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Bayesian-DPOP for Continuous Distributed Constraint Optimization Problems

Extended Abstract
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In this work, the novel algorithm Bayesian Dynamic Programming Optimization Procedure (B-DPOP) is presented

to solve multi-agent problems within the Distributed Constraint Optimization Problem framework. The Bayesian

optimization framework is used to prove convergence to the global optimum of the B-DPOP algorithm for Lipschitz-

continuous objective functions. The proposed algorithm is assessed based on the benchmark problem known as

dynamic sensor placement. Results show increased performance over related algorithms in terms of sample-efficiency.
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Algorithm: CDPOP, Utility: 0.5172, Samples: 400 Algorithm: BDPOP, Utility: 0.6004, Samples: 120Algorithm: DPOP, Utility: 0.4875, Samples: 400

Fig. 1. Graphical demonstration of sampling within DPOP, C-DPOP, and B-DPOP for a 1-agent, 1-target (black diamond)
dynamic sensor coordination problem. The sensor range is indicated by a blue disk, the agent starts at the red hexagon and
moves towards the red star, and the samples are shown as blue dots of which transparency indicates the chronological order.
DPOP has no adaptivity and applies uniform sampling. The sampling of C-DPOP is adjusted with respect to the optimum
of the previous iteration. B-DPOP converges in a sample-efficient manner, requiring less samples and achieving a higher
utility.

1 INTRODUCTION

Many real-world problems that involve multi-agent systems become intractable if solved through a centralized

process, such as scheduling execution minimization [7], mobile sensor coordination [11], and hierarchical task

networks mapping [8]. Such problems can be represented within the Distributed Constraint Optimization
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Problem (DCOP) framework [6]. Numerous solvers for DCOP have been proposed; for a detailed overview

and taxonomy, the reader is referred to [1], [4].

A DCOP is a problem of optimizing a global utility function in a distributed manner through the exchange

of messages between agents. Typically, problems that include variables with discrete domains are considered.

For problems with continuous domains, a typical solution has been to discretize the continuous domains

via a uniform grid, which introduces drawbacks such as exponential growth in the problem complexity and

cannot guarantee to find the optimal solution.

In this paper, the novel solver Bayesian-DPOP (B-DPOP) extends the Dynamic Programming Optimization

Procedure (DPOP) algorithm [6], to remove the need for discretizing the continuous domains while retaining

convergence guarantees and efficient use of function sampling.

2 BAYESIAN DPOP

DCOP defines a global utility function G =
∑

fi∈F fi, that is the sum of all local utility functions fi in

function set F , where i is the function index. The B-DPOP algorithm optimizes a DCOP by executing four

phases; (1) Pseudo tree construction; (2) Assignment of local utility functions; (3) Sample propagation,

based on Bayesian optimization; (4) Value propagation. In the third phase, the local utility functions are

modeled by Gaussian processes defined by a kernel κi(·) as fi(·) ≈ GP(0, κi(·)).
Kernels can be combined through addition or multiplication into a composite kernel [2]. This allows the

modeling of the local functions by separate kernels (specific to the function properties) and the resulting

composition of these kernels will resemble the global utility function. Therefore, the search for the global

optimum within B-DPOP can be reduced to the search for optima of the Gaussian processes.

The convergence to the optimum (y∗ = fi(x
∗)) can be guaranteed through dense sampling of the utility

function [9]. Samples are defined as O1:s = {O1, . . . ,Os}, where Oj = (xj ,yj) is the input/output pair of a

local utility function yj = fi(xj).

2.1 Acquisition function

From these samples, the mean function (µ(x|O1:s) = kTK−1y1:s) and the variance function (σ2(x|O1:s) =

κ(x,x) − kTK−1k) can be defined, where K is the Gramian matrix, i.e. Kn,m = κ(xn,xm) for all

n,m ∈ {1 : s}, and k = [κ (x1,x) , . . . , κ (xs,x)]
T denotes the cross-correlation vector between the samples

and input x. The acquisition function qEI can be defined based on the mean and variance functions, parameter

ξ, and the maximum sampled output y+
1:s = maxO|∈O1:s yj as

qEI(x, ξ) =

c(x)Φ
(

c(x)
σ(x)

)
+ σ(x)ϕ

(
c(x)
σ(x)

)
if σ(x) > 0

0 if σ(x) = 0
(1)

c(x) = µ(x)−
(
y+
1:s + ξ

)
2.2 Sampling and converge

Samples are iteratively selected by optimization of the acquisition function, as xs+1 = argmaxx q(x|O1:s). In

this work, the expected improvement acquisition function qEI(·) [5] is combined with the Matérn kernel in order

to produce dense samples [10] within a search region S. The search region, S1:s = {x | qEI
1:s(x, 0|O1:s) > 0},



will tend to an empty set when the number of samples tends to infinity. Therefore, if the search region

includes the optimal input, x∗ ∈ S1:s, the solution will convergence to the global optimum. In order to find

the conditions for which x∗ ∈ S1:s holds, the set U1:s = {x | f̄i(x|O1:s) > y+
1:s} is defined. The function

f̄i(x|O1:s) is the upper bound function based on the Lipschitz constant Lfi of the function and O1:s as,

f̄i(x|O1:s) = minO|∈O1:s Lfi∥x−xj∥+yj . By definition, U1:s does not include the samples O1:s because the

upper bound function is equal to the sample output for all sample inputs, i.e. f̄ij(xj |Oj) = yj . Therefore,

the set U1:s includes the optimal input x∗ ∈ U1:s or the optimal input is included in the sample set,

x∗ ∈ O1:s. This attribute can be exploited by proper selection of the kernel parameters such that U1:s ⊆ S1:s.

Consequently, if S1:s → ∅, then U1:s → ∅, guaranteeing the optimal input will be sampled.

2.3 Definition of kernel parameters

Based on the Lipschitz constants of the local utility functions, the parameters of κi can be determined such

that U1:s ⊆ S1:s In this work, the Matérn kernel with parameter ν = 3/2 and the expected improvement

acquisition function qEI with ξ = 0 is chosen to exemplify the selection of the kernel parameters λ and l.

The kernel length scale l will be used to bound the derivative of the mean function µ and the kernel scale λ

will be used to scale the standard deviation σ by considering two initial samples O1 and O2. The derivative

of the mean function can be bounded from above to the Lipschitz constant Lfi by setting l ≥
√
3e−1y1
Lfi

.

Due to the bounded derivative of µ(·) and the fact that standard deviation σ is only dependent on the

distance between samples, the required value of the standard deviation σ(·) can be defined as σ1:s(x) ≥
f̄i(x|O1:s)− µ1:s(x) ≥ Lfi∥x2 − x1∥.

3 SIMULATION RESULTS

The performance of B-DPOP is now evaluated for randomly generated dynamic sensor coordination problems

(adapted from [12]) where mobile sensors with limited sensing range coordinate their positions (from initial

locations) to sense targets, within a two-dimensional plane. The initial location I of the agents and location

T of the targets are chosen at random.

The problem is modeled within the DCOP framework and has been solved by B-DPOP and compared

to the DPOP [6] and C-DPOP [3] algorithms. As DPOP cannot handle continuous domains, the domains

are discretized via a uniform grid. The C-DPOP algorithm is used as comparison as it is designed to solve

DCOP for continuous domains. The resulting sampling strategies of the algorithms can be seen in Figure 1,

where the distinction between the static DPOP and dynamic C-DPOP and B-DPOP sampling is clearly

visible.

The achieved global utility is compared based on the number of samples of the local utility functions

of the algorithms to provide a common metric for the computational requirement. Simulation results are

shown in Figure 2, where the amount of samples is kept equal for all experiments. The sample-efficiency of

B-DPOP results in a higher overall achieved utility.
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Fig. 2. Achieved utility comparison for a 3-agent problem based on 20 randomly generated problems with constant amount
of samples.
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