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Nonlinear Systems with Uncertain Periodically
Disturbed Control Gain Functions: Adaptive Fuzzy

Control with Invariance Properties
Maolong Lv, Bart De Schutter, Fellow, IEEE, Wenwu Yu, Senior Member, IEEE,

Wenqian Zhang and Simone Baldi, Member, IEEE

Abstract—This paper proposes a novel adaptive fuzzy dynamic
surface control (DSC) method for an extended class of periodi-
cally disturbed strict-feedback nonlinear systems. The peculiarity
of this extended class is that the control gain functions are not
bounded a priori but simply taken to be continuous and with a
known sign. In contrast with existing strategies, controllability
must be guaranteed by constructing appropriate compact sets
ensuring that all trajectories in the closed-loop system never
leave these sets. We manage to do this by means of invariant set
theory in combination with Lyapunov theory. In other words,
boundedness is achieved a posteriori as a result of stability
analysis. The approximator composed of fuzzy logic systems
(FLSs) and Fourier series expansion (FSE) is constructed to deal
with the unknown periodic disturbance terms.

Index Terms—Dynamic surface control (DSC); adaptive fuzzy
control; periodic disturbances; invariant set theory.

I. INTRODUCTION

During the past several years, considerable attention has
been paid to approximation-based adaptive control, which has
emerged as a promising way to handle control problems for
uncertain nonlinear systems [1-10]. Many significant results
have been obtained by utilizing fuzzy logic systems (FLSs)
[2-6] or neural networks (NNs) [11] as approximators. Back-
stepping first [12-17], and dynamic surface control (DSC)
later [18-26] have become standard schemes for controlling
various classes of nonlinear systems. For example, in [16],
a backstepping-based adaptive robust output-feedback control
scheme is proposed for a class of uncertain non-triangular
stochastic systems. A robust fuzzy adaptive backstepping con-
trol strategy is designed for strict-feedback nonlinear systems
in [17]. As compared to backstepping technology, DSC has the
appealing feature of sensibly simplifying the control law. In
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[18], a robust adaptive tracking control method is presented
for a class of strict-feedback nonlinear systems by using
DSC. An adaptive fuzzy hierarchical sliding-mode control
algorithm has been proposed in [19] for unknown nonlin-
ear time-delay systems with saturation, while [20] proposed
a fuzzy DSC method for large-scale interconnected strict-
feedback nonlinear system with constrained tracking error. An
adaptive neural DSC design is developed for uncertain strict-
feedback nonlinear systems in [21]. In [22], a fuzzy adaptive
tracking control method is studied for a class of stochastic
systems with input constraints. More studies can be found
in [23-26] and references therein. However, it is crucial to
mention that, for all the existing DSC schemes [18-26] to
work, a priori upper and lower bounds of the control gain
functions are assumed to exist. Even if this assumption is
used to guarantee controllability, it is restrictive because the
control gain functions turn out to be bounded before obtaining
system stability. However, it is often the case that a such a
priori bounds may not exist, i.e. the control gain functions
can be possibly unbounded before obtaining system stability.
While this aspect has been initially studied in [27], this work
has limited application because it considers ideal control gain
functions not perturbed by any disturbance term.

It is well known that perturbations in the control gain func-
tions frequently occur in many mechanical control systems
(e.g. industrial robots [28] and numerical control machines
[29]) and in many benchmark systems used to model electrical
circuits, power systems and chemical networks (e.g. van der
Pol oscillator [30] and controlled Brusselator model [31]).
The main obstacle in dealing with such perturbations is that
they affect the unknown system functions in a nonlinear and
unknown fashion. To counteract this obstacle, FLSs and NNs
have been utilized to approximate their effect [30-34]. In
[31], Fourier series expansion (FSE) and multilayer neural
networks (MNNs) are used as the functions approximators
to model each uncertainty in periodically disturbed strict-
feedback nonlinear systems. Similarly, FSE, combined with
radial basis function NNs, is employed in [32]. Additionally,
a combination of FLSs and FSE is used to model unknown
periodically disturbed systems in [33]. However, it should be
pointed out that, the aforementioned schemes [30-34] also
depend on the assumption that the control gain functions are
bounded a priori. Currently, to the authors’ best knowledge,
owing to the control design difficulty, no control design
approach for an extended class of periodically disturbed strict-
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feedback nonlinear systems with possibly unbounded control
gain functions has been reported, which motivates us to
explore new approaches to deal with this challenging problem.

The main contributions of this work are highlighted as
follows:

1) In contrast with the existing strategies [18-26], we remove
the a priori boundedness assumption on the control gain
functions. Therefore, to still ensure controllability, stability
must include some well-posedness analysis, which requires
a new design not available in literature.

2) Compared to the standard approximation-based adaptive
methods with periodically disturbed systems [30-34], based
on a priori boundedness of the control gain functions, here
the approximator (namely, an FSE-FLSs approximator) is
constructively combined with invariant set theory so as to
guarantee well-posedness of the problem (bounded control
gain functions on a compact set, i.e. controllability).

3) Differently from the standard DSC technique, the relaxed
assumption on the control gain functions requires the combi-
nation of invariant set theory and Lyapunov theory stability in
the form of semi-globally uniformly ultimately boundedness
(SGUUB).

The rest of this paper is organized as follows. Section 2
presents the problem statement and preliminaries. The adaptive
fuzzy controller is designed in Section 3. Section 4 is devoted
to stability analysis. In Section 5, two simulation examples
are presented to demonstrate the effectiveness of the proposed
scheme, followed by conclusions in Section 6.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem formulation

This work considers the following class of uncertain period-
ically time-varying strict-feedback nonlinear systems [31-33]:

ẋi = gi (x̄i, θi (t))xi+1 + φi (x̄i, θi (t)) , 1 ≤ i ≤ n− 1

ẋn = gn (x, θn (t))u+ φn (x, θn (t))

y = x1
(1)

where x̄i = [x1, x2, . . . , xi]
T ∈ Ri and x =

[x1, x2, . . . , xn]
T ∈ Rn are the system state variables, u, y ∈

R are the system input and output, φi (·, ·) are unknown con-
tinuous functions with φi (0, θ) = 0, ∀θ, gi (·, ·) are unknown
continuous control gain functions, and θi (t) : [0, +∞) →
Rmi are unknown and continuously time-varying perturbations
with known periods Ti, namely, θi (t+ Ti) = θi (t). For the
sake of brevity, θi (t) will be denoted by θi throughout this
paper.

The control objective of this study is to design an adaptive
control law for system (1) such that the output tracking error
can be made arbitrarily small and all the signals in the closed-
loop system to be SGUUB.

In contrast with existing literature [30-34], we aim to
solve this problem in the presence of the following relaxed
assumption.

Assumption 1: The unknown continuous control gain
functions satisfy |gi(x̄i, θi)| > 0. Their signs are known,
and without loss of generality, it is further assumed that
gi(x̄i, θi) > 0 for i = 1, 2, ..., n.

Remark 1: Despite some efforts such as [27] and [35]
have been made to relax the boundedness assumption of
control gain functions, the considered works have limited
application because they consider ideal control gain functions
not perturbed by any disturbance term.

Remark 2: In [30-34] periodically disturbed control gain
functions are considered but the standard assumption from [18-
26] is used: that is, the control gain functions are assumed to
satisfy 0 < g

i
≤ |gi(x̄i, θi)| ≤ ḡi (a priori boundedness).

In fact, this assumption is sufficient for controllability of the
system (1). However, in practice a priori boundedness is too
restrictive. For example, gi(x̄i, θi) = x21+e

xiθi does not satisfy
a priori boundedness. In other words, Assumption 1 allows the
functions gi(x̄i, θi) to be possibly unbounded functions of the
states.

Remark 3: Clearly, the states xi cannot be assumed to
be bounded a priori before obtaining the system stability.
Therefore, in view of Assumption 1, the control gains cannot
be taken bounded a priori before obtaining system stability.
The absence of a priori bounds requires a new control design
going beyond the existing literature [30-34].

The following assumption on the trajectory r to be tracked
is standard in most approximation-based designs [2-4]:

Assumption 2: The signals r, ṙ, and r̈ are bounded, i.e.,
there exists a positive constant B0 such that

Ω0 =
{
(r, ṙ, r̈)

∣∣r2 + (ṙ)2 + (r̈)2 ≤ B2
0

}
Let us recall the following lemmas used for stability anal-

ysis.
Lemma 1 [8]: Consider the first-order dynamical system

χ̇ (t) = −aχ (t) + pυ (t) (2)

with a > 0, p > 0 and υ (t) a positive function. Then, for any
bounded initial condition χ (0) ≥ 0, the inequality χ (t) ≥ 0
for ∀t ≥ 0 holds.

Lemma 2 [9]: The hyperbolic tangent function tanh (·)
satisfies for any ρ ∈ R and ∀ς > 0

0 ≤ |ρ| − ρ tanh

(
ρ

ς

)
≤ 0.2785ϑ, 0 ≤ ρ tanh

(
ρ

ς

)
(3)

Lemma 3 [24]: (Young’s inequality with ε) For any (x, y) ∈
R2, the following inequality holds:

ℏℓ ≤ ε2

ϱ
|ℏ|2 + 1

βε2
|ℓ|2 (4)

where ϱ > 1, β > 1, ε > 0 and (ϱ− 1) (β − 1) = 1.

B. FSE-FLSs-based approximator

The main idea behind FSE-FLSs-based approximator [33] is
the following. We first employ FSE to estimate θi, and then we
utilize the estimate as one of the FLSs inputs to approximate
unknown functions in the form χi (Θi, θi).

Let Θi =
[
x̄Ti , a

T
i

]T
be composed of two measured

signals defined on a compact set Ωi × Ω0, and let θi =
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[θi,1, θi,2, . . . , θi,m]
T be unknown continuous vectors of

known period T defined on a compact set

Ωθ =

(θ1, θ2, . . . , θn)
∣∣∣ n∑
j=1

θTj θj ≤M2
θ


with Mθ a positive constant. The vector θi can be expressed
by a linearly parameterized FSE as follows:

θi = HT
i ϕi(t) + δθi(t) (5)

where Hi = [Hi,1, . . . ,Hi,m] ∈ Rq×m is a constant matrix
with Hi,j ∈ Rq a vector consisting of the first q coefficients
of the FSE of θi,j , δθi is the truncation error with upper
bound δ∗θi > 0, which can be made arbitrarily small by
increasing q, and ϕi (t) = [ϕi,1 (t) , . . . , ϕi,q (t)]

T with
ϕi,1 (t) = 1, ϕi,2j (t) =

√
2 sin (2πjt/T ), ϕi,2j+1 (t) =√

2 cos (2πjt/T )
(
j = 1, . . . , q−1

2

)
, whose derivatives up to

the nth-order are smooth and bounded.
At this points, the FLSs will be employed to approximate

the unknown continuous function χi (Θi, θi) as

χi (Θi, θi) = ΞTi Ψi
(
ATi Zi

)
+ δχi (Θi, θi) (6)

where Ψi
(
ATi Zi

)
=
[
Ψi,1

(
ATi Zi

)
, . . . , Ψi,m

(
ATi Zi

)]T
is

a known smooth vector-valued function with component
Ψi,l

(
ATi Zi

)
=
∏n
j=1 µF li,j (xi,j)

/∑m
l=1

[∏n
j=1 µF li,j (xi,j)

]
,

(1 ≤ l ≤ m), where ATi is a matrix of adjustable
parameters, Zi =

[
ΘTi , θ

T
i , 1

]T ∈ Rl+m+1 is
a vector-valued function, µF li,j (xi,j) are fuzzy
membership functions chosen as the Gaussian functions
µF li,j (xi,j) = exp

[
−
((
xi,j − ali,j

)/
bli,j
)2]

with ali,j and bli,j
adjustable parameters, Ξi =

[
ȳ1i , ȳ

2
i , . . . , ȳ

m
i

]T
a vector of

adjustable parameters, ȳli the point such that µGl
(
ȳli
)
= 1,

and δχi (Θi, θi) the approximation error whose upper bound
δ∗χi > 0 can be decreased by increasing the number of fuzzy
rules l.

From (5) and ATi Zi = ATΘiΘi +ATθiθi +A0i , we have

ATi Zi = ATΘiΘi +ATθiH
T
i ϕi (t) +A0i +ATθiδθi (t)

= ψTi Z̄i (Θi, ϕi) +ATθiδθi (t)
(7)

where ψTi =
[
ATΘi , A

T
θi
Hi, A0i

]
and Z̄i (Θi, ϕi) =[

ΘTi , ϕ
T
i (t) , 1]

T .
Substituting (7) into (6) leads to

χi (Θi, θi) = ΞTi Ψi
(
ψTi Z̄i (Θi, ϕi) +ATθiδθi (t)

)
+ δχi

= ΞTi Ψi
(
ψTi Z̄i (Θi, ϕi)

)
+ εi (Θi, t)

(8)

where εi (Θi, t) = δχi+ΞTi Ψi
(
ψTi Z̄i (Θi, ϕi) +ATθiδθi (t)

)
−

ΞTi Ψi
(
ψTi Z̄i (Θi, ϕi)

)
satisfy the following lemma:

Lemma 4 [33]: For (Θi, θi) ∈ Ωi×Ω0×Ωθ (i = 1, . . . , n),
there exist unknown positive constants ε∗i such that

|εi (Θi, t)| ≤ ε∗i (9)

where ε∗i can be made arbitrarily small by increasing l and q.

To facilitate the control system design, we can rewrite the
estimation errors as

ΞTi Ψi
(
ψTi Z̄i (Θi, ϕi)

)
− Ξ̂Ti Ψi

(
ψ̂Ti Z̄i (Θi, ϕi)

)
=

Ξ̃Ti

(
Ψ̂i − Ψ̂′

iψ̂
T
i Z̄i (Θi, ϕi)

)
+ Ξ̂Ti Ψ̂

′
iψ̃
T
i Z̄i (Θi, ϕi) + ei

(10)

where Ψ̂′
i =

[
Ψ̂′
i,1, Ψ̂

′
i,2, . . . , Ψ̂

′
i,l

]T
∈ Rm×l with

Ψ̂′
i,j =

∂Ψi,j

(
Θi,θi

)
∂θi

∣∣∣
θi=ψ̂Ti Z̄i

(
Θi,ϕi

) (j = 1, ..., l), Ψ̂i =

Ψi

(
ψ̂Ti Z̄i (Θi, ϕi)

)
and the residual terms ei satisfy

|ei| ≤ e∗i = ∥ψi∥F
∥∥∥Z̄i (Θi, ϕi) Ξ̂Ti Ψ̂′

i

∥∥∥
F
+ |Ξi|1

+ ∥Ξi∥
∥∥∥Ψ̂′

iψ̂
T
i Z̄i (Θi, ϕi)

∥∥∥ . (11)

Remark 4: Note that the standard FLSs in [2-7] fail to ap-
proximate disturbed system functions because such perturba-
tions appear nonlinearly in unknown system functions and can
destroy the universal approximation property of FLSs. On the
contrary, [31-33] showed that FSE-FLSs-based approximator
in [31-33] can compensate for the nonlinearly parameterized
perturbations.

For compactness, let ∥·∥ denote the Euclidean norm of
a vector, ∥·∥F denote the Frobenius norm of a matrix,
λmax (Υ), λmin (Υ) denote the largest and smallest eigen-
values of a square matrix Υ and |Υ|1 =

∑m
i=1 |υi| with

Υ = [υ1, υ2, · · · , υm]T ∈ Rm, respectively.

III. FUZZY ADAPTIVE DSC DESIGN

The DSC technique and invariant set theory are now em-
ployed to construct an adaptive fuzzy control law for (1).
According to the DSC iterative procedure, let us proceed along
the following steps:

Step 1: Define the output tracking error z1 = x1 − r. From
(1), the time derivative of z1 is

ż1 = φ1 (x1, θ1) + g1 (x1, θ1)x2 − ṙ . (12)

Define the compact set Ω1 :=
{
z1
∣∣z21 ≤ 2ξ

}
, with ξ > 0

being a positive constant. For the compact set Ω1 ×Ω0 ×Ωθ,
the following lemma holds:

Lemma 5: The unknown continuous control-gain function
g1(x1, θ1) has a maximum and a minimum in Ω1 ×Ω0 ×Ωθ,
namely, there exist positive constants g

1
and ḡ1 such that g

1
=

min
Ω1×Ω0×Ωθ

g1(x1, θ1) and ḡ1 = max
Ω1×Ω0×Ωθ

g1(x1, θ1).

Proof: Observing z1 = x1 − r, we obtain x1 = z1 + r, so
that the continuous function g1(x1, θ1) can be expressed by

g1(x1, θ1) = γ1(z1, θ1, r) (13)

with γ1(·) being a continuous function of z1, θ1, and r. Note
that Ω1 ×Ω0 ×Ωθ is a compact set since Ω1, Ω0, and Ωθ are
compact sets. Furthermore, it can be seen from (13) that all
the variables of γ1(z1, θ1, r) are included in the compact set
Ω1 × Ω0 × Ωθ. Thus, we have

0 < g
1
≤ g1(x1, θ1) ≤ ḡ1, (x1, θ1) ∈ Ω1 × Ω0 × Ωθ (14)
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which concludes the proof. From (14), we can rewrite (12) as

ż1 = g
1
(χ1 (Θ1, θ1) + x2 + g1,0x2) (15)

with g1,0 = g−1
1

(
g1 (x1, θ1)

)
− 1 > 0, χ1 (Θ1, θ1) =

g−1
1

(φ1 (x1, θ1)− ṙ), and Θ1 = [x1, ṙ]
T .

Remark 5: It has to be remarked that the conventional
design of χ1(x1, θ1) = g−1

1 (x1, θ1)φ1(x1, θ1) makes stability
analysis complex due to multiple substitutions of intermediate
control laws [31]. On the contrary, the choices χ1(Θ1, θ1) =
g−1
1

(
φ1(x1, θ1)−ṙ

)
and g1,0 = g1(x1, θ1)/g1−1 > 0 are able

to simplify control design procedure due to the elimination of
the coupling term z1g1,0α1 < 0.

To address the stabilization of subsystem (12), we take the
following quadratic Lyapunov function candidate

Vz1 =
1

2
z21 . (16)

According to (8) and (15), the time derivative of Vz1 is

V̇z1 ≤ z1g1

(
ΞT1 Ψ1

(
ψT1 Z̄1 (Θ1, ϕ1)

)
+ x2 + g1,0x2

)
+|z1| g1ε

∗
1

(17)
Let us choose the virtual control laws α1 and parameters

adaptation laws Ξ̂1 and ψ̂1 as follows:

α1 = −c1z1 − Ξ̂T1 Ψ1

(
ψ̂T1 Z̄1 (Θ1, ϕ1)

)
ω1

ω1 = tanh

(
z1Ξ̂

T
1 Ψ1(ψ̂T1 Z̄1(Θ1,ϕ1))

υ1

) (18)

˙̂
Ξ1 = ΓΞ1

[
z1

(
Ψ̂1 − Ψ̂′

1ψ̂
T
1 Z̄1 (Θ1, ϕ1)

)
− σ1Ξ̂1

]
(19)

˙̂
ψ1 = Γψ1

[
z1Z̄1 (Θ1, ϕ1) Ψ̂

T
1 Ψ̂

′
1 − σ1ψ̂1

]
(20)

where c1 > 0, σ1 > 0, and υ1 > 0 are design parameters,
and Γψ1

= ΓTψ1
> 0 and ΓΞ1

= ΓTΞ1
> 0 are adaptive gain

matrices. According to Lemma 1, we have ψ̂1 (t) ≥ 0 and
Ξ̂1 (t) ≥ 0 for ∀t ≥ 0 after selecting Ξ̂1(0) ≥ 0 and ψ̂1(0) ≥
0.

We can now introduce the DSC filters, which are used to
avoid repeatedly differentiating α1. Let α1 pass through a first-
order filter with time constant ι2 to obtain α2f as

ι2α̇2f + α2f = α1, α2f (0) = α1 (0) . (21)

Define the output of this filter as y2 = α2f −α1. Then, we
have α̇2f = − (y2/ι2) and

ẏ2 = −y2
ι2
+(

−∂α1

∂z1
ż1 −

∂α1

∂ψ̂1

˙̂
ψ1 −

∂α1

∂Ξ̂1

˙̂
Ξ1 −

∂α1

∂x1
ẋ1 −

∂α1

∂ṙ
r̈

)
︸ ︷︷ ︸

B2

(
z1, z2, y2, ψ̂1, Ξ̂1, r, ṙ, r̈

) (22)

where B2 (·) is a continuous function.
By noting that x2 = z2 + α2f and y2 = α2f − α1, one has

x2 = z2 + α1 + y2 (23)

Substituting (18) and (23) into (17) gives

V̇z1 ≤g
1

(∣∣∣z1Ξ̂T1 Ψ1

(
ψ̂T1 Z̄1 (Θ1, ϕ1)

)∣∣∣)+ |z1| g1ε
∗
1

− g
1

(
z1Ξ̂

T
1 Ψ1

(
ψ̂T1 Z̄1 (Θ1, ϕ1)

)
ω1

)
+ z1g1 (x1, θ1) (z2 + y2)− c1g1z

2
1

− g
1

(
z1Ξ̂

T
1 Ψ1

(
ψ̂T1 Z̄1 (Θ1, ϕ1)

))
+ g

1

(
z1Ξ

T
1 Ψ1

(
ψT1 Z̄1 (Θ1, ϕ1)

))
+ z1g1g1,0α1.

(24)

Applying Lemma 2, we obtain

V̇z1 ≤z1g1
(
ΞT1 Ψ1

(
ψT1 Z̄1 (Θ1, ϕ1)

))
+ z1g1g1,0α1

− z1g1

(
Ξ̂T1 Ψ1

(
ψ̂T1 Z̄1 (Θ1, ϕ1)

))
+ |z1| g1ε

∗
1

+ z1g1 (x1, θ1) (z2 + y2) + 0.2785g
1
υ1

− c1g1z
2
1 .

(25)

In view of (14) (15) and (18), the following inequality holds:

z1g1g1,0α1 = g
1
g1,0

[
−z1Ξ̂T1 Ψ1

(
ψ̂T1 Z̄1 (Θ1, ϕ1)

)
ω1

− c1z
2
1

]
< 0

(26)

Using (10) and (26) yields

V̇z1 ≤z1g1
(
Ξ̃T1

(
Ψ̂1 − Ψ̂′

1ψ̂
T
1 Z̄1 (Θ1, ϕ1)

))
− c1g1z

2
1

+ z1g1

(
Ξ̂T1 Ψ̂

′
1ψ̃

T
1 Z̄1 (Θ1, ϕ1) + e1

)
+ |z1| g1ε

∗
1

+ z1g1 (x1, θ1) (z2 + y2) + 0.2785g
1
υ1

(27)

with e1 being bounded by

|e1| ≤ ∥ψ1∥F
∥∥∥ϕ1Ξ̂T1 Ψ̂′

1

∥∥∥
F
+∥Ξ1∥

∥∥∥Ψ̂′
1ψ̂

T
1 Z̄1 (Θ1, ϕ1)

∥∥∥+|Ξ1|1
(28)

Substituting (28) into (27) leads to

V̇z1 ≤z1g1
(
Ξ̃T1

(
Ψ̂1 − Ψ̂′

1ψ̂
T
1 Z̄1 (Θ1, ϕ1)

))
− c1g1z

2
1

+ z1g1

(
Ξ̂T1 Ψ̂

′
1ψ̃

T
1 Z̄1 (Θ1, ϕ1)

)
+ |z1| g1a

∗
1

+ z1g1 (x1, θ1) (z2 + y2) + 0.2785g
1
υ1

(29)

where a∗1 = e∗1 + ε∗1.
We can now choose the Lyapunov function candidate

V1 = Vz1 + tr

{
g
1
ψ̃T1 Γ

−1
ψ1
ψ̃1

2

}
+
g
1
Ξ̃T1 Γ

−1
Ξ1

Ξ̃1

2
+

1

2
y22 (30)

where ψ̃1 = ψ1 − ψ̂1 and Ξ̃1 = Ξ1 − Ξ̂1 are the estimation
errors of ψ1 and Ξ1, respectively.

From (22) and (29), the time derivative of (30) is

V̇1 ≤z1g1
[
Ξ̃T1

(
Ψ̂1 − Ψ̂′

1ψ̂
T
1 Z̄1 (Θ1, ϕ1)

)]
+ |y2B2 (·)|

+ z1g1

(
Ξ̂T1 Ψ̂

′
1ψ̃

T
1 Z̄1 (Θ1, ϕ1)

)
+ 0.2785g

1
υ1

+ z1g1 (x1, θ1) (z2 + y2) + |z1| g1a
∗
1 − y22

/
ι2

− tr
{
g
1
ψ̃T
1 Γ

−1
ψ1

˙̂
ψ1

}
− g

1
Ξ̃T
1 Γ

−1
Ξ1

˙̂
Ξ1 − c1g1z

2
1 .

(31)
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Using Ξ̂T1 Ψ̂
′
1ψ̃

T
1 Z̄1 (Θ1, ϕ1) = tr

{
ψ̃T
1 Z̄1 (Θ1, ϕ1) Ξ̂

T
1 Ψ̂

′
1

}
and substituting the parameter adaptation laws (19) and (20)
into (31) results in

V̇1 ≤σ1tr
{
g
1
ψ̃T
1 ψ̂1

}
+ σ1g1Ξ̃

T
1 Ξ̂1 + 0.2785g

1
υ1

+ z1g1 (x1, θ1) (z2 + y2) + |y2B2 (·)|
+ |z1| g1a

∗
1 − c1g1z

2
1 − y22

/
ι2 .

(32)

Step i (i = 2, . . . , n− 1) : The design process for step i is
similar to Step 1. From zi = xi − αif , one has

żi = φi (x̄i, θi) + gi (x̄i, θi)xi+1 − α̇if . (33)

Choose the virtual control laws αi and parameters adapta-
tion laws ψ̂i and Ξ̂i as follows

αi = −cizi − Ξ̂Ti Ψi

(
ψ̂Ti Z̄i (Θi, ϕi)

)
ωi

ωi = tanh

(
ziΞ̂

T
i Ψi(ψ̂

T
i Z̄i(Θi,ϕi))
υi

) (34)

˙̂
Ξi = ΓΞi

[
zi

(
Ψ̂i − Ψ̂′

iψ̂
T
i Z̄i (Θi, ϕi)

)
− σiΞ̂i

]
(35)

˙̂
ψi = Γψi

[
ziZ̄i (Θi, ϕi) Ξ̂

T
i Ψ̂

′
i − σiψ̂i

]
(36)

where ci > 0, σi > 0, and υi > 0 (i = 2, 3, . . . , n− 1) are
design parameters. Moreover, Γψi = ΓTψi > 0 and ΓΞi =

ΓTΞi > 0 are adaptive gain matrices. According to Lemma 1,
we have ψ̂i (t) ≥ 0 and Ξ̂i (t) ≥ 0 for ∀t ≥ 0.

Next, let αi pass through a first-order filter with time
constant ιi+1 to obtain αi+1f as

ιi+1α̇i+1f + αi+1f = αi, αi+1f (0) = αi (0) (37)

Define the filter errors yi+1 = αi+1f−αi. We have α̇i+1f =
− (yi+1/ιi+1) and

ẏi+1 = −yi+1

ιi+1
+(

−∂αi
∂zi

żi −
∂αi

∂ψ̂i

˙̂
ψi −

∂αi

∂Ξ̂i

˙̂
Ξi −

∂αi
∂x̄i

˙̄xi −
∂αi
∂yi

ẏi

)
︸ ︷︷ ︸

Bi+1

(
z̄i+1, ȳi+1,

¯̂
ψi,

¯̂
Ξi, r, ṙ, r̈

)
(38)

where Bi+1 (·) is a continuous function and z̄i+1 =

[z1, . . . , zi+1]
T , ȳi+1 = [y2, . . . , yi+1]

T , ¯̂
ψi =

[
ψ̂1, . . . , ψ̂i

]T
,

¯̂
Ξi =

[
Ξ̂1, . . . , Ξ̂i

]T
.

Noting that xi+1 = zi+1 + αi+1f and yi+1 = αi+1f − αi,
one has

xi+1 = zi+1 + αi + yi+1 . (39)

In view of (34), we know that the virtual control signal
αi−1 is a continuous function with respect to zi−1, ψ̂i−1, yi−1,
and Ξ̂i−1. Therefore, xi is a continuous function of zi, yi,
ψ̂i−1, and Ξ̂i−1. From x1 = z1 + yd and (39), it follows that
the control gain functions gi(x̄i, θi) can be expressed in the
following form:

gi(x̄i, θi) = γi

(
z̄i, ȳi,

¯̂
ψi−1,

¯̂
Ξi−1, r, θi

)
(40)

where γi (·) is a continuous function.
Define the sets Ωi (i = 2, . . . , n− 1) as

Ωi :=

{[
z̄Ti , ȳ

T
i ,

¯̂
ψTi−1,

¯̂
ΞTi−1

]T ∣∣∣ i∑
j=1

z2j +
i∑

j=2

y2j+

i−1∑
j=1

(
g
j
Ξ̃Tj Γ

−1
Ξj

Ξ̃j + tr
{
g
j
ψ̃Tj Γ

−1
ψj
ψ̃j

})
≤ 2ξ

} (41)

where ξ is the same positive design constant as that after (12).
In a similar fashion as Lemma 5 was derived, we have that
the unknown continuous functions gi(x̄i, θi) have a maximum
and a minimum in the compact set Ωi × Ω0 × Ωθ, i.e. there
exist positive constants ḡi and g

i
satisfying

0 < g
i
≤ gi(x̄i, θi) ≤ ḡi, (x̄i, θi) ∈ Ωi × Ω0 × Ωθ . (42)

By using (33) and (42), one has

żi = g
i
(χi (Θi, θi) + xi+1 + gi,0xi+1) (43)

where χi (Θi, θi) = g−1
i

(φi (x̄i, θi)− α̇if ), Θi = [x̄i, α̇if ]
T

and gi,0 = g−1
i

(
gi (x̄i, θi)

)
− 1 > 0.

Consider the quadratic Lyapunov function candidate:

Vzi =
1

2
z2i . (44)

From (8), (34), (39), and (43), the time derivative of Vzi is

V̇zi ≤zigi
(
ΞTi Ψi

(
ψTi Z̄i (Θi, ϕi)

))
+ zigigi,0αi

− zigi

(
Ξ̂Ti Ψi

(
ψ̂Ti Z̄i (Θi, ϕi)

))
− cigiz

2
i

+ zigi (x̄i, θi) (zi+1 + yi+1) + 0.2785g
i
υi

+ |zi| giε
∗
i .

(45)

In view of (34), (42) and (43), it holds that

zigigi,0αi =gigi,0

[
− ciz

2
i−

ziΞ̂
T
i Ψi

(
ψ̂Ti Z̄i(Θi, ϕi)

)
ωi

]
< 0

(46)

Invoking (10) and (46), we can further obtain

V̇zi ≤zigi
(
Ξ̃Ti
(
Ψ̂i − Ψ̂′

iψ̂
T
i Z̄i(Θi, ϕi)

))
− cigiz

2
i

+ zigi

(
Ξ̂Ti Ψ̂

′
iψ̃
T
i Z̄i(Θi, ϕi) + ei

)
+ |zi|giϵ

∗
i

+ zigi
(
x̄i, θi

)(
zi+1 + yi+1

)
+ 0.2785g

i
υi

(47)

with ei being bounded by

|ei| ≤∥ψi∥F ∥ϕiΞ̂Ti Ψ̂′
i∥F + ∥Ξi∥∥Ψ̂′

iψ̂
T
i Z̄i(Θi, ψi)∥

+ |Ξi|1
(48)

Substituting (48) into (47) yields

V̇zi ≤zigi
(
Ξ̃Ti

(
Ψ̂i − Ψ̂′

iψ̂
T
i Z̄i (Θi, ϕi)

))
+ |zi| gia

∗
i

+ zigi (x̄i, θi) (zi+1 + yi+1) + 0.2785g
i
υi

+ zigi

(
Ξ̂Ti Ψ̂

′
iψ̃
T
i Z̄i (Θi, ϕi)

)
− cigiz

2
i

(49)

where a∗i = e∗i + ε∗i .
Choose the Lyapunov function candidate as

Vi = Vzi + tr

{
g
i
ψ̃Ti Γ

−1
ψi
ψ̃i

2

}
+
g
i
Ξ̃Ti Γ

−1
Ξi

Ξ̃i

2
+

1

2
y2i+1 (50)
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where ψ̃i = ψi − ψ̂i and Ξ̃i = Ξi − Ξ̂i.
It follows from (38) and (49) that the time derivative of (50)

is

V̇i ≤ zigi

[
Ξ̃Ti
(
Ψ̂i − Ψ̂′

iψ̂
T
i Z̄i(Θi, ϕi)

)]
+ |yi+1Bi+1(·)|

+ zigi

(
Ξ̂Ti Ψ̂

′
iψ̃
T
i Z̄i(Θi, ϕi)

)
+ 0.2785g

i
υi

+ zigi(x̄i, θi)(zi+1 + yi+1) + |zi|gia
∗
i −

y2i+1

ιi+1

+ tr
{
g
i
ψ̃Ti Γ

−1
ψi

˙̂
ψi

}
− g

i
Ξ̃Ti Γ

−1
Ξi

˙̂
Ξi − cigiz

2
i

(51)
Recalling (35) and (36), we can obtain the time derivative

of Vi as

V̇i ≤σitr
{
g
i
ψ̃Ti ψ̂i

}
+ σigiΞ̃

T
i Ξ̂i + |yi+1Bi+1 (·)|

+ zigi (x̄i, θi) (zi+1 + yi+1)− y2i+1

/
ιi+1

+ 0.2785g
i
υi − cigiz

2
i + |zi| gia

∗
i .

(52)

Step n : Define zn = xn − αnf , whose time derivative is

żn = φn (x, θn) + gn (x, θn)u− α̇nf (53)

Choose the virtual control law u and the parameter adapta-
tion laws ψ̂n and Ξ̂n as follows

u = −cnzn − Ξ̂TnΨn

(
ψ̂Tn Z̄n (Θn, ϕn)

)
ωn

ωn = tanh

(
znΞ̂

T
nΨn(ψ̂

T
n Z̄n(Θn,ϕn))
υn

) (54)

˙̂
Ξn = ΓΞn

[
zn

(
Ψ̂n − Ψ̂′

nψ̂
T
n Z̄n (Θn, ϕn)

)
− σnΞ̂n

]
(55)

˙̂
ψn = Γψn

[
znZ̄n (Θn, ϕn) Ξ̂

T
n Ψ̂

′
n − σnψ̂n

]
(56)

where cn > 0, σn > 0, and υn > 0 are design parameters,
and Γψn = ΓTψn > 0 and ΓΞn = ΓTΞn > 0 are adaptive
gain matrices. According to Lemma 1, we have ψ̂n (t) ≥ 0
and Ξ̂n (t) ≥ 0 for ∀t ≥ 0 after selecting ψ̂n (0) = 0 and
Ξ̂n (0) = 0 for ∀t ≥ 0.

Similarly to the former steps, the continuous function
gn(x, θn) can be expressed in the following form:

gn(x, θn) = γn

(
z̄n, ȳn,

¯̂
ψn−1,

¯̂
Ξn−1, r, θn

)
(57)

where γn (·) is a continuous function and z̄n, ȳn, ¯̂
ψn−1, ¯̂Ξn−1

and θn are defined in a similar way as after (38).
Define the following compact set:

Ωn :=

{[
z̄Tn , ȳ

T
n ,

¯̂
ψTn−1,

¯̂
ΞTn−1

]T ∣∣∣ n∑
j=1

z2j +
n∑
j=2

y2j+

n−1∑
j=1

(
g
j
Ξ̃Tj Γ

−1
Ξj

Ξ̃j + tr
{
g
j
ψ̃T
j Γ

−1
ψj
ψ̃j

})
≤ 2ξ

} (58)

It has to be noted that all the variables of γn (·) are
included in the compact set Ωn × Ω0 × Ωθ. In other words,
in line with Lemma 5, the continuous function γn (·) has a
maximum ḡn = max

Ωn×Ω0×Ωθ
gn(x, θn) and a minimum g

n
=

min
Ωn×Ω0×Ωθ

gn (x, θn) such that

0 < g
n
≤ gn(x, θn) ≤ ḡn . (59)

From (59), we can rewrite (53) as

żn = g
n
(χn (Θn, θn) + u+ gn,0u) (60)

where χn (Θn, θn) = g−1
n

(φn (x, θn)− α̇nf ), Θn =

[x, α̇nf ]
T and gn,0 = gn (x, θn)/gn − 1 > 0.

To address the stabilization of subsystem (53), take the
following quadratic Lyapunov function candidate:

Vzn =
1

2
z2n . (61)

From (8), (54) and (60), the time derivative of Vzn is

V̇zn ≤zngn
(
ΞTnΨn

(
ψTn Z̄n (Θn, ϕn)

))
+ |zn| gnε

∗
n

− zngn

(
Ξ̂TnΨn

(
ψ̂Tn Z̄n (Θn, ϕn)

))
− cngnz

2
n

+ zngngn,0u+ 0.2785g
n
υn .

(62)

According to (54), (59) and (60), the following inequality
holds

zngngn,0u =g
n
gn,0

[
− cnz

2
n−

znΞ̂
T
nΨn

(
ψ̂Tn Z̄n(Θn, ϕn)

)
ωn

]
< 0

(63)

Using (10) and (63) leads to

V̇zn ≤zngn
(
Ξ̃Tn
(
Ψ̂n − Ψ̂′

nψ̂
T
n Z̄n(Θn, ϕn)

))
− cngnz

2
n

+ zngn

(
Ξ̂Tn Ψ̂

′
nψ̃

T
n Z̄n(Θn, ϕn) + en

)
+ |zn|gnε

∗
n

+ 0.2785g
n
υn

(64)
with en being bounded by

|en| ≤∥ψn∥F ∥ϕnΞ̂Tn Ψ̂′
n∥F + ∥Ξn∥∥Ψ̂′

nψ̂
T
n Z̄n(Θn, ψn)∥

+ |Ξn|1
(65)

Substituting (65) into (64), one arrives

V̇zn ≤zngn
(
Ξ̃Tn

(
Ψ̂n − Ψ̂′

nψ̂
T
n Z̄n (Θn, ϕn)

))
+ zngn

(
Ξ̂Tn Ψ̂

′
nψ̃

T
n Z̄n (Θn, ϕn)

)
− cngnz

2
n

+ 0.2785g
n
υn + |zn| gna

∗
n

(66)

where a∗n = e∗n + ε∗n.
Choose the following Lyapunov function candidate:

Vn = Vzn + tr

{
g
n
ψ̃TnΓ

−1
ψn
ψ̃n

2

}
+
g
n
Ξ̃TnΓ

−1
Ξn

Ξ̃n

2
(67)

where ψ̃n = ψn − ψ̂n and Ξ̃n = Ξn − Ξ̂n.
It follows from (66) that the time derivative of V̇n is

V̇n ≤zngn
(
Ξ̃Tn
(
Ψ̂n − Ψ̂′

nψ̂
T
n Z̄n(Θn, ϕn)

))
− cngnz

2
n

+ zngn

(
Ξ̂Tn Ψ̂

′
nψ̃

T
n Z̄n(Θn, ϕn)

)
+ 0.2785g

n
υn

+ |zn|gna
∗
n − tr

{
g
n
ψ̃TnΓ

−1
ψn

˙̂
ψn

}
− g

n
Ξ̃TnΓ

−1
Ξn

˙̂
Ξn

(68)

Using (55) and (56), one reaches

V̇n ≤ σntr
{
g
n
ψ̃Tn ψ̂n

}
+ σngnΞ̃

T
n Ξ̂n + |zn| gna

∗
n

+ 0.2785g
n
υn − cngnz

2
n.

(69)
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IV. STABILITY ANALYSIS

Consider the following Lyapunov function:

V = V1 + V2 + · · ·+ Vn =

n∑
i=1

Vi (70)

with (i = 1, . . . , n− 1)

Vi =
1
2z

2
i + tr

{
g
i
ψ̃T

i Γ−1
ψi
ψ̃i

2

}
+

g
i
Ξ̃T

i Γ−1
Ξi

Ξ̃i

2 +
y2
i+1

2

Vn =
1

2
z2n + tr

{
g
n
ψ̃T
n Γ

−1
ψn
ψ̃n

2

}
+

g
n
Ξ̃T
nΓ

−1
Ξn

Ξ̃n

2
.

Theorem 1: Consider the strict-feedback nonlinear system
described by (1) with Assumptions 1-2. Consider the inter-
mediate virtual control laws (18), (34), the actual control law
(54), and the adaptive laws (19), (20), (35), (36), (55), and
(56). For any ξ > 0, and bounded initial conditions satisfying
ψ̂i (0) ≥ 0, Ξ̂i (0) ≥ 0 and V (0) ≤ ξ with ξ being any given
positive constant, there exist design parameters ci, σi, υi, and
τi such that: i) The compact set Ωn×Ω0 ×Ωθ is an invariant
set, namely, V (t) ≤ ξ for ∀t > 0, and hence all the signals in
the closed-loop system are semi-globally uniformly ultimately
bounded (SGUUB); ii) The output tracking error z1 satisfies
lim
t→∞

|z1| ≤
√
2Σ, where Σ > 0 is a constant that can be made

arbitrarily small by properly selecting the design parameters.
Proof: It follows from (32), (52), and (69) that

V̇ ≤
n∑
i=1

(
σitr

{
g
i
ψ̃T
i ψ̂i

}
+ σigiΞ̃

T
i Ξ̂i

)
−

n∑
i=1

cigiz
2
i

+

n∑
i=1

(
0.2785g

i
υi + |zi| gia

∗
i

)
+

n−1∑
i=1

zigi (x̄i, θi) (zi+1 + yi+1)

+

n−1∑
i=1

(
−
y2i+1

ιi+1
+ |yi+1Bi+1 (·)|

)
.

(71)

It is apparent from (38) that all the variables of Bi+1 (·)
are included in the compact set Ωi ×Ω0 ×Ωθ. Consequently,
Bi+1 (·) has a maximum Di+1 over Ωi × Ω0 × Ωθ. So, on
Ωi × Ω0 × Ωθ, we have |Bi+1 (·)| ≤ Di+1.

By completion of squares, it holds that

Ξ̃Ti Ξ̂i ≤
∥Ξi∥2

2
−

∥∥∥Ξ̃i∥∥∥2
2

tr
{
ψ̃T
i ψ̂i

}
≤

∥ψi∥2F
2

−

∥∥∥ψ̃i∥∥∥2
F

2

|yi+1Di+1 (·)| ≤
y2i+1D

2
i+1 (·)

2k1
+
k1
2

|zi| gia
∗
i ≤

g2
i
z2i

2k3
+
k3a

∗
i
2

2

zigi (x̄i, θi) zi+1 ≤ z2i
2

+
g2i (x̄i, θi) z

2
i+1

2

zigi (x̄i, θi) yi+1 ≤
k2g

2
i (x̄i, θi) y

2
i+1

2
+

z2i
2k2

where k1 > 0, k2 > 0, and k3 > 0 are unknown constants.
Thus, we can rewrite (71) as

V̇ ≤
n−1∑
i=1

(
−
y2i+1

ιi+1
+
y2i+1D

2
i+1 (·)

2k1
+
k2g

2
i (x̄i, θi) y

2
i+1

2

)

+

n−1∑
i=1

(
z2i
2k2

+
z2i
2

+
g2i (x̄i, θi) z

2
i+1

2

)
−

n∑
i=1

[
1

2
g
i
σi

(∥∥∥Ξ̃i∥∥∥2 + ∥∥∥ψ̃i∥∥∥2
F

)]

+

n∑
i=1

(
−cigiz

2
i +

g2
i
z2i

2k3

)
+ϖ1

(72)

where ϖ1 =
n∑
i=1

[
1
2giσi

(
∥Ξi∥2 + ∥ψi∥2F

)
+ 0.2785g

i
υi

]
+

(n−1)k1
2 +

n∑
i=1

k3a
∗
i
2

2 .

From (14), (42), and (59), we can further rewrite (72) as

V̇ ≤−
n−1∑
i=2

(
cigi −

1

2
− 1

2k2
−
ḡ2i−1

2
−

g2
i

2k3

)
z2i

−
n∑
i=1

 σi

λmax

(
Γ−1
ψi

) tr{g
i
ψ̃T
i Γ

−1
ψi
ψ̃i

2

}
−

n∑
i=1

(
σi

λmax

(
Γ−1
Ξi

) giΞ̃Ti Γ−1
Ξi

Ξ̃i

2

)
+ϖ1

−
n−1∑
i=1

(
1

ιi+1
−
D2
i+1

2k1
− k2ḡ

2
i

2

)
y2i+1

−

(
c1g1 −

1

2
− 1

2k2
−

g2
1

2k3

)
z21

−

(
cngn −

ḡ2n−1

2
−

g2
n

2k3

)
z2n .

(73)

Choose c1 ≥ g−1
1

(
1
2+

1
2k2

+
g2
1

2k3
+ϖ2

)
, ci ≥ g−1

i

[
1
2+

1
2k2

+
ḡ2i−1

2 +
g2
i

2k3
+ϖ2

]
, (i = 2, ..., n−1), cn ≥ g−1

n

( ḡ2n−1

2 +
g2
n

2k3
+ϖ2

)
and 1

ιi+1
≥ D2

i+1

2k1
+

k2ḡ
2
i

2 +ϖ2, (i = 1, ..., n − 1) with ϖ2 =

min
{

σi
λmax(Γ

−1
ψi

)
, σi
λmax(Γ

−1
Ξi

)

}
.

Invoking (73), one gets

V̇ ≤ −ϖ2V +ϖ1 . (74)

Multiplying (74) by eϖ2t and integrating over [0, t] yields

V (t) ≤ (V (0)− Σ) e−ϖ2t +Σ ≤ V (0) + Σ (75)

where Σ = ϖ1/ϖ2, which can be made arbitrarily small
by increasing ci, and meanwhile decreasing λmax

(
Γ−1
Ξi

)
,

λmax

(
Γ−1
ψi

)
, σi, and υi. It is always possible to make

ϖ1/ϖ2 ≤ ξ by choosing the design parameters appropriately.
Then, in view of (74), we have that V̇ ≤ 0 holds for V = ξ:
consequently, the compact set Ωn × Ω0 × Ωω is an invariant
set and all signals of the closed-loop system are SGUUB.
Therefore, property (i) of Theorem 1 is proved.
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From (30), (50), and (67), we have
n∑
i=1

z2i
/
2 ≤ V . By using

(75) and
n∑
i=1

z2i
/
2 ≤ V , the following inequality holds:

lim
t→∞

|z1| ≤ lim
t→∞

√
2V (t) ≤

√
2Σ . (76)

This completes the proof of Theorem 1. ■
Remark 6: The novel contribution of Theorem 1 is the

adoption of invariant set theory in order to handle Assumption
1. In fact, the stability analysis in the Proof of Theorem 1 is
formulated based on the condition that all the state variables
stay inside the set Ωn×Ω0×Ωθ where Ωn ⊂

(
Ωn−1×R4

)
⊂

· · · ⊂
(
Ω2 × R4(n−2)

)
⊂
(
Ω1 × R4(n−1)

)
. The fact that

Ωn × Ω0 × Ωθ is an invariant set (as explained after (75))
validates the stability analysis even when the control gain
functions are possibly unbounded functions of the state.

V. SIMULATION RESULTS

In this section, two examples are given to illustrate the
effectiveness of the proposed method.

Example 1: Consider a second-order system described by
ẋ1 = (1.1 − 0.1 cos (x1θ1 (t))) e

x2
1x2 +

x2
1θ

2
1(t)+x1θ1(t)

x2
1θ

2
1(t)+1

ẋ2 =
(
0.9− 0.1θ22 (t) sin

2 (x1x2)
)
e|x2|u+ sin (x1x2θ2 (t))

× exp
(
−x21x22θ22 (t)

)
y = x1

(77)
where the unknown time-varying disturbances are θ1 (t) =
|cos (0.5t)|, θ2 (t) = |cos (0.25t)| with known periods T1 =
2π and T2 = 4π, respectively. Note that the control gain
functions g1 = (1.1 − 0.1 cos (x1θ1 (t))) e

x2
1 and g2 =

e|x2|
(
0.9− 0.1θ22 (t) sin

2 (x1x2)
)

cannot be bounded a pri-
ori because of the exponential term. However, they satisfy
Assumption 1. Therefore, our proposed scheme can be used
to nonlinear system (77) while existing methods cannot be
applied.

Based on Theorem 1, the actual control law and virtual
control law are chosen as follows:

u =− 8z2 − Ξ̂T2 Ψ2

(
ψ̂T2 Z̄2 (Θ2, ϕ2)

)
· tanh

z2Ξ̂T2 Ψ2

(
ψ̂T2 Z̄2 (Θ2, ϕ2)

)
0.25


α1 =− 6z1 − Ξ̂T1 Ψ1

(
ψ̂T1 Z̄1 (Θ1, ϕ1)

)
· tanh

z1Ξ̂T1 Ψ1

(
ψ̂T1 Z̄1 (Θ1, ϕ1)

)
0.25


The adaptation parameters laws are given by

˙̂
Ξ1 = 1.5 ·

[
z1

(
Ψ̂1 − Ψ̂′

1ψ̂
T
1 Z̄1 (Θ1, ϕ1)

)
− 0.25Ξ̂1

]
˙̂
Ξ2 = 1.5 ·

[
z2

(
Ψ̂2 − Ψ̂′

2ψ̂
T
2 Z̄2 (Θ2, ϕ2)

)
− 0.1Ξ̂2

]
˙̂
ψ1 = 1.2 ·

[
z1Z̄1 (Θ1, ϕ1) Ψ̂

T
1 Ψ̂

′
1 − 0.25ψ̂1

]
˙̂
ψ2 = 1.2 ·

[
z2Z̄2 (Θ2, ϕ2) Ψ̂

T
2 Ψ̂

′
2 − 0.1ψ̂2

]

In simulation, let the initial conditions be
[x1 (0) , x2 (0)]

T
= [0, 0.5]

T , ψ̂1 (0) = ψ̂2 (0) = 0
and Ξ̂1 (0) = Ξ̂2 (0) = 0. The desired reference trajectory is
r = sin (t) + sin (0.5t). The simulation results are shown in
Figs. 1-4.

Fig. 1: (a): System output y and desired trajectory r; (b):
Tracking error z1.

Fig. 2: (a): Control input u; (b): Phase portrait of system states
x1 and x2.

It can be easily seen from Fig. 1 that the system output
y can follow the desired reference trajectory r with bounded
error. Fig. 2 (a) shows that the proposed scheme has a bounded
control input and Fig. 2 (b) is presented to demonstrate the
boundedness of systems states x1 and x2. Additionally, Fig. 3
is given to show the response curves of adaptive parameters
ψ̂1, ψ̂2, Ξ̂1, and Ξ̂2.

To further demonstrate the effectiveness of the presented
approach with different design parameters, three different sets
of parameters are considered.

Case 1: c1 = 8, c2 = 9, σ1 = 0.25, σ2 = 0.15, υ1 = 0.25,
υ2 = 0.2, ι2 = 0.05, Γψ1 = ΓTψ2

= 2, and ΓΞ1 = ΓTΞ2
= 2.5.
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Fig. 3: Curves of
∥∥∥Ξ̂1

∥∥∥,
∥∥∥Ξ̂2

∥∥∥,
∥∥∥ψ̂1

∥∥∥ and
∥∥∥ψ̂2

∥∥∥.

Fig. 4: System output y under 3 different sets of parameters.

Case 2: c1 = 6, c2 = 7, σ1 = 0.35, σ2 = 0.25, υ1 = 0.35,
υ2 = 0.3, ι2 = 0.05, Γψ1

= ΓTψ2
= 1.5, and ΓΞ1

= ΓTΞ2 = 2.
Case 3: c1 = 4, c2 = 5, σ1 = 0.5, σ2 = 0.35, υ1 = 0.5,

υ2 = 0.45, ι2 = 0.05, Γψ1
= ΓTψ2

= 1, and ΓΞ1
= ΓTΞ2

= 1.5.
The system output responses are presented in Fig. 4, which

confirms the fact that system output tracking error can be made
arbitrarily small by increasing ci, Γψi and ΓΞi and decreasing
σi and υi (cf. discussion after (75)).

Example 2: Consider the following van der Pol oscillator: ẋ1 = x2 + x1 − 1/3x31 + p+ F (t)
ẋ2 = u+ 0.1 (x1 + a− bx2)
y = x1

(78)

where F (t) = q cos (θt) is a periodic exciting signal. When
the system parameters are chosen as θ = 1, a = 0.7, b = 0.8,
p = 0, and q = 0.74, the system (78) without control will
present chaotic behavior [33]. The period of the time-varying
disturbances F (t) is 2π.

In accordance with the Theorem 1, the actual control law

is chosen as

u =− c2z2 − Ξ̂T2 Ψ2

(
ψ̂T2 Z̄2 (Θ2, ϕ2)

)
· tanh

z2Ξ̂T2 Ψ2

(
ψ̂T2 Z̄2 (Θ2, ϕ2)

)
υ2


The virtual control law is chosen as

α1 =− c1z1 − Ξ̂T1 Ψ1

(
ψ̂T1 Z̄1 (Θ1, ϕ1)

)
· tanh

z1Ξ̂T1 Ψ1

(
ψ̂T1 Z̄1 (Θ1, ϕ1)

)
υ1


In simulation, the adaption laws are provided by (19), (20),

(55) and (56). The design parameters are chosen as σ1 = 0.1,
σ2 = 0.01,ΓΞ1

= ΓΞ2
= diag [0.5], Γψ1

= Γψ2
= diag [0.1],

υ1 = υ2 = 0.25, ι2 = 0.05, and c1 = c2 = 8. Let the
initial conditions be [x1 (0) , x2 (0)]

T
= [1, 0.5]

T , ψ̂1 (0) =
ψ̂2 (0) = 0, and Ξ̂1 (0) = Ξ̂2 (0) = 0. The desired reference
trajectory is r = 0.5 (sin (t) + cos (0.5t)). Because the control
gain functions are bounded a priori, this system is amenable
for some comparisons with existing methods. For comparison
purposes, two schemes are taken into account, the method
proposed here and an existing method (of reference [33]). The
simulation results are shown in Figs. 5-6 for the proposed
scheme, while the comparison in terms of the tracking error
is given in Fig. 7.

Fig. 5: (a): System output y and desired trajectory r; (b):
System output tracking error z1; (c): Control input u.

From Fig. 5 (a) and (b), we can see that the system output
y tracks the desired trajectory r with a small tracking error.
Fig. 5 (c) shows bounded control input. Fig. 6 illustrates the
boundedness of adaptation parameters ψ̂1, ψ̂2, Ξ̂1, and Ξ̂2,
respectively. From Fig. 7, we can see that, compared to the
method of [33], the tracking errors have a comparable order of
magnitude; however, the proposed approach provides smaller
peaks and a smoother response.
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Fig. 6: Evolutions of
∥∥∥Ξ̂1

∥∥∥,
∥∥∥Ξ̂2

∥∥∥,
∥∥∥ψ̂1

∥∥∥, and
∥∥∥ψ̂2

∥∥∥.

Fig. 7: Tracking errors of our approach and that of reference
[33].

VI. CONCLUSIONS

In this paper, we have proposed a novel adaptive fuzzy
control scheme based on DSC for a more general class of
strict-feedback nonlinear systems with periodic perturbations
of the control gain functions. In comparison with the existing
results, the restrictive assumption that upper and lower bounds
of control gain functions are assumed to be known a priori
has been removed. This has been achieved by introducing
appropriate compact invariant sets where maximum and min-
imum values of the continuous control gain functions can
be defined a posteriori and used for stability analysis. This
significantly relaxes a severe limitation while still guaranteeing
controllability and thus well-posedness of the adaptive control
problem. Interesting future work might involve to investigate
if the invariant set mechanism holds also in the framework
of finite time stability as [3] and [5], since many engineering
applications often require to achieve control objective in finite
time.
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