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1 Introduction

Maintenance is essential for the reliability, availability, and safety of a railway network, which is composed of
various infrastructures like tracks, tunnels, stations, switches, overhead wiring, signaling systems, and safety
control systems. In this paper we focus on track maintenance, which in general takes up a large portion of the
annual maintenance budget of a railway infrastructure network, e.g., 40% for the Dutch railway network [1].
As shown in Fig. 1, a railway track contains different assets, e.g., rails, ballasts, sleepers, fastenings, welds,
etc., that are interconnected and work together. These assets suffer from quality degradation over time
due to regular usage. For example, the contact between wheel and rail leads to squats, a typical rolling
contact fatigue that first appears on the rail surface and might cause rail breakage if not treated properly [2].
Early-stage squats can be effectively treated by grinding, while late-stage squats can only be addressed by
rail replacement [3].

Due to the high cost of railway track maintenance interventions (e.g., over EUR 10 000 for one grinding
operation), and the limited resource for track maintenance (e.g., limited track possession time for main-
tenance), how to plan maintenance interventions in a cost-efficient way without sacrificing the safety and
reliability of the whole network has become a primary concern for railway infrastructure managers. This ex-
plains why most European countries have started a shift from reactive maintenance to proactive maintenance
in recent years [4,5]. Condition-based maintenance [6,7], where maintenance interventions are planned based
on the “condition” of the asset, has been considered the most promising predictive maintenance strategy in
various fields [8, 9], as most system failures are preceded by one or more indicative signals [10].

We consider condition-based maintenance optimization [11, 12], where the optimal planning of mainte-
nance interventions is based on an explicit mathematical model describing the deterioration dynamics of the
asset. This deterioration model can be either deterministic or stochastic. Examples of deterministic models
include the linear model used in [13] to describe track quality degradation over tonnage, and the exponential
model proposed in [14] for track geometry deterioration over time. The main advantage of deterministic
model is that the resulting optimization problem is easier to solve than in case a more complex stochastic
model is used. However, as a deterministic model only captures the nominal deterioration behavior of an
asset, the resulting maintenance plan might not be robust enough in the presence of various sources of ran-
domness like model uncertainties and measurement errors. In this case stochastic models are preferred. A
bi-variant Gamma process is used in [15] to describe the evolution of longitudinal and transverse levels for a
French high-speed line. A grey-box model is proposed in [16] to identify the stochastic aging process of track
geometry using Monte Carlo simulation. Dagum probabilities are used in [17] to characterize the reduction
of the standard deviation of the longitudinal level over time. In [18], a fuzzy Takagi-Sugeno internal model
is applied to capture the most representative dynamics of squat evolution.

To make the proposed approach applicable to a wide range of defects in general railway infrastruc-
tures, we use a piecewise-affine model with bounded uncertain parameters as the deterioration model. The
main contribution of this chapter is the development of a model-based, optimization-based approach for
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Figure 1: Components of railway track.

condition-based maintenance planning of railway infrastructures. The developed approach is robust but
nonconservative, and the proposed distributed solution methods guarantee tractability even for large-scale
infrastructure systems.

The paper is organized as follows: the theoretical background of the proposed approach is presented in
Sect. 2, and the problem formulation is given in Sect. 3. Two distributed solution approaches are explained
in Sect. 4. A numerical case study with computational experiments and comparison to other approaches is
presented in Sect. 5. Finally, we conclude this work and provide future working directions in Sect. 6.

2 Preliminaries

We use Model Predictive Control (MPC) [19, 20] as the basic methodology for optimal condition-based
maintenance planning for railway infrastructures. MPC follows a receding horizon principle. An optimization
problem is solved at each sampling time step to predict the optimal sequence of maintenance actions for a
given prediction horizon, based on the information (e.g., measurement data) available at the current time
step. Only the first step of the maintenance action sequence is applied to the system, and a new optimization
problem is solved at the next time step with new information. The prediction horizon is in general much
shorter than the planning horizon, so the MPC optimization problem at each time step is much easier to solve
than the correspondent optimization problem for the entire planning horizon. Although the MPC controller
does not guarantee closed-loop optimality, in practice it usually gives a good control performance [21].

2.1 Hybrid and Distributed MPC

MPC has been applied to several real-world optimization problems like risk management [22] and supply
chain management [23, 24]. If the system involved in these problems contains both continuous and discrete
dynamics, we call it hybrid system. One way to address such a hybrid system is to transform it into a Mixed
Logical Dynamical (MLD) system [25] and to solve a Mixed Integer Programming (MIP) problem at each
time step. Another way is to adopt the concept of Time Instant Optimization (TIO) [26] and transform the
MPC optimization containing both continuous and discrete decision variables into a non-smooth optimization
problem with only continuous decision variables. Since both MIP problems and non-smooth optimization
problems are NP-hard, hybrid MPC usually becomes computationally intractable for large-scale systems.
In this case a distributed optimization scheme is usually adopted to improve the scalability of the MPC
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approach. In the control literature, most of the distributed optimization approaches are Lagrangian-based,
e.g., Alternating Direction Method of Multipliers (ADMM) [27], and there is no guarantee of convergence to
a global optimum for MIP problems. A continuous relaxation of binary variables is used in [28,29], yielding
a bound on the objective function value to warm-start the MIP problem. A practical approach is proposed
in [30] for a class of networked hybrid MPC. This heuristic first determines the binary decision variables
in the local problems, and then transforms the Mixed Integer Quadratic Programming (MIQP) problem
into a set of Quadratic Programming (QP) problems via distributed coordination. One non-Lagrangian-
based distributed method for MIP problems is the Distributed Robust Safe But Knowledgeable (DRSBK)
algorithm [31], which adopts a constraint tightening technique.

In the operations research literature, Benders decomposition [32] and Dantzig-Wolfe decomposition [33]
are the most well-known decomposition methods for large-scale Linear Programming (LP) and Mixed Integer
Linear Programming (MILP) problems. Benders decomposition is designed for problems coupled through
common variables, while Dantzig-Wolfe decomposition is for problems coupled through common constraints.
Benders decomposition can provide global optimal solution for MILP problems in which the integer decision
variables are only in the coupling variables. An up-to-date review on Benders decomposition is provided
in [34]. Dantzig-Wolfe decomposition only solves an LP relaxation for MILP problems. One example of
applying Dantzig-Wolfe decomposition to hybrid MPC is [35], which provides a suboptimal solution of the
MILP problem via column generation.

2.2 Chance-Constrained MPC

Real-world problems like maintenance planning are influenced by various sources of randomness like model
uncertainties, measurement error, and missing data. Robust control [36,37], where control performance and
constraint satisfaction are guaranteed when the uncertainties are within a specific range, might lead to a
very conservative control strategy. In this case, the concept of chance-constrained optimization [38] can
be adopted to achieve a balance between robustness and optimality. Chance-constrained MPC, where the
probabilistic constraints are formulated as chance-constrained constraints and the objective is to optimize
the expected value of the objective function, has been applied to various cases in industries like drinking
water network management [39], hospital pharmacy stock management [40], and condition-based planning
of railway infrastructures [41].

For chance-constrained optimization problems with known probability distributions of uncertainties, an-
alytical approximation methods [42] are the most suitable solution approaches. When the probability dis-
tributions of uncertainties are unknown, scenario-based approaches [43] and sample average approximation
methods [44] should be considered. Both approaches are based on randomization of uncertainties. The major
difference is that scenario-based approaches have more restrictive assumptions on the convexity of the chance-
constrained optimization problem, but require less randomized scenarios to obtain the same probabilistic
guarantee as sample average approximation methods. On the other hand, sampling average approximation
methods, which are based on Monte Carlo simulation, do not require convexity of the chance-constrained
problem, but need a large number of scenarios to achieve an acceptable probabilistic guarantee.

Since most scenario-based approaches require the chance constraints to be convex with respect to the
uncertain parameters, their applications to MILP chance-constrained problems are scarce. One notable
example is [45]. However, the proposed bound in [45] on the number of scenarios is very conservative, and
thus not suitable for large-scale chance-constrained problems. In this case, we choose a two-level approach [46]
that lies between robust approach and scenario-based approach.

3 Problem Formulation

In this section, we first describe the deterioration model in Sect. 3.1. The local chance-constrained MPC
problem is formulated in Sect. 3.2, and the two-stage robust scenario-based approach to approximate the
chance-constrained MPC problem is explained in Sect. 3.3. Finally, the centralized MLD-MPC problem that
have to be solved at each time step is formulated in Sect. 3.4. Some important symbols used in this section
are presented in Table 1.

3.1 Deterioration Model

For the planning of track maintenance activities, we divide a piece of railway track into N nonoverlapping
sections, as shown in Fig. 2. The following discrete-time state-space model is used to describe the independent
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Table 1: Important symbols used in Sect. 3.

Symbol Meaning

xj,k State of section j at time step k

uj,k Maintenance option applied to section j at time step k

θj,k Realizations of all the uncertain parameters for section j at time
step k

vj,k New binary and continuous decision variables in the transformed
MLD model

NP Prediction horizon

x̂j,k+l|k Estimated state of section j at time step k + l, based on the infor-
mation available at time step k

x̃j,k Estimated state of section j from time step k+1 to time step k+NP

ũj,k Maintenance option applied to section j from time step k to time
step k +NP − 1; same notation applies to θ̃j,k, ṽj,k

x̃
(s)
j,k Scenario s of x̃j,k; similar notation applies to θ̃

(s)
j,k , ṽ

(s)
j,k

Figure 2: Illustration of track sections for a single railway line.

deterioration dynamics of each section j ∈ {1, . . . , n}:

xj,k+1 = fj(xj,k, uj,k, θj,k)

=


f1
j (xj,k, θj,k) if uj,k = 1 (no maintenance)

fq
j (xj,k, θj,k) if uj,k = q ∀q ∈ {2, . . . , N − 1}
fN
j (θj,k) if uj,k = N (full renewal),

(1)

where the vector xj,k =
[
xcon
j,k x

aux
j,k

]T
∈ Xj denotes the state of section j at time step k. In particular, xcon

j,k

indicates the “condition” of the track section, while xaux
j,k is an auxiliary state that can be viewed as the

“memory” of the track section, e.g., the number of grindings that have been applied to this section since the
last rail replacement. This auxiliary state is useful to capture the inefficiency of track maintenance activities.
The discrete scalar uj,k ∈ Uj = {1, . . . , N} denotes the maintenance options, including maintenance activities
and the “no maintenance” option, that is applied to section j. Finally, the vector θj,k ∈ Θj contains the
realizations of all the uncertain parameters for system j at time step k. Our only assumption on the uncertain
parameters is that Θj is a bounded hyperbox.

We assume that for any q ∈ {1, . . . , N}, the function fq
j is either piecewise affine or linear with respect to

xj,k. This is not a very restrictive assumption, as piecewise-affine functions can approximate any nonlinear
function with arbitrary accuracy.
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3.2 Local Chance-Constrained MPC Problem

Let NP denote the prediction horizon. Define:

x̃j,k =
[
x̂T
j,k+1|k . . . x̂T

j,k+NP|k

]T
ũj,k =

[
uj,k . . . uj,k+NP−1

]T
θ̃j,k =

[
θTj,k . . . θTj,k+NP−1

]T (2)

where x̂T
j,k+l|k denotes the estimated state of section j at time step k+ l, based on the information available

at time step k. Define
JDeg
j (x̃j,k) = ∥x̃con

j,k ∥1, (3)

where ∥ · ∥1 denotes the 1 -norm, and P is a nonnegative weighting matrix. This term calculates the
accumulated condition deterioration within the prediction window. Define the indicator function IX , which
takes value 1 if the statement X is true, and 0 otherwise. We then define

JMaint
j (ũj,k) =

NP−1∑
l=0

N∑
q=1

cMaint
q,j Iuj,k+l=q, (4)

which computes the total maintenance costs for section j within the entire prediction window. The objective
function for each local MPC controller can then be expressed as:

Jj(x̃j,k, ũj,k) = JDeg
j (x̃j,k) + ϕjJ

Maint
j (ũj,k), (5)

where the weighting parameter ϕj captures the trade-off between condition deterioration and maintenance
costs. Finally, the chance-constrained MPC problem for section j can then be formulated as:

min
ũj,k

Eθ̃j,k

[
Jj(x̃j,k, ũj,k)

]
(6)

subject to: x̃j,k = f̃j(ũj,k, θ̃j,k;xj,k) (7)

Pθ̃j,k

[
max

l=1,...,NP

x̂con
j,k+l|k(ũj,k, θ̃j,k;xj,k) ≤ xcon

max

]
≥ 1− ϵj , (8)

where the objective (6) is to minimize the expected condition deterioration and maintenance costs. The
NP-step prediction model (7) can be computed by recursive substitution of (1). Constraint (8) is the chance
constraint, stating that the probability that the maximal degradation level within the prediction horizon
is no more than the maintenance threshold xcon

max is at least 1 − ϵj , where the violation level ϵj is a small
positive value, e.g., 0.05.

3.3 Two-Stage Robust Scenario-Based Approach

We apply the two-stage approach developed in [46] to approximate the chance-constrained problem (6)–(8)
with a confidence level βj indicating that the optimal solution of the resulting deterministic problem is also
an ϵ-level solution of the originate chance-constrained problem with a probability at least 1− βj , where βj

is a small positive value.
First, we generate the scenario set Hj satisfying the following condition [47]:

|Hj | ≥
⌈
1

ϵj
· e

e− 1

(
2 dim

(
Θ̃j

)
− 1 + ln

1

βj

)⌉
(9)

and solve the following convex scenario-based optimization problem:

min
{(τ i,τ̄i)}dim(Θ̃j)

i=1

dim(Θ̃j)∑
i=1

τ̄i − τ i (10)

subject to:
(
θ̃j,k

)(h)
i

∈ [τ i, τ̄i] ∀h ∈ H ,∀i ∈
{
1, . . . ,dim(Θ̃j)

}
(11)
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to obtain the smallest hyperbox B∗
j covering all scenarios in Hj . The notation

(
θ̃j,k

)(h)
denotes the

realization of θ̃j,k for scenario h, and the symbol (v)i denotes the i-th entry of vector v.
Then we solve the robust optimization problem

min
ũj,k

1

|Hj |
∑

h∈Hj

Jj

(
x̃
(h)
j,k , ũj,k

)
(12)

subject to: x̃
(h)
j,k = f̃j

(
ũj,k, θ̃

(h)
j,k ;xj,k

)
∀h ∈ Hj (13)

max
θ̃j,k∈B∗

j∩Θ̃j

max
l=1,...,NP

x̂con
j,k+l|k

(
ũj,k, θ̃j,k;xj,k

)
≤ xcon

max. (14)

Furthermore, define the worst-case scenario w as

θ̃
(w)
j,k ∈ argmax

θ̃j,k∈B∗
j∩Θ̃j

max
l,...,NP

x̂con
j,k+l|k

(
ũj,k, θ̃j,k;xj,k

)
, (15)

and replace the robust constraint (14) by the following linear constraint:

Pj x̃
(w)
j,k

(
ũj,k, θ̃

(w)
j,k ;xj,k

)
≤ xcon

max, (16)

where the matrix Pj satisfies Pj x̃j,k = x̃con
j,k . The local chance-constrained MPC problem (6)–(8) can then

be approximated by the deterministic optimization problem (12), (13), (16) with the local scenario set
Sj = |Hj | ∪ {w}.

3.4 MLD-MPC Problem

For each scenario s ∈ Sj , we can transform the local deterioration model (1) into the following standard
MLD model [25]:

x
(s)
j,k+1 = A

(s)
j x

(s)
j,k +B

(s)
j v

(s)
j,k (17)

E
(s)
j,1 v

(s)
j,k ≤ E

(s)
j,2x

(s)
j,k + E

(s)
j,3 , (18)

where the new decision variable v
(s)
j,k contains all the binary and continuous decision variables in the trans-

formed MLD model. An example of how to transform the deterioration dynamics of a generic railway asset
can be found in [48].

Define ṽj,k similar to ũj,k as in (2). Furthermore, define ṽk =

[(
ṽ
(1)
j,k

)T
. . .
(
ṽ
(|Sj |)
j,k

)T]T
∈ Ṽj . Let

ṽk =
[
ṽT1,k . . . ṽ

T
n,k

]T
. The MPC optimization problem for the whole systems can then be expressed in the

following compact MILP formulation:

min
ṽk

n∑
j=1

cj ṽj,k (19)

subject to:

n∑
j=1

Rj ṽj,k ≤ r (20)

Fj ṽj,k ≤ lj ∀j ∈ {1, . . . , n}. (21)

The objective function (19) is obtained by substituting (17) into the local objective function (12) for every
section j. The linear constraint (20) is the global coupling constraint on resources, e.g., available track
possession time for maintenance. Constraints (21) are the local constraints for each track section, includ-
ing the deterministic approximation of the local chance constraint, and all the linear constraints from the
transformation of the hybrid dynamics into an MLD model.

4 Distributed Optimization

The centralized MPC problem (19)–(21) is an NP-hard MILP problem, where the number of binary decision
variables is proportional to the number of sections and the dimension of uncertain parameters. It becomes
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intractable for a railway infrastructure divided into a large number of sections, or for high-dimensional un-
certainties. To improve the scalability of the proposed approach, we investigate two distributed optimization
schemes. We call the first one the DWD algorithm, as it is based on Dantzig-Wolfe decomposition [49]. The
second one is a modified version of the DRSBK algorithm [31] that uses a constraint tightening technique [50].

4.1 Dantzig-Wolfe Decomposition

Define the polyhedron Pj,k =
{
ṽj,k ∈ Ṽj : Fj ṽj,k ≤ lj

}
, which is the feasible region of the j-th local MPC

problem. The set Gj,k that contains all the extreme points, i.e., columns, of the convex hull of Pj,k, is called
the generating set of the j-th subproblem. According to Minkowski’s theorem [51], every point in a compact
polyhedron can be represented by a convex combination of the extreme points. For each column g ∈ Gj,k, let

ṽ
[g]
j,k denote the value of ṽj,k at column g, and let µj,g denote the weight assigned to column g. Furthermore,

define µj =
[
µj,1 . . . µj,|Gj,k|

]T
and µ =

[
µT
1 . . . µT

n

]T
. The master problem can then be defined as:

min
µ

n∑
j=1

∑
g∈Gj,k

cj ṽ
[g]
j,kµj,g (22)

subject to:

n∑
j=1

∑
g∈Gj

(
Rj ṽ

[g]
j,k

)
µj,g ≤ r (23)

∑
g∈Gj

µj,g = 1 ∀j ∈ {1, . . . , n} (24)

µj,g ≥ 0 ∀g ∈ Gj,k, ∀j ∈ {1, . . . , n}. (25)

This master problem is a reformulation of the LP-relaxation of the centralized MPC problem (19)–(21).
As the size of the generating set Gj,k is usually large, column generation [52], which starts with an initial

partial generating set G s
j,k ⊂ Gj,k, is usually used to improve computational efficiency. Instead of solving

the master problem, a restricted master problem that can be obtained by simply replacing Gj,k by G s
j,k in

(22)–(25) is solved. The dual of this restricted master problem can be written as:

max
λ,π

−rλ+

n∑
j=1

πj (26)

subject to: λ
(
−Rj ṽ

[g]
j,k

)
+ πj ≤ cj ṽ

[g]
j,k ∀g ∈ G s

j,k,∀j ∈ {1, . . . , n} (27)

λ ≥ 0 (28)

π ∈ Rn. (29)

Let µ∗ and (λ∗, π∗) denote the optimal solutions of the restricted master problem and its dual, respectively.
The reduced cost of section j can then be obtained by solving the following pricing subproblem:

ρj = min
g∈Gj,k

cj ṽ
[g]
j,k + λ∗

(
Rj ṽ

[g]
j,k

)
− π∗

j

= min
ṽj,k∈Pj,k

cj ṽj,k + λ∗ (Rj ṽj,k)− π∗
j (30)

which is an MILP. We only add the new column, i.e., the optimal solution of (30), into the partial generating
set G S

j,k, when the reduced cost ρj is negative. Furthermore, an upper bound on the objective function value
of the centralized MPC problem is obtained whenever µ∗ is binary, and a lower bound is given by:

q (λ∗) = inf
ṽk∈×n

j=1Pj,k

n∑
j=1

cj ṽj,k + λ∗

(
n∑

i=1

Rj ṽj,k − r

)

= −λ∗r +

n∑
j=1

(
ρj + π∗

j

)
(31)

which is the Lagrangian dual of the centralized MPC problem.
The column generation procedure terminates when all the reduced costs are 0, or when the upper bound

meets the lower bound. In particular, if the procedure ends with a binary µ∗, then we have also found
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Figure 3: A severe squat on the rail surface.

the global optimal solution for the centralized MPC problem. If not, then a suboptimal solution of the
centralized MPC problem can be found by solving the restricted master problem using the partial generating
sets obtained at the end of the column generation procedure [35].

4.2 Constraint Tightening

We modify the DRSBK algorithm [31], which is based on a constraint tightening technique. First, we
generate a random sequence s that is a permutation of the set {1, . . . , n}. This sequence specifies the order
of solving the subproblems. Then for each section j, we define the following subproblem:

min
ṽj,k∈Pj,k

cj ṽj,k (32)

subject to: Rj ṽj,k ≤ r −
n∑

i=1,i̸=j

Riṽ
†
i,k, (33)

where the local feasible region Pj,k is defined the same way as in Sect. 4.1. The left-hand side of constraint
(33) is the resource allocated to section j, while the right-hand side represents the global resource reduced
by the resource allocated to all the other sections. If the i-th subproblem is already solved before the j-th
problem, then ṽ†i,k denotes its optimum at time step k, otherwise ṽ†i,k denotes the optimal solution of the
i-th problem at time step k − 1.

If the subproblem (32)–(33) is infeasible for any section j, a new sequence s is generated, and the
subproblems are solved in a new order. The iteration terminates when all the subproblems are feasible, and
the difference of global objective function values between the current iteration and the previous iteration is
less than the optimality tolerance. Unlike column generation, where the solution improves over each iteration,
this random algorithm might need a large number of iterations for convergence. However, in practice this
random algorithm works surprisingly well for MILP problems with a relatively small number of coupling
constraints.

5 Case Studies

5.1 Settings

A numerical case study is performed on the optimal treatment of squats, a type of rolling contact fatigue.
The evolution of a squat depends on the dynamic wheel-rail contact. A severe squat is shown in Fig. 3. The
severity of a squat is determined by its visual length, which can be measured by techniques like axle box
acceleration [53, 54], eddy current testing [55], or ultrasonic surface waves [56]. The degradation level, i.e.,
condition, of each section can be computed by aggregating the individual squat measurements within the
section, as in [41]. For convenience we normalize the degradation level to [0, 1].

We consider three maintenance options, no maintenance, grinding, and replacing, to be applied to each
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track section. The deterioration model of section j can then be expressed as:

xcon
j,k+1 = f con

j (xcon
j,k , uj,k, θj,k)

=


fDeg
j (xcon

j,k , θj,k) if uj,k = 1 (no maintenance)

fGr
j (xcon

j,k , θj,k) if uj,k = 2 (grinding)

0 if uj,k = 3 (replacing)

(34)

xaux
j,k+1 = faux

j (xaux
j,k , uj,k)

=


xaux
j,k if uj,k = 1 (no maintenance)

xaux
j,k + 1 if uj,k = 2 (grinding)

0 if uj,k = 3 (replacing).

(35)

The auxiliary state xaux
j,k counts the number of grindings on section j since the last renewal. The functions

fDeg
j and fGr

j in (34) are both piecewise-affine in the current condition xcon
j,k , i.e.

fDeg
j (xcon

j,k ) =


yintj,1 +

yint
j,2−yint

j,1

xswi
j,1

xcon
j,k if xcon

j,k ∈
[
0, xswi

j,1

)
yintj,2 +

yint
j,3−yint

j,2

xswi
j,2−xswi

j,1

(
xcon
j,k − xswi

j,1

)
if xcon

j,k ∈
[
xswi
j,1 , x

swi
j,2

)
yintj,3 +

yint
j,4−yint

j,3

1−xswi
j,2

(
xcon
j,k − xswi

j,2

)
if xcon

j,k ∈
[
xswi
j,2 , 1

]
,

(36)

fGr
j (xcon

j,k ) =


0 if xcon

j,k ≤ xeff
j

ysev
j

xsev
j −xeff

j

(
xcon
j,k − xeff

j

)
if xeff

j < xcon
j,k ≤ xsev

j

ysevj +
ymax
j −ysev

j

1−xsev
j

(
xcon
j,k − xsev

j

)
if xcon

j,k > xsev
j .

(37)

Five different deterioration models are used, and the model parameters are given in Table 3 in Appendix
A. The maintenance threshold xcon

max is 0.95, and the following deterministic constraints are imposed on the
auxiliary state:

xaux
j,k+l ≤ xaux

max ∀j ∈ {1, . . . , n}, ∀l ∈ {1, . . . , NP} , (38)

to bound the maximal number of consecutive grindings on one track section. We set xaux
max = 10 in the case

study.
Finally, we have the following global constraint:

n∑
j=1

Iuj,k=1 ≤ nGr
max ∀l ∈ {1, . . . , NP} (39)

to bound the maximal number of sections that can be ground at each time step.
The proposed approach is implemented in Matlab R2016b, on a desktop computer with an Intel Xeon

E5-1620 eight-core CPU and 64 GB of RAM, running a 64-bit version of SUSE Linux Enterprise Desktop
12. All the MILP and LP problems are solved by CPLEX V12.7.0.

5.2 Representative Run

A representative run with 53 track sections is performed to illustrate the proposed MPC approach. The
length of each track section can range from 200 m to 5 km . Note that the size of the MPC optimization
problem depends on the number of track sections in the network, rather than the length of each track section.
For the same physical network, a finer partition captures the condition of a section more accurately, at the
cost of heavier computational demand. The sampling time is 3 months, and the planning horizon is 20 steps,
i.e., 5 years. The prediction horizon NP = 3, and the maximal number of sections that can be ground is 15 .
The maximum number of section that can be ground at each time step is determined by multiple practical
factors like the sampling time step (the larger the sampling time step, the more available track possession
time for maintenance) and section length (longer section indicates more maintenance time to treat each
section, thus less sections that can be ground). The realizations of the uncertain parameters within the
planning window are randomly generated by Gaussian distribution. The simulation results of one of the 53
sections are shown in Fig. 4. From Fig. 4a we can see that the degradation level of this track section is
kept below the maintenance threshold for the entire planning horizon. Due to the high maintenance cost,
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Figure 4: Simulation results for section 24 by the chance-constrained MPC based on column generation.
The number above each grinding action is the number of previous grindings on section 24 since the last
replacement. (a) Simulated degradation levels within the planning horizon. (b) Interventions suggested by
the MPC controller.

maintenance interventions, including grinding and replacing, are suggested when the degradation level is
relatively high (above 0.8). Replacing is suggested when the degradation level almost hits the threshold, and
there is a long interval (7 time steps) of no maintenance after rail replacement.

An overview of the simulation results of the whole network at one time step is shown in Fig. 5. In total
11 grindings and 2 replacements are suggested at the current time step, keeping the degradation levels of
the whole network under the maintenance threshold at the next time step.

5.3 Computational Comparisons

We test the performance of the two distributed optimization algorithms on 12 randomly generated chance-
constrained MPC optimization problems with the number of sections ranging from 10 to 120. The centralized
approach becomes intractable (out of memory) when the number of sections reaches 130. The comparison of
the 12 test problems is shown in Fig. 6. The DWD algorithm is the fastest one in all the 12 test problems.
Moreover, the CPU time increases almost linearly as the size of the problem grows. The DRSBK algorithm
does not show much advantage over the centralized method for small problems with no more than 30 sections.
However, as the computation time of the DRSBK algorithm also grows linearly, the reduction in CPU time
becomes more obvious for larger problems, especially those with more than 100 sections. The centralized
approach is the slowest one in most of the test problems.

Neither of the two distributed algorithms provides theoretical guarantee on convergence to global opti-
mum. However, the DWD algorithm is able to obtain global optimum in all the test problems. DRSBK
algorithm converges to the global optimum in all the test problems except the one with 80 sections. It
converges to a local optimum 70% away from the global optimum.

In summary, the DWD algorithm performs the best among the three solution methods. The centralized
approach always provides global optimal solution, but its scalability is poor. The DRSBK algorithm is faster
and more scalable than centralized approach. However, it might converge to a local optimum very far away
from the global optimum. The DWD algorithm is the fastest among the three algorithms, and it converges to
the global optimum in all the test cases. Moreover, due to its distributed nature, it is suitable for large-scale
railway networks divided into many sections, as tractability of the DWD algorithm mainly depends on the
tractability of the local pricing problem (30), which is an MILP of the same size as the centralized MPC
problem for one single section.

5.4 Comparison with Alternative Approaches

We compare the results of the proposed chance-constrained MPC (solved by the DWD algorithm) with two
alternative maintenance planning approaches. The first one is the nominal MPC approach, which uses a
deterministic deterioration model that considers only the mean values of the uncertain parameters. The
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Figure 5: Simulation results for the whole railway network at representative time step (k = 6). (a) Degrada-
tion levels of the whole railway network at time step 6 (current time step) and time step 7 (next time step).
(b) Interventions suggested by the high-level MPC controller at time step 6 for the whole railway network.

Figure 6: CPU time of the centralized approach and two distributed approaches.
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Table 2: Comparison between the proposed chance-constrained MPC approach (with subscript “CC”) solved
by the DWD algorithm, the nominal approach (with subscript “Nom”), and the cyclic approach (with
subscript “Cyc”).

Constraint violation Closed-loop performance CPU time (h)

Run vCC(%) vNom(%) vCyc(%) JCC

JCyc
(%) JNom

JCyc
(%) JCyc TCC TNom

1 0 0.063 0 39.335 34.148 670,502 5.671 0.003

2 0 0.006 0 38.127 36.577 670,504 5.075 0.003

3 0 0.353 0 37.635 35.043 670,503 5.062 0.003

4 0 0.129 0 37.606 33.344 670,502 5.703 0.003

5 0 0 0 36.354 34.536 670,502 5.141 0.003

6 0 0.082 0 36.413 35.803 670,502 5.802 0.003

7 0 0.021 0 39.425 36.250 670,503 5.134 0.003

8 0 0.053 0 38.440 35.028 670,500 5.126 0.003

9 0 0.0344 0 40.244 33.359 670,503 5.088 0.003

10 0 0.172 0 38.902 34.656 670,503 5.082 0.003

other one is the cyclic approach following a time-based maintenance strategy, and performing grinding and
replacing at a predetermined optimal interval. The formulation of the cyclic approach is given in Appendix
B.

We compare robustness, optimality, and computational efficiency of the three maintenance planning
approaches. Robustness is measured by maximal constraint violation v defined as:

v = max

(
xcon
worst − xcon

max

xcon
max

, 0

)
(40)

where xcon
worst is the highest degradation level of all sections within the entire planning horizon. Optimality is

measured by the closed-loop objective function value, which is obtained by evaluating all the local objective
function values (5) for the entire planning horizon and summing them up. Computational efficiency is
measured by the CPU time needed for solving all the MPC optimization problems for all the 20 time steps.
Since the cyclic approach is an offline optimization approach, i.e., it solves only one optimization problem
for the entire planning horizon, we only compare the computational efficiency of the two MPC approaches.

We create 10 test runs where the realizations of the uncertain parameters within the planning horizon
are randomly generated by a Gaussian distribution. The comparison of the three approaches for the 10 test
runs is shown in Table 2. Both the chance-constrained MPC approach and the cyclic maintenance approach
are robust, as neither of them has constraint violations for the 10 test runs. However, the cyclic approach
shows much worse closed-loop performance. It is very conservative and tends to plan more maintenance
than necessary. The nominal MPC approach has a slightly lower closed-loop objective function value than
the chance-constrained MPC approach, and a much shorter CPU time. However, it is not robust, as it has
constraint violations in 9 out of the 10 test runs. So in comparison, the proposed chance-constrained MPC
provides an excellent balance between robustness and optimality, despite its high computational demand.

6 Conclusions and Future Work

In this paper we have developed a chance-constrained MPC approach for optimal condition-based main-
tenance planning for railway infrastructures. Two distributed optimization algorithms, the DWD algo-
rithm based on Dantzig-Wolfe decomposition, and the modified Distributed Robust Safe But Knowledgeable
(DRSBK) algorithm [31], have been investigated to improve the scalability of the proposed MPC approach.
Computational experiments have shown that column generation is able to obtain the global optimum with
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Table 3: Parameters of the functions fDeg
j and fGr

j for five different models. Both the nominal values and
the 95% nonsimultaneous confidence bounds (given in the square brackets) are provided for all uncertain
parameters.

Model

Parameter 1 2 3 4 5

xswi
j,1 0.512 0.526 0.543 0.363 0.563

xswi
j,2 0.683 0.784 0.781 0.621 0.798

yintj,1 0.107 [0.086,0.128] 0 [0,0] 0.051 [0.040,0.063] 0.076 [0.036,0.115] 0.058 [0.049,0.068]

yintj,2 0.783 [0.776,0.790] 0.849 [0.845,0.853] 0.815 [0.809,0.821] 0.624 [0.615,0.633] 0.805 [0.800,0.809]

yintj,3 0.929 [0.924,0.934] 0.975 [0.967,0.983] 0.972 [0.966,0.977] 0.859 [0.853,0.865], 0.963 [0.958,0.968]

yintj,4 1 [0.997,1.003] 1 [0.997,1.004] 1 [0.998,1.002] 1 [0.994,1.006] 1 [0.998,1.002]

xeff
j 0.156 0.177 0.172 0.141 0.106

xsev
j 0.899 0.810 0.880 0.938 0.882

ysevj 0.506 [0.494,0.518] 0.516 [0.505,0.527] 0.502 [0.490,0.514] 0.506 [0.490,0.521] 0.443 [0.432,0.455]

ymax
j 0.957 [0.944,0.970] 0.991 [0.981,1] 0.977 [0.965,0.990] 0.922 [0.905,0.939] 0.944 [0.931,0.956]

a much shorter CPU time. Comparison with two alternative maintenance planning approaches has shown
that the proposed chance-constrained MPC approach is robust and cost-effective.

In the future, it is interesting to consider heterogeneous components, e.g., rail and switches, in main-
tenance planning. Another interesting extension would be joint condition-based maintenance planning and
train scheduling. Furthermore, a business case study with historical measurement data and actual mainte-
nance costs can be performed to demonstrate the applicability of the proposed MPC approach for real-world
railway track maintenance planning problems. For this purpose, a suitable key performance indicator should
be chosen to evaluate the condition of each track section, and sufficient data should be used to identify the
deterioration model.

Acknowledgments Research sponsored by the NWO/ProRail project “Multi-party risk management and key

performance indicator design at the whole system level (PYRAMIDS),” project 438-12-300, which is partly financed

by the Netherlands Organisation for Scientific Research (NWO).

A Parameters for Case Study

See Table 3.

B Cyclic Approach

Let t0,j denote the time instant of the first replacement on section j. Grinding is performed every TGr,j

after the first replacement for section j. Furthermore, we assume that replacement is performed after r
consecutive grindings since the last replacement on section j. Let kend denote the planning horizon. Then

13



the offline optimization problem of the cyclic maintenance approach can be formulated as:

min
t0,TGr,r

kend∑
k=1

n∑
j=1

xcon
j,k + λ

3∑
q=2

cMaint
q,j Iuj,k=q (41)

subject to

xj,k+1 = fj
(
xj,k, uj,k;E(θj,k)

)
∀j ∈ {1, . . . , n}, ∀k ∈ {0, . . . , kend − 1} (42)

xcon
j,k ≤ xcon

max, xaux
j,k ≤ xaux

max ∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . , kend} (43)

uj,k =


2, if (k − t0,j) mod round (TGr,j) = 0

3, if k = t0,j or (k − t0,j) mod round (rTGr,j) = 0

1, otherwise

(44)

∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . , kend}
1 ≤ t0,j ≤ Tmax ∀j ∈ {1, . . . , n} (45)

1 ≤ Tj,Gr ≤ Tmax ∀j ∈ {1, . . . , n} (46)

1 ≤ µj ≤ µmax ∀j ∈ {1, . . . , n}. (47)
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[48] Su, Z., Núñez, A., Jamshidi, A., Baldi, S., Li, Z., Dollevoet, R., De Schutter, B.: Model predictive control for
maintenance operations planning of railway infrastructures: In: Computational Logistics (Proceedings of the
6th International Conference on Computational Logistics (ICCL'15), Delft, Sept. 2015), pp. 673-688 (2015)

[49] Dantzig, G., Ramser, J.: The truck dispatching problem. Manag. Sci. 6(1), 80-91 (1959)

[50] Chisci, L., Rossiter, J., Zappa, G.: Systems with persistent disturbances: predictive control with restricted
constraints. Automatica 37(7), 1019-1028 (2001)

[51] Cassels, J.: An Introduction to the Geometry of Numbers. Springer Science & Business Media, Berlin (2012)

[52] Vanderbeck, F., Wolsey, L.: Reformulation and decomposition of integer programs. In: Jünger, M., Liebling,
T., Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L. (eds.) 50 Years of Integer
Programming 1958-2008, pp. 431-502. Springer, Berlin (2010)
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