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Analytic expressions in stochastic max-plus-linear

algebra and their application in model predictive

control
Ton J.J. van den Boom and Bart De Schutter Fellow, IEEE

Abstract—The class of max-plus-linear systems can model
discrete event systems with synchronization but no choice. Model
mismatch and/or disturbances can be characterized as stochastic
uncertainties. In stochastic max-plus-linear systems one often
needs to compute the expectation of a max-plus-scaling function
or the chance constraint of a max-plus-scaling function. The
algorithms available in literature are either computationally too
expensive or only give an approximation. In this paper we derive
an analytic expression for both the expectation and the chance
constraint of a max-plus-scaling function. Both can be written in
the form of a piece-wise polynomial function in the components of
the control variables. The analytic function can be derived offline
and can be evaluated online in a quick and efficient way. We
also show how the expressions can be used in a model predictive
control setting and show the efficiency of the proposed approach
with a worked example.

Index Terms—max-plus-linear systems, stochastic systems,
nonlinear predictive control, discrete-event systems

I. INTRODUCTION

Discrete-event models such as queuing systems, (extended)

state machines, formal language models, automata, temporal

logic models, generalized semi-Markov processes, Petri nets,

etc. are in general nonlinear in conventional algebra. However,

there exists an important class of discrete-event systems,

namely the max-plus-linear systems, for which the model is

linear in the max-plus algebra. The class of max-plus-linear

systems consists of discrete-event systems with synchroniza-

tion but no choice [2]. In stochastic discrete-event systems,

processing times and/or transportation times are stochastic

quantities, since in practice stochastic fluctuations in their

values can be caused, e.g. by machine failure or depreciation

[16]. To model this stochasticity in discrete-event systems

we will often use stochastic max-plus-linear expressions or

stochastic max-plus-scaling functions [2], [3], [11], [14], [16],

[17], [18].

To control stochastic max-plus-linear systems, one efficient

control approach is model predictive control (MPC) [13], [15],

[10], [22]. Note that, due to the fact that the uncertainty enters

the equations of the stochastic max-plus-linear expressions

in a multiplicative way [20], it is not straightforward to use

control techniques (e.g. residuation) other than MPC, and to

the authors’ best knowledge there is no literature on this

specific topic.

MPC is an online model-based approach, in which at each

event step an optimal control sequence is computed. This
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optimization is done over a finite sequence of events, and for

each event step, only the first sample of the optimal control

sequence will be applied to the system. For the next step, the

horizon will be shifted forward and a new optimal control

sequence will be computed.

In stochastic MPC an optimization problem has to be solved

at each event step. In stochastic systems, the objective function

defined in the MPC optimization problem usually consists of

an expected value of a stochastic max-plus-scaling function

[20], and is minimized subject to chance constraints. In

general, the expected value is computed using either numerical

integration or some available analytic approaches, which are

all very time-consuming. Hence, solving this optimization

problem creates a considerable computational complexity due

to the presence of the expected value.

In literature two approaches have been proposed to reduce

the computational burden of computing the expectation or the

chance constraint of a max-plus-scaling function. The first ap-

proach [21] considers a method based on variability expansion.

In particular, it has been shown that the computational load is

reduced if one decreases the level of ‘randomness’ in the sys-

tem. Three other methods use approximation of the expectation

and/or the chance constraints. In [9] the approximation of the

expectation is based on the raw moments of a random variable.

This results in a much lower computational complexity and a

much lower computation time while still guaranteeing a good

performance. In [18] the chance constraints are approximated

and substituted with a finite number of pointwise constraints at

independently generated scenarios of the uncertainties. In [23]

multivariate chance constraints are converted into univariate

chance constraints using Boole’s inequality or into linear

constraints on the inputs using Chebyshev’s inequality. The

chance constraints can then be computed efficiently.

The main contribution of this paper is that we derive analytic

expressions for the exact computation of the expectation and

chance constraint of a stochastic max-plus-scaling function.

We do this in a two-step algorithm: an offline computation of

the analytic expressions and an online use of these expressions

in e.g. MPC. The offline part only has to be done once. When

the analytic expressions have been derived, they can easily be

used in the computation of the MPC control law by means of

a fast evaluation of a piecewise polynomial function for every

event step. In this paper we have scaled up the algorithm from

small size problems in [20] to medium size problems.

This paper is organized as follows: Section II presents some

existing results on stochastic max-plus-scaling functions. In



Section III and IV we derive an analytic solutions to compute

the expected value and the chance constraint of max-plus-

scaling functions in the presence of a uniform distribution.

Section VI shows how the derived analytic expressions can be

used in model predictive control of max-plus-linear systems,

finishing with a small case study.

II. STOCHASTIC MAX-PLUS-SCALING FUNCTIONS

In this section we will give some background, define the

problem, and present a basic lemma on level sets.

A. Max-plus-linear systems and max-plus-scaling functions

First we give the basic definitions of the max-plus algebra

[2], [7].

Define ε = −∞ and Rε = R ∪ {ε}. The max-plus-algebraic

addition (⊕) and multiplication (⊗) are defined as x ⊕ y =
max(x, y) and x⊗ y = x+ y for any x, y ∈ Rε, and

[A⊕B]i,j = ai,j ⊕ bi,j = max(ai,j , bi,j)

[A⊗ C]i,j =
n
⊕

k=1

ai,k⊗ck,j = max
k=1,...,n

(ai,k+ck,j)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε .

Let w be in a bounded polyhedral set W = {w ∈
R

p|Cww ≤ dw}. and let e be a uniformly distributed stochastic

variable with probability density function

p(e) =

{

2−n for |ei| ≤ 1, for all i = 1, . . . , n

0 elsewhere
(1)

The domain E for e is n-dimensional unit hypercube. Let α ∈
R

m, Λ ∈ R
m×p, Γ ∈ R

m×n, w ∈ W , e ∈ E ⊂ R
n. Define

the Max-Plus-Scaling (MPS) function f : Rp × R
n → R as

follows:

f(w, e) = max
j

(αj + Λj w + Γj e) (2)

where Λj and Γj stand for the jth row of Λ and Γ, respectively.

In [20] we introduced the following stochastic max-plus-

linear model:

x(k) = A(k)⊗ x(k−1)⊕B(k)⊗ u(k),
y(k) = C(k)⊗ x(k)

(3)

where the system matrices A(k) ∈ R
nx×nx
ε , B(k) ∈ R

nx×nu
ε ,

and C(k) ∈ R
ny×nx
ε model the uncertainty (e.g. modeling

errors or disturbances) in the system. All entries of the system

matrices are assumed to be max-plus-scaling functions of an

uncertainty vector e(k), which gathers all uncertainties. The

vector e(k) is a stochastic variable.

Two stochastic quantities are important, namely the expec-

tation of f(w, e):

E[f(w, e)] = E[max
j

(αj + Λj w + Γj e)] (4)

where E[·] denotes the expectation, and the chance constraint

that f(w, e) is less than B, so

P[f(w, e) ≤ B] = P[max
j

(αj + Λj w + Γj e) ≤ B] (5)

where P[·] denotes the probability and B ∈ R is a constant.

In this paper we aim to

1) Find an analytic expression for the expectation

E[f(w, e)].
2) Find an analytic expression for the chance constraint

P[f(w, e) ≤ B].
3) Use the derived expressions for the expectation and the

chance constraint in model predictive control (MPC) for

stochastic max-plus-linear systems.

B. Level sets

In this subsection we discuss level sets. We introduce a

variable z that can be either w or
[

wT B
]T

.

Lemma 1: Let Z = {z ∈ R
pz |Czz ≤ dz} be a bounded

polyhedral set, and consider for a fixed value z ∈ Z the level

set Φ(z) = { e | Az z + Ae e ≤ b} where Ae ∈ R
q×n,

Az ∈ R
q×pz , and b ∈ R

q . Let S = {S1, . . . , SL} be the

set of all n × q matrices that consist of n rows of the q × q
identity matrix such that the matrix Sℓ Ae is invertible. For

any matrix Sℓ ∈ S we can define a matrix Tℓ ∈ R
(q−n)×q

with the remaining rows of the q × q identity matrix. Define

for ℓ = 1, . . . , L the vectors σℓ ∈ R
n, gℓ ∈ R

q−n and matrices

τℓ ∈ R
n×pz , Fℓ ∈ R

(q−n)×pz as follows:

σℓ = (Sℓ Ae)
−1Sℓb , Fℓ = Tℓ (I −Ae(Sℓ Ae)

−1Sℓ)Az

τℓ = (Sℓ Ae)
−1SℓAz , gℓ = Tℓ (I −Ae(Sℓ Ae)

−1Sℓ)b

Now let ℓ be such that z ∈ Zℓ = {z|Fℓz ≤ gℓ}. Then

vℓ(z) = σℓ + τℓ z (6)

is a vertex of Φ(z).

The proof is in Appendix A.

Finally we give the definition of a simplex and the geometric

center of a polytope.

Definition 2: Consider k + 1 affinely independent1 points

x0, x1, . . . , xk ∈ R
n. The simplex determined by them is given

by Co(x1, . . . , xn) = {λ1x1+ . . .+λnxn | λi ≥ 0 λ1+ . . .+
λn = 1 }.

Definition 3: Let v1, . . . , vN be the vertices of a polytope.

The geometric center vgc of the polytope is defined as vgc =

1/N
∑N

i=1 vi.

III. AN ANALYTIC EXPRESSION FOR E[f(w, e)]

Define h(f, w) = E[f(w, e)]. In this section we will derive

an analytic expression for h(f, w).
Consider for a fixed w ∈ W the polyhedral sets

Φj(w) = { e ∈ E | f(w, e) = αj + Λjw + Γje }

for j = 1, . . . , n. This means that for a given w and e ∈ Φj(w)
the jth inequality in f(w, e) leads to the maximum; so

αj + Λj w + Γj e ≥ αi + Λi w + Γi e , ∀i 6= j (7)

Define for each j the set Ij = {ij,1, . . . , ij,m−1} =
{1, 2, 3, . . . ,m}\{j}, and define matrices A′

w,j ∈ R
(m−1)×p,

1Affinely independent means that x1 − x0, . . . , xn − x0 are independent.



A′
e,j ∈ R

(m−1)×n, b′j ∈ R
m−1, such that [b′j ]s = αj − αij,s ,

[A′
w,j ]s = −Λj+Λij,s , and [A′

e,j ]s = −Γj+Γij,s for ij,s ∈ Ij ,

s = 1, . . . ,m−1, where [M ]s denotes the sth row of a matrix

M . Define Ae,j ∈ R
q×n, Aw,j ∈ R

q×p, and bj ∈ R
q as

follows:

Ae,j=





A′
e,j

Ce

0



, Aw,j=





A′
w,j

0
Cw



 , bj=





b′j
de
dw





Now condition (7) for all e ∈ E and a fixed w ∈ W can be

replaced by finding all e ∈ R
n and w ∈ R

p such that

Ae,j e ≤ bj −Aw,j w (8)

Note that q > n. Let Sj = {Sj,1, . . . , Sj,Lj
} be the set of all

n × q submatrices of the q × q identity matrix such that the

matrix Sj,ℓ Ae,j is invertible. For any matrix Sj,ℓ ∈ Sj the

remaining part of the q× q identity matrix will be denoted by

Tj,ℓ ∈ R
(q−n)×q .

Now define for ℓ = 1, . . . , Lj the vectors σj,ℓ ∈ R
n, gj,ℓ ∈

R
q−n and matrices τj,ℓ ∈ R

n×p, Fj,ℓ ∈ R
(q−n)×p according to

Lemma 1. Let ℓ be such that w ∈ Wj,ℓ = {w|Fj,ℓw ≤ gj,ℓ}.

Then we find that

vj,ℓ(w) = σj,ℓ + τj,ℓ w (9)

is a vertex of Φj(w).

The next step in our algorithm is to divide the polytope

Φj(w) into Kj(w) simplices Ωj,k(w), k = 1, . . . ,Kj(w).
We now use the following recursive procedure: We start by

considering each 2-dimensional face of the polytope. We select

the geometric center of the face and connect that to each of

the vertices of the given faces. In this way each 2-dimensional

face can be partitioned into simplices with 3 vertices. We

consider all 3-dimensional faces and construct 3-dimensional

simplices by connecting the geometric center of each of the

3-dimensional faces with all the vertices of the simplices of

the 2-dimensional subfaces of the given 3-dimensional face.

We continue in this way until the full n-dimensional polytope

Φj(w) has been divided into n-dimensional simplices. Note

that the geometric center of a polytope is a convex combination

of the vertices of that polytope. This means that the vertices of

the n-dimensional simplices are convex combinations of the

vertices of the polytope Φj(w).
The partitioning of a 3-dimensional polytope into simplices

is illustrated in Fig. 1.

Consider one of the simplices Ωj,k(w) and denote the

vertices of this simplex by v̄j,k,0, v̄j,k,1, v̄j,k,2, · · · , v̄j,k,n.

The simplex Ωj,k(w) is now given by Ωj,k(w) =
Co(v̄j,k,0, v̄j,k,1, v̄j,k,2, · · · , v̄j,k,n). Define

hj,k(f, w) =

∫

· · ·

∫

Ωj,k(w)

(

αj+Λjw+Γje
)

p(e) de1 · · · den

Then h(w) can be computed by

h(f, w) =

m
∑

j=1

Kj(w)
∑

k=1

hj,k(f, w) (10)

Fig. 1. Partitioning of polytope Φj(w) into simplices. The circles (◦) denote
the geometric centers of the 2-dimensional faces, the bullet (•) denotes the
geometric centers of the 2-dimensional vertices.

The next step is to derive an expression for the terms

hj,k(f, w) for all j, k, and w. For a fixed j and w ∈ W ,

let vj,ℓ(w), ℓ = 1, . . . , Lj be the vertices of the polytope

Φj(w). The vertices v̄j,k,i(w), i = 0, . . . , n of the simplex

Ωj,k(w), k ∈ {1, . . . ,Kj} will be convex combinations of the

vertices vj,ℓ(w), ℓ = 1, . . . , Lj . In other words, there exist

parameters λj,i,k,ℓ such that v̄j,k,i(w) =
∑Lj

ℓ=1 λj,i,k,ℓvj,ℓ(w),
where λj,i,k,ℓ does not depend on w (because we used

geometric centers to construct the simplices). Now define

σ̄j,k,i =
∑Lj

ℓ=1 λj,i,k,ℓσj,ℓ and τ̄j,k,i =
∑Lj

ℓ=1 λj,i,k,ℓτj,ℓ. Then

using (9) we find

v̄j,k,i(w) = σ̄j,k,i + τ̄j,k,i w . (11)

The following lemma gives an analytic expression for the

value hj,k(f, w).

Lemma 4: [19] Consider the simplex

Ωj,k(w) = Co(v̄j,k,0(w), v̄j,k,1(w), · · · , v̄j,k,n(w)) (12)

with vertices that are affine in w according to (11), and

m
⋃

j=1

Kj(w)
⋃

k=1

Φj(w) = W .

Define

Vj,k(w)=











v̄Tj,k,1(w)−v̄Tj,k,0(w)

v̄Tj,k,2(w)−v̄Tj,k,0(w)
...

v̄Tj,k,n(w)−v̄Tj,k,0(w)











T

= Vj,k,0 +

p
∑

ℓ=1

Vj,k,ℓ wℓ

then for a constant p(e) = 2−n we have

hj,k(f, w) =

∫

· · ·

∫

Ωj,k(w)

(

αj+Λjw+Γje
)

p(e) de1 · · · den

=
detVj,k(w)

(n+ 1)!
2−n

(

(n+ 1)(αj+Λjw)

+

n
∑

i=0

Γj σ̄j,k,i + Γj τ̄j,k,i w

Hence, hj,k(f, w) is an (n + 1)st order polynomial function

in w.



w ∈ [−∞,−8) : h(w) = 2w + 6

w ∈ [−8, 0) : h(w) = 0.00208w3 + 0.05w2 + 2.4w + 7.067

w ∈ [0, 0.556) : h(w) = 0.05w2 + 2.4w + 7.067

w ∈ [0.556, 1) : h(w) = 0.169w3 − 0.231w2 + 2.56w + 7.03

w ∈ [1, 1.5) : h(w) = 0.167w3 − 0.225w2 + 2.55w + 7.4

w ∈ [1.5, 1.78) : h(w) = −0.167w3+1.275w2 + 0.3w + 8.1648

w ∈ [1.78, 2) : h(w) = 1.52w3 − 7.72w2 + 16.3w − 1.32

w ∈ [2, 2.67) : h(w) = 0.0917w3 − 0.275w2 + 3.65w + 5.62

w ∈ [2.67, 3) : h(w) = −0.0208w3 + 0.625w2 + 1.25w + 7.75

w ∈ [3, 6) : h(w) = −0.0208w3 + 0.375w2 + 2.75w + 5.5

w ∈ [6,∞) : h(w) = 5w + 1

TABLE I
THE FUNCTION h(w) FOR DIFFERENT RANGES OF w IN THE EXAMPLE OF

SECTION III. (FOR EASE OF NOTATION WE LIST ROUNDED VALUES FOR

THE PARAMETERS)

In the computation of the determinant of a matrix Vj,k(w)
in Lemma 4 (and Lemma 6 in Section IV) we take sums and

products of entries of the matrix Vj,k(w). Every entry is affine

in the control variable w and the determinant will thus be a

nth-order polynomial in the control variable w. Note that this

computation is in the offline part of the algorithm, so we only

have to do this once for every region.

Theorem 5: Given the function f as defined in (2). For a

fixed w ∈ W , let s1, s2, . . . , sn be such that

w ∈ Wf,j,sj for j = 1, . . . , n

where Wf,j,sj has been defined in Lemma 1. Define for w ∈
Wf,j,sj , j = 1, . . . , n:

hj(f, w) = hj,sj (f, w) (13)

Then for w ∈ Wf,j,sj we find that h(f, w) =
∑m

j=1 hj(f, w)
is a piecewise (n+ 1)st-order polynomial function in w.

Proof : This immediately follows from (10) combined with

Lemmas 1 and 4. ⋄

Example

In this example we compute a piecewise polynomial expres-

sion for the following expression:

h(w) = E

[

max(6+2w+e2, 5+3w+5e1+5e2,

3+4w+e1, 1+5w+e1+e2)
]

so for

α =









6
5
3
1









, Λ =









2
3
4
5









, Γ =









0 1
5 5
1 0
1 1









(14)

if the MPS function is written in the form (4).

We compute the vertices of the regions Φj(w) for j =
1, . . . , 4. Fig. 2 shows these regions Φj(w) for different values

of w. The functions Fj,k, gj,k, τj,k, and σj,k can be computed

using Lemma 1, and with these values we can compute hj,k

and using Theorem 5 we then compute hj and h. The resulting

Fig. 2. The regions Φj(w), j = 1, . . . , 4 for different values of w in the
example of Section III. The vertices are denoted by small circles ( ◦ ) .

function h is given in Table I. We clearly see that the function

h is a piecewise polynomial function in the variable w. In [19]

we have already proven that the function h is convex.

IV. AN ANALYTIC EXPRESSION FOR P[f(w, e) ≤ B]

Define χ(f, w,B) = P[f(w, e) ≤ B]. In this section we

will derive an analytic expression for χ(f, w,B). Introduce

the set Z = W×B, where B = [Bmin, Bmax] and the variable

z =
[

wT BT
]T

. The set Z is now given by Z = {z ∈
R

p+1|Czz ≤ dz}, where

Cz =





Cw 0
0 −1
0 1



 , dz =





dw
−Bmin

Bmax





To ease the notation in this section we will use χ(f, z) instead

of χ(f, w,B).
Let z ∈ Z be fixed. The first step is to compute the set

Φ(z) = { e | f(w, e) ≤ B }. Now χ(f, z) is given by

χ(f, z) =

∫

· · ·

∫

Φ(z)

p(e) de1 · · · den (15)

To compute the set Φ(z) = {e |f(w, e) ≤ B }, let us consider

all e ∈ E such that

α+ Λw + Γ e ≤ B1̄ , (16)

where 1̄ =
[

1 1 . . . 1
]T

∈ R
q . Define Ae ∈ R

q×n,

Az ∈ R
q×(p+1), and b ∈ R

q as follows:

Ae=













Γ
Ce

0
0
0













, Az=













Λ −1̄
0 0
Cw 0
0 −1
0 −1













, b=













−α
de
dw

−Bmin

Bmax













Now condition (16) for all e ∈ E can be replaced by finding

all e ∈ R
n and w ∈ R

p such that

Ae e ≤ b−Az z (17)

Note that q > n. Let S = {S1, . . . , SL} be the set of all n×q
submatrices of the q × q identity matrix such that the matrix



Sℓ Ae is invertible. For any matrix Sℓ ∈ S the remaining part

of the q×q identity matrix will be denoted by Tℓ ∈ R
(q−n)×q.

Now define for ℓ = 1, . . . , L the vectors σℓ ∈ R
n,

gℓ ∈ R
q−n and matrices τℓ ∈ R

n×(p+1), Fℓ ∈ R
(q−n)×(p+1)

according to Lemma 1. Let ℓ be such that z ∈ Zℓ = {z|Fℓz ≤
gℓ}. Then we find that

vℓ(z) = σℓ + τℓ z (18)

is a vertex of Φ(z).

We now use the same recursive procedure as in the previous

section to divide the polytope Φ(z) into K(z) simplices

Ωk(z), k = 1, . . . ,K(z).

Consider one of the simplices Ωk(z) and denote the ver-

tices of this simplex by v̄k,0, v̄k,1, v̄k,2, · · · , v̄k,n. The simplex

Ωk(z) is now given by:

Ωk(z) = Co(v̄k,0, v̄k,1, v̄k,2, · · · , v̄k,n)

Define χk(f, z) =
∫

· · ·
∫

Ωk(z)

p(e) de1 · · · den. Then χ(f, z) can

be computed by

χ(f, z) =

K(z)
∑

k=1

χk(f, z) (19)

The following lemma gives an analytic expression for the

value χk(f, z).

Lemma 6: Consider the simplex

Ωk(z) = Co(v̄k,0(z), v̄k,1(z), · · · , v̄k,n(z)) (20)

with vertices affine in z according to (11). Define

Vk(z)=











v̄Tk,1(z)−v̄Tk,0(z)

v̄Tk,2(z)−v̄Tk,0(z)
...

v̄Tk,n(z)−v̄Tk,0(z)











T

=Vk,0 +

p
∑

ℓ=1

Vk,ℓ zℓ

Then χk(f, z) =
∫

· · ·
∫

Ωk(z)

p(e) de1 · · · den = detVk(z)
n! 2−n. Hence,

χk(f, z) is an nth-order polynomial function in z.

The proof immediately follows from Lemma 4 for α = 1,

Λ = 0, and Γ = 0.

Theorem 7: Let Zs be defined as in Lemma 1, and for a

fixed z ∈ Z , let s be such that z ∈ Zs. Then we find that

χ(f, z) = χs(f, z)

is a piecewise nth-order polynomial function in z.

Proof : This immediately follows from (19) combined with

Lemmas 1 and 6. ⋄

Properties of χ(f, w,B): Recall that Z is a convex set. For

a quasi-concave function g : Z → R it holds that

g(λ z1 + (1− λ) z2) ≥ min(g(z1), g(z2))

for any z1, z2 ∈ Z and λ ∈ [0, 1] [5].

Lemma 8:

Define the function φ : R → R:

φ(a) =

{

0 for a < 0

1 for a ≥ 0
(21)

Let g : R → R be a concave function. Then φ(g(x)) is quasi-

concave in x.

Proof : For a concave function g we have

g(λ z1 + (1− λ) z2) ≥ λg(z1) + (1− λ)g(z2)

for any z1, z2 ∈ Z and λ ∈ [0, 1].
Since φ is nondecreasing, this means that

φ(g(λ z1 + (1− λ) z2)) ≥ φ(λg(z1) + (1− λ)g(z2))

≥ min
(

φ(g(z1)), φ(g(z2))
)

So φ(g(·)) is a quasi-concave function. ⋄

Lemma 9: Given the function f as defined in (2), let χo be

a fixed scalar with 0 < χo < 1. Then the constraint χ(f, z) ≥
χo is a convex set in z.

The proof is in Appendix B.

Example

In this example we compute a piecewise polynomial expres-

sion for the following expression:

χ(f, w,B) = P

[

max(6+2w+e2, 5+3w+5e1+5e2,

3+4w+e1, 1+5w+e1+e2) < B
]

so for α, Λ, and Γ as defined in (14) if the MPS function is

written in the form (5).

We compute the vertices of the region Φ(w). Fig. 3 shows

these regions Φ(w) for different values of w. The functions

Fk, gk, τk, and σk can be computed using Lemma 1, and

with these values we can compute χk and using Theorem 5

we then compute χ. The resulting function χ is given in Table

II. We clearly see that the function χ is a piecewise polynomial

function in the variable w.

w ∈ [−∞,−2.33) : χ(f, w,B) = 1

w ∈ [−2.33, 0.5) : χ(f, w,B) = 0.755− 0.21w − 0.045w2

w ∈ [0.5, 1) : χ(f, w,B) = 0.78− 0.16w − 0.245w2

w ∈ [1, 1.1852) : χ(f, w,B) = −0.62 + 2.64w − 1.645w2

w ∈ [1.1825, 1.5) : χ(f, w,B) = 4.5− 6w + 2w2

w ∈ [1.5,∞) : χ(f, w,B) = 0

TABLE II
THE FUNCTION χ(f, w,B) WITH FIXED B = 8 FOR DIFFERENT RANGES

OF w IN THE EXAMPLE OF SECTION IV (FOR EASE OF NOTATION WE LIST

ROUNDED VALUES FOR THE PARAMETERS)
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1
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1
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1
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1
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→
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−
→

e 2

−
→

e 2

Fig. 3. The regions Φ(w) with fixed B = 8 for different values of w in the
example of Section IV.

V. MODEL PREDICTIVE CONTROL

Consider the stochastic max-plus-linear system (3). Define

the vectors

ũ(k) =
[

uT (k) · · · uT (k+Np−1)
]T

,

ẽ(k) =
[

eT (k) · · · eT (k +Np − 1)
]T

∈ R
nẽ .

In [20] we derived that y(k + j) is a max-plus-scaling

function in the variables x(k− 1), ũ(k), and ẽ(k), and so we

can compute the expectation and chance constraint of y(k+j)
using the techniques of the previous sections.

Let I = {1, . . . , ny} and J = {0, . . . , Np−1}. We introduce

the cost criterion J in the event period {k, . . . , k + Np − 1}
as follows:

J(k) = E

[

max
i∈I,j∈J

fi,j(ũ, ẽ)
]

− λ

(Np−1)ny
∑

ℓ=0

ũℓ(k) (22)

where fi,j(ũ, ẽ) = max(yi(k+j)−ri(k+j), 0) is the tracking

error between the the reference signal ri and the ouput yi,
and the scalar variable λ > 0 is fixed. Since the entries of the

vector y(k+j) are max-plus-scaling functions in ũ and ẽ, also

the functions fi,j will be max-plus-scaling functions in ũ and

ẽ.

The optimization of the cost function will usually be subject

to inequality chance constraints:

P

[

max
i

(

Fi(k)ũ(k) +Gi(k)ỹ(k)− gi(k)
)

≤ 0
]

≥ χc (23)

where Fi(k), Gi(k), and gi(k) refer to the ith row of F (k),
G(k), and g(k), respectively, and χc is some fixed probability

level with 0 < χc < 1. Note that constraint (23) means that

the probability that the constraints are satisfied is greater than

or equal to χc. Furthermore the function maxi

(

Fi(k)ũ(k) +

Gi(k)ỹ(k) − gi(k)
)

is a max-plus-scaling function in ũ and

ẽ. Another important set of constraints are given by

∆u(k + j) ≥ 0 for j = 0, . . . , Np − 1 (24)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1 (25)

where (24) reflects the fact that u(k) must be an increasing

sequence and (25) is the control horizon which gives u(k) a

constant rate beyond the control horizon.

The problem given by minimizing (22) subject to constraints

(24), (25) and (23) will be called the stochastic max-plus linear

MPC problem for event step k.

MPC uses a receding horizon principle. This means

that after computation of the optimal control sequence

u(k), . . . , u(k+Nc− 1), only the first control sample u(k)
will be implemented, subsequently the horizon is shifted one

sample, and the optimization is restarted with new information

of the measurements.

Note that the stochastic max-plus linear MPC problem

results in an optimization problem with a convex cost func-

tion subject to constraints. If we assume that the mapping

ỹ → G(k)ỹ is a monotonically non-decreasing function of ỹ
(this happens often in practice), constraint (23) will be convex,

which is taken from [8]. This means that the problem can

then be solved using fast and reliable convex optimization

algorithms.

Example

In this example we consider the production system of [20]

with two machines M1 and M2 operating in batches. The raw

material in the kth cycle is fed to machine M1 at time x1(k)
where preprocessing is done. Afterwards the intermediate

product is fed to machine M2 at time x2(k) and finally the

finished product leaves the system at time y(k). More details

of the system are given in [20].

Consider the cost function (22) and inequality constraint

P[max(y(k)− r(k), y(k + 1)− r(k + 1)) ≤ 0] ≥ χc (26)

We first solve the unconstrained MPC problem with cost

criterion (22) for Np = Nc = 2, λ = 0.2, χc = 0.98. Next we

solve the constrained MPC problem with cost criterion (22)

subject to constraint (26) for Np = Nc = 2 and λ = 0.2,

and χ = 0.98. For comparison purposes we also consider

the residuation controller [4] where we assume the nominal

undisturbed max-plus-linear model to compute the optimal

input signal u(k).
The optimal input sequence is computed for k = 1, . . . , 50

for the initial state x(0) =
[

18 4
]T

. In the experiments, the

true system is simulated for a uniformly distributed stochastic

variable e(k) for the given range. Figure 4 gives the difference

between the output date signal y and the due date signal r. We

see that, as expected, the residuation controller cannot handle

the parameter variation. The unconstrained MPC controller

performs better but still the tracking error y(k)−r(k) is often

larger than zero. The constrained MPC controller with the

chance constraint leads to only one violation of the due-date

constraint (but that violation is due to the initial state, so it is

unavoidable anyway).

The simulation were done on a DELL Latitude 7480 com-

puter (Intel(R) Core(TM) i7-6600 CPU @2.6-2.8MHz) using

MATLAB R2017b and the MPC optimization in MATLAB

is done with a quasi-Newton algorithm (fminunc) for the

unconstrained case and an interior-point method (fmincon)

for the constrained case. If we compare the computation

time of the unconstrained MPC controller using the analytic
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Fig. 4. The difference y(k)− r(k) between the output date signal y and the
due date signal r for residuation, unconstrained MPC, and constrained MPC.

expression with the MPC controller derived in [20] we see

that the average computation time for the controller in [20]

was 51.9 seconds and for the new analytic controller it was

5.3 seconds, which is a factor 9.8 lower.

VI. COMPUTATIONAL COMPLEXITY

MPC of stochastic max-plus linear systems is often time

consuming because a straightforward evaluation of the

expectation of the cost function and the chance constraints are

computationally expensive. The analytic expressions for the

expectation and the chance constraint, derived in this paper,

can be computed offline as piecewise polynomial functions.

In the online operation of the model predictive controller

the computation can now be done very fast, efficiently and

precisely (as an approximation is not necessary).

The offline computation is certainly computationally expen-

sive and both computation time and necessary memory will

increase for high-order max-plus linear functions and longer

predictions horizons in MPC. Consider the computation of the

vertices of set Φj(w) (see Section III). Let W be a hypercube,

then we find q = m − 1 + 2n + 2p. Following Lemma 1

we find Lmax =

(

q
n

)

possibilities to choose n out of q

equalities and so for the number of vertices of Φj(w) we

find Lj ≤ Lmax, where for all j = 1, . . . ,m. From [12]

we learn that the number of simplices Kj ≤ Kmax where

Kmax = L
⌈q⌉
max, where ⌈q⌉ is the the ceiling function that

maps q to the least integer greater than or equal to q. For the

expectation we have nexp ≤ mKmax simplices.

For the chance constraint we can use the same expression

to compute Lmax and Kmax using q = m+ 2n+ 2p+ 2 and

j = 1. For each simplex we easily derive the (n+ 1)st order

(for the chance constraint an nth order) polynomial using

a parameterized expression for determinant of an n×n matrix.

Summarizing we find that the offline algorithm is in the

order of O

(

µ ·

(

q
n

)⌈q⌉
)

, where for the expectation we

have q = m − 1 + 2n + 2p and µ = m and for the chance

constraint we have q = m+ 2n+ 2p+ 2 and µ = 1.

In the online part the expectation is represented by

hj(f, w) =















hj,pol,1 if Mj,1w ≤ mj,1

...
...

hj,pol,L if Mj,Lw ≤ mj,L

(27)

for j = 1 . . . ,m and h(f, w) =
∑m

j=1 hj(f, w). (For the

chance constraints we have a similar representation.) This

means that the extensive computation of level sets and analytic

integrals is reduced to a simple evaluation of (27). The

complexity of the online part of the algorithm is characterized

by the number mKo of regions that form the analytic solution.

For MPC problems with a large prediction horizon, many

states and many disturbance inputs, this number L may be

so high that in the online part of the algorithm the search

for the right function in (27) becomes too computationally

expensive. This problem is similar to the problem of explicit

MPC for conventional time-driven systems. Techniques to

obtain a drastic reduction of complexity are discussed in [1].

These techniques can also be used in our setting.

VII. CONCLUSIONS

We have presented an analytic piecewise polynomial func-

tion expression for both the expectation and the chance con-

straint of a max-plus-linear expression, where we assume that

the max-plus expression is affine in a control variable and

affine in a stochastic variable. We have shown how to apply

the resulting analytic expressions in stochastic max-plus linear

model predictive control. Using a case study we have shown

that the computation time in the online part has been reduced

with nearly a factor 10 with respect to the computation time

using the controller of [20].

In future research we will further improve the proposed

two-step algorithm. Hereby we can follow up on the results

achieved in explicit MPC (see [1]). Further we will compare

the method derived in this paper with approximate methods

[9], [18], [21], [23]. We will also consider simulation tech-

niques in combination with gradient estimation techniques like

infinitesimal perturbation techniques (IPA) [6]. Moreover, we

will measure the loss of precision by the approximation in

relation to the gain in computation speed.
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APPENDIX A: PROOF OF LEMMA 1

Proof : Let us consider the equation

Ae e+Az z ≤ b (28)

with e ∈ E and a fixed z ∈ Z .

Now consider a vertex vℓ of the polyhedral set Φ(z). The

matrix Sℓ will select constraints from (28) that are active for

vℓ, and Tℓ will select constraints from (28) that may be inactive

for vℓ. For vℓ to be a vertex of the polyhedral set Φ(z), we

therefore have the following properties:

Sℓ Ae vℓ = Sℓ(b−Az z) (29)

Tℓ Ae vℓ ≤ Tℓ(b−Az z) (30)

From (29) and from the fact that det(Sℓ Ae) 6= 0 we derive

vℓ = (Sℓ Ae)
−1 Sℓ(b−Az z) (31)

and substituting this in (30) we find

Tℓ Ae(Sℓ Ae)
−1 Sℓ(b−Az z) ≤ Tℓ(b−Az z) (32)

This means that (31) is a vertex if det(Sℓ Ae) 6= 0 and if (32)
is satisfied. ⋄

APPENDIX B: PROOF OF LEMMA LEM:CHICONVEX

Proof : Combining (15) and (21) we derive

χ(f, w,B) =

∫

· · ·

∫

E

φ
(

B −max
j

(αj+Λjw

+Γje)
)

p(e) de1 · · · den

Now we have with λ1 + λ2 = 1:

χ
(

f, λ1w1 + λ2w2, λ1B1 + λ2B2

)

=

=

∫

· · ·

∫

E

φ
(

(λ1B1 + λ2B2)−max
j

(αj+Λj(λ1w1

+ λ2w2)+Γje)
)

p(e) de1 · · · den ,

≥

∫

· · ·

∫

E

φ
(

λ1(B1 −max
j

(αj+Λjw1+Γje))

+ λ2(B2 −max
j

(αj+Λjw2+Γje))
)

p(e) de1 · · · den ,

≥

∫

· · ·

∫

E

min
{

φ
(

B1 −max
j

(αj+Λjw1+Γje)
)

,

φ
(

B2 −max
i

(αi+Λiw2+Γie)
) }

p(e) de1 · · · den

≥ min
{

∫

· · ·

∫

E

φ
(

B1 −max
j

(αj+Λjw1+Γje)
)

· p(e) de1 · · · den ,
∫

· · ·

∫

E

φ
(

B2 −max
i

(αi+Λiw2+Γie)
)

· p(e) de1 · · · den

}

≥ min
{

χ
(

f, λ1w1 + λ2w2, λ1B1 + λ2B2

)

,

χ
(

f, λ1w1 + λ2w2, λ1B1 + λ2B2

)}

where we used max
j

(aj + bj) ≤ max
j

aj + max
j

bj and
∫

min ≤ min
∫

. From the derivation we can conclude that

χ(f, z) is a quasi-concave function in variable z.

From the fact that χ(f, z) is quasi-concave we can conclude

that the constraint χ(f, z) ≥ χo is a convex set.

⋄


