
the MISE when assuming that the d parameters are corre-
lated. Section III-C shows how the MISE can be approxi-
mated when some of the d parameters are independent from
each other.

A. Estimating the distribution using Kernel Density Estima-
tion

The shape of the probability densities is unknown before-
hand. Furthermore, the shape of the estimated pdf might
change as more data are acquired. Assuming a functional
form of the pdf and fitting the parameters of the pdf to
the data may therefore lead to inaccurate fits unless a lot
of hand-tuning is applied. We employ a non-parametric
approach using Kernel Density Estimation (KDE) (Parzen
1962; Rosenblatt 1956) because the shape of the pdf is
automatically computed and KDE is highly flexible regarding
the shape of the pdf.

In KDE, the estimated pdf is given by

f̂ (x;n) =
1

nhd

n

∑
i=1

K
(

x−Xi

h

)
. (2)

Here, K(·) is an appropriate kernel function and h denotes
the bandwidth. The choice of the kernel K(·) is not as
important as the choice of the bandwidth h (Turlach 1993).
We use a Gaussian kernel because it will simplify some of

our calculations. The Gaussian kernel is given by

K(u) =
1

(2π)d/2 exp
{
−1

2
∥u∥2

}
, (3)

where ∥u∥2 denotes the squared 2-norm of u, i.e., uT u.
The bandwidth h controls the amount of smoothing. For

the kernel of Eq. (3), the same amount of smoothing is
applied in every direction, although our method can easily
be extended to a multi-dimensional bandwidth, see, e.g.,
Chen (2017) and Scott and Sain (2005). There are many
different ways of estimating the bandwidth, ranging from
simple reference rules like, e.g., Scott’s rule of thumb (Scott
2015) or Silverman’s rule of thumb (Silverman 1986) to more
elaborate methods; see Bashtannyk and Hyndman (2001),
Chiu (1996), Jones et al. (1996), and Turlach (1993) for
reviews of different bandwidth selection methods.

B. Estimating the Mean Integrated Squared Error for depen-
dent parameters

As an approximation of the MISE of Eq. (1), the asymp-
totic mean integrated squared error (AMISE) is often used.
With the KDE of Eq. (2) employed, the AMISE is defined
as follows (Marron and Wand 1992):

AMISE f (n) =
h4

4
σ

4
K

∫
Rd

(
∇

2 f (x)
)2

dx+
µK

nhd . (4)

Here, σK and µK are constants that depend on the choice of
the kernel K(·):

σK =
∫
Rd
∥u∥2K(u)du, (5)

µK =
∫
Rd

K(u)2 du. (6)

Because we use the Gaussian kernel of Eq. (3), we have
σK = 1 and µK = (2

√
π)−d . In Eq. (4), ∇2 f (x) denotes the

Laplacian of f (x), i.e.,

∇
2 f (x) =

d

∑
l=1

∂ 2 f (x)
∂x2

l
. (7)

Note that the Laplacian equals the trace of the Hessian.
Assuming that h → 0 and nhd → ∞ as n → ∞, the AMISE
only differs from the MISE by higher-order terms under
some mild conditions1 (Silverman 1986).

The influence of the bandwidth h is demonstrated in an
illustrative way by the AMISE of Eq. (4). The first term
of the AMISE of Eq. (4) corresponds to the asymptotic
bias introduced by smoothing the pdf. Therefore, this term
approaches zero when h → 0. However, when h → 0, the
variance goes to infinity, as can be seen by the second term
of the AMISE, which corresponds to the asymptotic variance.

As with the MISE, we cannot evaluate the AMISE because
it depends on the true pdf f (·). As suggested by Calonico
et al. (2018) and Chen (2017), we can estimate the quantity

1The pdf f (·) needs to comply with the regularity conditions, K(u) ≥
0,∀u,

∫
Rd K(u)du = 1 and σK from Eq. (5) is not infinite.
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∇2 f (x) by ∇2 f̂ (x;n), with f̂ (x;n) defined in Eq. (2). Sub-
stituting f (x) in Eq. (4) with f̂ (x;n) gives the measure that
we will use to quantify the completeness:

J f (n) =
h4

4
σ

4
K

∫
Rd

(
∇

2 f̂ (x;n)
)2

dx+
µK

nhd . (8)

In summary, the measure Eq. (8) is an estimation of
the MISE of Eq. (1) given that the pdf is estimated using
the KDE of Eq. (2). Because the MISE cannot be directly
evaluated, the asymptotic MISE is used with the estimated
pdf substituted for the real pdf.

C. Estimating the Mean Integrated Squared Error for inde-
pendent parameters

As explained in Section III-A, KDE is employed because
the KDE is highly flexible regarding the shape of the pdf.
However, when a large number of parameters are used, i.e.,
for large values of d, the KDE becomes unreliable due to the
curse of dimensionality (Scott 2015). One way to overcome
this, is to assume that certain parameters are independent.
In that case, the joint distribution is not modeled using only
one multivariate KDE, but using a combinations of KDEs.

Without loss of generality, consider the parameter vector
x that can be decomposed into two parts:

x =
[

y
z

]
, (9)

such that y ∈ Rdy and z ∈ Rdz with dy + dz = d. If the
parameter vectors y and z are independent, the probability
density of x equals

f (x) = g(y)h(z), (10)

where g(·) and h(·) are pdfs. Because y and z have a lower
dimensionality than x, the estimated pdfs of g(·) and h(·)
will be more reliable. However, we cannot use the measure
of Eq. (8) to quantify the completeness anymore. Therefore,
we will show in this section how J f (n) can be computed in
case the real distribution is assumed to take the form Eq. (10).

The first step is to estimate g(·) and h(·) using ĝ(·;n)
and ĥ(·;n), respectively, where ĝ(·;n) and ĥ(·;n) are also
estimated using KDE, see Eq. (2). Note that the bandwidths
of ĝ(·;n) and ĥ(·;n) are generally different. Now let the
MISE of g(·) and h(·) be defined similar as the MISE of
f (·) in Eq. (1). It can be shown2 that if Eq. (10) holds, then
the MISE of f (x) approximately equals

(11)

MISE f (n) ≈ MISEg (n)
∫
Rdz

h(z)2 dz

+ MISEh (n)
∫
Rdy

g(y)2 dy

+ MISEg (n) · MISEh (n) .

We can estimate the MISE of g(·) and h(·) in a similar
manner as we did for the MISE of f (·) in Section III-B, such

2For the sake of brevity, the proof is omitted from this paper. The main
idea is based on the variance of the product of two independent variables,
see Goodman (1960), and the assumptions E [ĝ(y;n)] ≈ g(y) for all y and
E
[
ĥ(z;n)

]
≈ h(z) for all z.

that we obtain Jg (n) and Jh (n). Since we cannot evaluate the
integrals of Eq. (11), we estimate them by substituting the
estimated pdfs. As a result, we have

(12)
J f (n) = Jg (n)

∫
Rdz

ĥ(z;n)2 dz

+ Jh (n)
∫
Rdy

ĝ(y;n)2 dy + Jg (n) · Jh (n) .

In this section, we assumed that the parameters x can be
split into two partitions that are independent. It is straight-
forward to extend the result of Eq. (12) in case that the
parameters x can be split into three of more partitions.

IV. EXAMPLES

In this section, the proposed method of Section III is illus-
trated by means of two examples. The first example applies
the method with data generated from a known distribution.
Because the distribution is known, the real MISE can be
accurately approximated and compared with the results from
Eqs. (8) and (12). Secondly, in Section IV-B, the proposed
method is applied on a dataset containing naturalistic driving
data.

A. Example with known underlying distribution

In this example, the data samples Yi with i ∈ {1, . . . ,n} are
independently and identically distributed random variables
that are distributed according to the pdf g(·). Each data
sample Yi corresponds to a scalar, i.e., dy = 1. Similarly, the
data samples Zi with i ∈ {1, . . . ,n} are independently and
identically distributed random variables that are distributed
according to the pdf h(·). The data samples are combined,
similar to Eq. (9), such that the likelihood of Xi is f (Xi) =
g(Yi)h(Zi).

Figure 1 shows the distributions g(·) (black solid line)
and h(·) (gray dashed line). Both distributions are Gaussian
mixtures, i.e., both pdfs equal the sum of multiple weighted
Gaussian distributions. The pdf g(·) corresponds to the
average of two Gaussian distributions with means of −1
and 1 and standard deviations 0.5 and 0.3, respectively.
The pdf h(·) corresponds to the average of three Gaussian
distributions with means −0.5, 0.5, and 1.5, and standard
deviations 0.3, 0.5, and 0.3, respectively.

The expectation E [·] of Eq. (1) is estimated by repeating
the estimation of the pdf 200 times, such that the real MISE
is approximated:

MISE f (n)≈
1
m

m

∑
j=1

∫ (
f (x)− f̂ j(x;n)

)2
dx, (13)

where f̂ j(x;n) is the j-th estimate and m = 200.
All three pdfs are estimated using Eq. (2). We use leave-

one-out cross validation to compute the bandwidth h (see also
Duin (1976)) because this minimizes the Kullback-Leibler
divergence between the real pdf f (·) and the estimated pdf
f̂ (·;n) (Turlach 1993; Zambom and Dias 2013). Note that
although the estimation of the pdfs is repeated 200 times
to accurately approximate the MISE using Eq. (13), the
bandwidth is only determined once for a specific number of
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Fig. 1. The true probability density functions g(·) (black solid line) and
h(·) (gray dashed line) that are used to illustrate the quantification of the
completeness.

102 102.5 103 103.5

10−0.8

10−0.6

10−0.4

Number of samples

B
an

dw
id

th

Fig. 2. The bandwidths of f̂ (x;n) (black dashed line), ĝ(y;n) (gray solid
line), and ĥ(z;n) (gray dotted line) for the example of Section IV-A. The
bandwidths are computed using leave-one-out cross validation for different
number of samples n.

samples. All the other 199 times, the same bandwidths are
adopted. The resulting bandwidths are shown in Fig. 2. The
bandwidth of f̂ (·;n) (black dashed line) is significantly larger
than the bandwidths of ĝ(·;n) (gray solid line) and ĥ(·;n)
(gray dotted line). This result is not surprising: because
f̂ (·;n) represents a bivariate distribution, it requires more
data to have a similar bandwidth compared with a univariate
distribution (Scott and Sain 2005).

Figure 3 shows the results of this example. The black lines
show the real MISEs, approximated using Eq. (13), where the
black solid line represents the MISE when f (·) is directly
estimated and the black dashed line represented the MISE
when use is made of Eq. (10). The MISE is significantly
lower when it is correctly assumed that the two parameters
are independent. One way to look at this is that the degree
of freedom of f (·) is reduced when assuming that the two
parameters are independent and this lower degree in freedom
leads to a more certain estimate. Hence, the MISE is lower.

The gray lines in Fig. 3 show the measures to quantify the
completeness of the data. The gray solid line shows the result
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Fig. 3. The real MISEs (black lines) of the example of Section IV-A,
approximated using Eq. (13), and the measures that are used to quantify
the completeness (gray lines). The solid lines show the result of estimating
a bivariate pdf, so here Eq. (8) is used to quantify the completeness. The
dashed lines show the result of estimating two univariate pdfs and combining
them according to Eq. (10) to create a bivariate pdf, so Eq. (12) is used to
quantify the completeness. The gray areas show the interval [µ − 3σ ,µ +
3σ ], where µ and σ denote the mean and standard deviation, respectively,
of the measures of Eqs. (8) and (12) when repeating the experiment 200
times.

of applying Eq. (8) and the gray dashed line shows the result
of applying Eq. (12). Both lines follow the same trend as the
black solid line and the black dashed line, respectively. This
illustrates that the measures Eqs. (8) and (12) are applicable
for estimating the real MISE of Eq. (1). To show that this
is not a mere coincidence, the gray areas in Fig. 3 show
the interval [µ − 3σ ,µ + 3σ ], where µ and σ denote the
mean and standard deviation, respectively, of the measures of
Eqs. (8) and (12) when repeating the experiment 200 times.
Note that the measures of completeness are consistently
higher than the real MISE. This can be explained from the
fact that the measures of completeness are approximations
of the AMISE and the AMISE itself is always higher than
the real MISE under some mild conditions, see Theorem 4.2
of Marron and Wand (1992).

B. Example with real data

In this example, 60 hours of naturalistic driving data
from 20 different drivers (see also Gelder and Paardekooper
(2017)) is used to extract approximately 2800 braking ac-
tivities. Three parameters are used to describe each braking
activity: the average deceleration, the total speed difference,
and the end speed. A histogram of each of these parameters
is shown in Fig. 4. Note that these braking activities do not
include full stops, i.e., activities where the end speed is zero,
because the distribution of the end speed will have a large
peak at zero. The AMISE of Eq. (4) deviates more from the
real MISE of Eq. (1), especially for larger bandwidths, when
such peaks are present in the underlying distribution (Marron
and Wand 1992). Because the measure Eq. (8) we use for
quantification of completeness is based on the AMISE of
Eq. (4), we want to avoid these peaks as much as possible.
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Fig. 4. Histogram of the data that is used for the example with the real
data.

Therefore, the full stops are excluded. Note, however, that
the method can be applied separately for the full stops. In
fact, the analysis for full stops will be simpler, because a full
stop activity can be parametrized using only two parameters
because the end speed always equals zero.

The three parameters are correlated so this advocates the
use of a multivariate KDE. However, as we have seen in
the first example, the higher the dimension, the higher the
measure for completeness will generally be. So there is a
trade-off: Assuming that certain parameters are independent
results in an error of the estimated pdf but the resulting
MISE, and hence the measure of completeness, will be lower.
To illustrate this, we estimate the pdf while assuming all
parameters to be dependent and we estimate the pdf while
assuming that the average deceleration is independent from
the other two parameters. Note that the correlation between
the average deceleration and the other parameters is fairly
low, so this justifies this choice. The speed difference and
end speed are highly correlated, so we will not assume that
these two parameters are independent. Before estimating the
pdfs, the parameters are translated and rescaled such that
each parameter has a sample mean of zero and a sample
variance of one. In this example, f̂ (·;n) denotes the estimated
3-dimensional pdf using all three parameters, ĝ(·;n) denotes
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Fig. 5. The bandwidths of f̂ (·;n) (black dashed line), ĝ(·;n) (gray solid
line), and ĥ(·;n) (gray dotted line) for the example of Section IV-B. The
bandwidths are computed using leave-one-out cross validation for different
number of samples n.

the estimated univariate pdf of the average deceleration,
and ĥ(·;n) denotes the estimated bivariate pdf of the speed
difference and the end speed.

Figure 5 shows the bandwidths of the three estimated
pdfs for different number of samples, starting from n =
600 samples to approximately 2800 samples. As opposed
to the bandwidths of our previous example, see Fig. 2,
the bandwidth of f̂ (·;n) (black dashed line) is not larger
than the bandwidth of ĝ(·;n) (gray solid line) for low
values of n. This is caused by some outliers of the average
deceleration, because these outliers have a large influence
on the bandwidth of ĝ(·;n) (Hall 1992). These outliers also
influence the bandwidth of f̂ (·;n), but this influence is less
because the bandwidth of f̂ (·;n) is also influences by the
other parameters.

The measures of completeness of the data of the braking
activities are shown in Fig. 6. The solid gray line results
from the estimated 3-dimensional pdf, i.e., f̂ (·;n), where
Eq. (8) is used to quantify the completeness. The dashed
gray line results from the estimated univariate and bivariate
pdfs ĝ(·;n) and ĥ(·;n), where Eq. (12) is used to quantify
the completeness. The measure for the completeness is much
lower for the latter case, indicating that the uncertainty of
the pdf is much lower when it is assumed that the average
deceleration is independent from the other two parameters.

Whether it is better to assume that all parameters are
dependent or not depends on the threshold that defines the
desired measure and the amount of data. If the threshold is
not met, the result can be used to guess how much more
data is required by extrapolating the result. To illustrate this,
the straight black lines in Fig. 6 represent the least squares
logarithmic fits of the corresponding gray lines that can be
used for extrapolation. These straight solid and dashed black
lines are described by the formulas

0.019 ·n−0.18, (14)

0.017 ·n−0.26, (15)
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Fig. 6. The measures of completeness for the example of Section IV-B
with the assumption that all three parameters depend on each other (gray
solid line) and with the assumption that the first parameter, i.e., the average
deceleration, does not depend on the other two parameters (gray dashed
line). The corresponding black lines represent the least squares logarithmic
fits given by Eqs. (14) and (15).

respectively. As an example, let us assume that the threshold
equals 0.003. In that case, n ≈ 800 would suffice if we
assume that the average deceleration is independent from
the speed difference and end speed, see the dashed lines
in Fig. 6 and Eq. (15). This threshold, however, is not yet
reached when assuming that all parameters are dependent,
see the solid lines in Fig. 6. Extrapolating the result using
Eq. (14) provides a rough estimate of the required number
of samples: n ≈ 28000, i.e., ten times as many samples as
we used in this example.

V. DISCUSSION

The measure for quantification of completeness of the set
of activities that is presented in this work is based on the
amount of data and the chosen parametrization. More data
might be used to achieve a certain threshold. However, it
might also be possible to adapt the parametrization to achieve
a certain threshold if a parametrization exists that achieves a
certain threshold. Hence, the presented method can be used
to determine an appropriate parametrization of activities.

The method for quantifying the completeness of a set of
activities presented in this work depends on a threshold that
needs to be chosen. Only in case of an infinite set of data, the
measure for completeness approaches zero, so this threshold
needs to be larger than zero. This threshold might be different
for different applications. For example, when the data are
used for determining test scenarios (Elrofai et al. 2018; Ploeg
et al. 2018), the desired threshold might be lower than when
the data are used for determining driver models (Sadigh et al.
2014; Wang et al. 2017). Furthermore, the threshold depends

on the number of parameters for one activity, denoted by d
in Section III. Based on experience with the dataset used in
Section IV-B, assuming that the dataset is normalized such
that the standard deviation equals one, a threshold between
0.01 and 0.001 gives good results. When a threshold of 0.01
is reached, a reasonable reliable pdf can be constructed to
analyze nominal driving behavior, whereas a threshold of
around 0.001 is required to also accurately analyze the edge
cases.

When using our measure for completeness, the following
might be considered. As explained in Section III, the measure
for completeness is based on the AMISE. It is also mentioned
that the AMISE only differs from the MISE by higher-order
terms under some mild conditions. This requires that the real
pdf is smooth, i.e., without large spikes (Marron and Wand
1992). Marron and Wand (1992) also state that the AMISE is
strictly higher than the MISE under some mild conditions3.
As a result, it is likely that the measure for completeness,
which is an approximation of the AMISE, is higher than the
MISE. This could lead to an overestimation of the number
of required samples.

The measure for completeness that is proposed in this
paper can be regarded as a approximation of the MISE of
Eq. (1). To minimize the MISE, the approximated pdf should
be similar to the real pdf. It might be, however, that one is
not interested in the exact likelihoods of certain values of
the parameters, but in all possible values that the parameters
can have. In this case, one might be interested in the support
of the real pdf, because the support of the pdf defines all
possible values for which the likelihood is larger than zero,
see, e.g., Schölkopf et al. (2001).

As mentioned in Section II, our problem of quantifying
the completeness of a dataset can be divided into three
subproblems. The first subproblem, i.e., how to quantify
the completeness regarding the scenario classes, can be
regarded as the so-called unseen species problem (Bunge
and Fitzpatrick 1993; Gandolfi and Sastri 2004) or species
estimation problem (Yang et al. 2012). In case of the unseen
species problem, the entire population is partitioned into C
classes and the objective is to estimate C given only a part
of the entire population. To continue the analogy, the second
subproblem, i.e., how to quantify the completeness regarding
all scenarios that fall into a specific scenario class, relates
to quantifying whether we have a complete view on the
variety among one species, given the number of individuals
that we have seen. The third subproblem addresses a part
of the scenarios, i.e., the activities. In line with the previous
analogy, this can be seen as quantifying whether we have a
complete view of the parts of the species, e.g., its limbs or
organs.

Our proposed method answers the third subproblem, i.e.,
how to quantify the completeness regarding the activities.
The advantage of using the activities for determining the
completeness is that there is only a limited number of types
of activities. As a result, for each type of activity, it is

3The Laplacian of f (·) needs to be continuous and square-integrable and
K(u)≥ 0,∀u.
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expected that there is no need for an extremely large dataset
to obtain a fair number of similar activities. On the other
hand, however, it is not known how much data is required
to obtain the desired threshold, because, e.g., this depends
on the parametrization that is chosen. The next step is to
quantify the completeness regarding all scenarios that fall
into a specific scenario class. Here, the joint probability of
the parameters of different activities in the same scenario
class might be considered. Although the presented method
can be applied, this might be impractical because the number
of parameters will be higher than for the activities. The prob-
lems of quantifying the completeness regarding all scenarios
that fall into a specific scenario class and quantifying the
completeness regarding the scenario classes remain future
work.

VI. CONCLUSIONS

More and more field data from (naturalistic) driving data
become available. The data are used for all kinds of driving-
related research, developments, assessments, and evaluations.
When deducing claims based on the collected data, we
require knowledge about the degree of completeness of the
data. We considered the data as a sequence of scenarios,
whereas activities are the building blocks of these scenarios.
To obtain knowledge about the degree of completeness of the
data, we propose a measure to quantify the completeness of
the activities. This measure allows to partly answer questions
like “have we collected enough field data?” We illustrated the
method using an artificial dataset, for which the underlying
distributions are known. These results show that the proposed
method correctly quantifies the completeness of the activities.
We also applied the method on a dataset with naturalistic
driving to show that the method can be used to estimate the
required number of samples. In future work, we will extend
the method to whole traffic scenarios and scenario classes
and we will investigate the appropriate thresholds for the
measure to quantify completeness in different applications.
Furthermore, the proposed method will be used to evaluate
the level of completeness of the data collection aimed at
defining relevant test cases for the assessment of automated
vehicles.
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