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Optimal Control Strategies for Seasonal Thermal
Energy Storage Systems with Market Interaction

Jesus Lago, Gowri Suryanarayana, Ecem Sogancioglu, and Bart De Schutter, Fellow, IEEE

Abstract—Seasonal thermal energy storage systems (STESSs)
can shift the delivery of renewable energy sources and mitigate
their uncertainty problems. However, to maximize the operational
profit of STESSs and to ensure their long-term profitability,
control strategies that allow them to trade on wholesale electricity
markets are required. While control strategies for STESSs have
been proposed before, none of them addressed electricity market
interaction and trading. In particular, due to the seasonal nature
of STESSs, accounting for the long-term uncertainty in electricity
prices has been very challenging. In this paper, we develop
the first control algorithms to control STESSs when interacting
with different wholesale electricity markets. As different control
solutions have different merits, we propose solutions based on
model predictive control and solutions based on reinforcement
learning. We show that this is critical since different markets
require different control strategies: MPC strategies are better
for day-ahead markets due to the flexibility of MPC whereas
RL strategies are better for real-time markets because of fast
computation times and better risk modeling. To study the
proposed algorithms in a real-life setup, we consider a real
STESS interacting with the day-ahead and imbalance markets in
The Netherlands and Belgium. Based on the obtained results we
show that: (1) the developed controllers successfully maximize
the profits of STESSs due to market trading; (2) the developed
control strategies make STESSs important players in the energy
transition: by optimally controlling STESSs and reacting to
imbalances, STESSs help to reduce grid imbalances.

Index Terms—Optimal Control, Seasonal Storage Systems,
Electricity Markets, Demand Response, Model Predictive Con-
trol, Reinforcement Learning.

I. INTRODUCTION

While the energy transition [1] has the potential to highly
improve our society, e.g. by mitigating climate change, it
also poses some potential problems that need to be tackled
[2]. Specifically, due to the weather dependence of renewable
sources, a large integration of renewables implies more uncer-
tain energy generation. In the case of electricity, as generation
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and consumption have to be balanced at all times, the more re-
newable sources are integrated, the more imbalances between
generation and consumption occur, and the more complex the
control and balance of the electrical grid becomes [3]. In this
context, energy storage systems offer a promising solution
for uncertain generation by providing flexibility and ancillary
services, leading to smooth and reliable grid operation. [4].

A. Energy storage systems

Depending on the type of technology, there are different
energy storage solutions [4], [5], e.g. lithium-ion batteries,
pumped hydro storage, ultracapacitors, flywheels, molten-salt
batteries, thermal storage systems, compressed air storage,
or hydrogen storage. While most of these technologies can
ensure efficient short-term and medium-term energy storage,
efficient long-term energy storage has traditionally been more
difficult to achieve: although some of these technologies can
store energy for long periods, they are not economically very
efficient [4]. However, long-term energy storage is arguably
one of the most important elements to ensure the success of
the energy transition. Particularly, as the share of wind and
solar energy by 2030 is expected to reach very high levels (70-
80% in some countries), and as the generation of renewables
is seasonal dependent [5], seasonal energy storage solutions
[5] that can store energy across several weeks or months are
crucial in order to reduce seasonal fluctuations [4].

With regard to seasonal storage, there are primarily three
solutions available that can provide electricity back to the
grid: hydrogen storage, synthetic natural gas storage, and vana-
dium redox flow batteries [5], [6]. The first two approaches
are power-to-gas technologies that make use of renewable
sources to generate synthetic fuels, i.e. primarily hydrogen
and methane [7]. The third belongs to the next-generation of
batteries that can potentially store electricity for long horizon
[6], [8]. In this context, besides vanadium redox flow batteries,
there is also undergoing research into the next generation of
post-lithium-ion technologies with capabilities of long-term
storage [9], [10]. Despite their potential, these technologies
still have several problems that make them economically non-
viable: first, they are expensive technologies and in an early
stage of development [6]–[12]. Second, synthetic fuels have
a very low energy efficiency due to conversion losses [7].
Third, vanadium redox flow batteries and other post-lithium-
ion batteries are yet not profitable and face multiple challenges
that difficult their commercial deployment [6], [9], [10], [13].

Another option for storing energy over long horizons are
thermal energy storage (TES) systems [14]. While in general
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these systems cannot provide electricity back to the grid, they
are a more mature technology, have the advantage of being
significantly less expensive than electrical energy storage [4],
and can be used to satisfy heating and cooling demands.

In the context of TES technologies, there are three main
categories: sensible heat storage, latent heat storage, and
chemical energy storage [14], [15]. While the last two have
higher energy densities, they are both more expensive and
less mature, i.e. sometimes at the laboratory testing stage
and with no large-scale seasonal project completed [14]. By
contrast, sensible energy storage is the simplest, cheapest, most
widespread, and most mature technology [15]. As a result,
sensible heat storage systems are the focus of this paper. Note
that, aligned with the literature [16]–[18], we use the name of
seasonal thermal energy storage systems (STESSs) to refer to
TES systems based on sensible heat storage.

B. Control of non-seasonal storage systems

The problem of controlling storage systems is a devel-
oped area of research that contains many approaches that
consider market interaction. However, within this context,
all the research has usually focused on short-term storage
systems, i.e. non-seasonal storage. The aim of this section
is to provide a brief overview of the different families of
approaches within the field, describe which markets the control
algorithms are designed for, and which control horizons are
usually considered. It is important to note that, since the
number of contributions to this field are numerous, this will
not be a thorough literature review but a brief summary of the
research field.

Optimization-based approaches have been employed in nu-
merous applications [19]–[27] and are arguably the most
widely used family. In order to interact with different mar-
kets, these approaches are formulated as sequential multi-
stage optimization problems. Another family of approaches are
based on dynamic programming and Markov processes [28]–
[30]. While these approaches often provide global optimal
solutions, do not scale for large systems [31]. A third family
are rule-based approaches [23], [32], which derive a set of
logical rules to control the storage systems. Finally, there are
game-theoretical models [33], which are based on competition
economic models.

In terms of markets, control approaches have been proposed
for many different cases. The most common of them is
trading in the day-ahead market together with the balancing
market [19]–[21], [27], [33] or with the real-time market [24]–
[26]. Other proposed strategies include: frequency regulation
coupled with energy arbitrage markets [29]; day-ahead market
[30]; primary frequency response market [32]; real-time mar-
kets [22]; or day-ahead, intraday, and balancing markets [23],
[28]. To the best of our knowledge, approaches that exploit
the imbalance markets have not been proposed.

In terms of the horizon, the majority of the approaches
perform price arbitrage between day-ahead and markets closer
to real-time considering optimization horizons of one day
[19]–[29]. In this context, no approaches provide solutions for
trading energy over long horizons, e.g. months.

C. Control of seasonal storage systems

In the context of seasonal storage systems, several optimal
control strategies have been also proposed. However, none of
the proposed methods are designed for market interaction. In
[17] and [34], model predictive control (MPC) based strate-
gies are proposed to control aquifer thermal energy storage
systems; however, while the controller is designed to satisfy
physical constraints and a stochastic heat demand, the STESS
does not interact with electricity markets. Similarly, in [35], a
dynamic programming approach is proposed to control bore-
hole thermal storage systems; however, the controller assumes
a constant market price and does not distinguish between
different markets. In [18] and [36], two control algorithms
are proposed to control solar communities with a borehole
thermal storage system; however, similar to other studies,
price and markets are not considered and the controller is
limited to satisfy the system constraints and the heat demand.
In [16], a data-driven stochastic predictive control scheme to
operate an energy hub with seasonal storage capabilities is
proposed; the goal of the approach is to minimize the total
energy consumption and be cost efficient; however, here also,
the algorithm does not consider real market prices nor market
trading. Similarly, [37] proposes an optimal charging strategy
for borehole thermal storage systems; however, the focus of
the controller is to maximize the renewable energy use and
to reduce CO2 emissions, and also here, no prices nor market
interaction are considered.

D. Motivation of the research

While the field of control for storage systems features
several approaches, they are either limited to approaches for
short-term storage with market interaction or seasonal storage
without market interaction.

Generic methods for storage systems, while they model mar-
ket interaction, cannot cope with long optimization horizons.
Particularly, all the existing methods [19]–[21], [23], [27]–
[29], [33] provide trading approaches where storage systems
trade energy with daily/weekly horizons and use price differ-
ences to perform price arbitrage. This poses a challenge for
seasonal storage systems like STESSs, where the optimization
has to be perform over yearly horizons. The reason why the
existing methods cannot be applied to STESSs is twofold:

1) STESSs require forecasts of electricity prices over yearly
horizons. While there are several forecast methods [3],
[38], [39] for short-term horizons, i.e. days, there are no
reliable methods to forecasts for long-term horizons.

2) Because of the long optimization horizons, the number
of variables in the optimization problems grows very
large. In this context, the existing methods become
computationally intractable, e.g. many of them are based
on mixed-integer optimization.

In the context of control algorithms for seasonal storage,
while long horizons are sometimes considered, none of the
existing methods are able to model electricity market inter-
action. This interaction is of primary importance for several
reasons:
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1) To maximize the profit of STESSs, they should be
allowed to interact with markets. In particular, while
controlling STESSs to satisfy heat demand and/or to
maximize renewable energy usage are important goals,
they do not necessarily optimize the economic cost of
STESSs. This is specially important to increase the
number of storage systems in the electrical grid: if the
time for return on investment of STESSs is too long,
STESSs might become unattractive investments.

2) As we will show in this paper, the profits of the STESSs
are maximized when interacting with multiple markets.
Therefore, controlling STESSs based on a single price
or a single market is economically suboptimal.

3) To help reduce grid imbalances, STESSs need to be able
to arbitrage in more than one market. In particular, to
provide up-regulation in the imbalance markets, i.e. a
real-time market, STESSs need to first buy that electric-
ity in a market with an earlier gate closure time.

E. Contributions

To fill the scientific gap described earlier, we present four
contributions in this paper:

• We propose and develop different control strategies for
STESSs that can interact with multiple wholesale elec-
tricity markets. In particular, considering that there are
several trading markets for STESSs, we propose control
approaches for two cases: interaction with the day-ahead
market alone, and simultaneous interaction with the day-
ahead and imbalance markets. In addition, as different
control approaches have different merits, for each market
interaction we propose an MPC-based controller and an
RL-based controller.

• We propose the first control algorithms for storage sys-
tems that consider long optimization horizons. Particu-
larly, unlike the existing literature on seasonal storage
systems, the proposed methods quantify the price vari-
ations and uncertainty over a horizon of a year, and
exploit these variations to maximize the profits of the
storage system. In the case of the MPC approaches, this is
obtained using a novel two-stage optimization problem, a
forecasting method for long horizons, and a variable time
grid formulation. In the case of the RL approaches, the
solution involves a new simulation framework for long
horizons and a collaborative RL strategy.

• We assess the merits of each control solution for the
different markets and show that, while MPC-based meth-
ods are most suitable for day-ahead markets, RL-based
methods perform better when trading in the imbalance
market.

• Finally, we empirically demonstrate that STESSs can play
an important role in the energy transition by helping
grid operators to reduce grid imbalances. We show that
the economic incentives of STESSs are aligned with the
regulatory duties of the grid operators and that STESSs
can help balancing the grid to allow further integration
of renewable sources. To the best of our knowledge, this
is the first time that trading on the imbalance market is

explicitly evaluated from the perspective of balancing the
grid and the regulatory duties of the TSO.

We also have two additional contributions: we propose
a simple scenario generation method for generating long-
term price scenarios and a novel method for imbalance price
forecasting. This contribution refers specifically to forecasting
imbalance prices and not real-time local marginal prices
(LMPs). Although for the latter there are already forecasting
methods [40], [41], imbalance prices have different properties
than real-time LMPs and are much harder to predict.

F. Organization of the paper

The paper is organized as follows: Section III introduces
and defines the framework of a general STESS interacting with
electricity markets. Sections IV and V present respectively the
proposed MPC and RL approaches. Finally, Section VI studies
the performance of the proposed control approaches under sev-
eral case studies and considering a real STESS. Appendix A
describes the proposed scenario generation method, Appendix
B explains the imbalance price forecasting method, Appendix
C introduces and defines wholesale electricity markets, and
Appendix D presents the theoretical basis of MPC and RL.

II. MOTIVATION FOR THE SELECTED METHODOLOGY

Designing controllers for STESSs that trade in multiple
electricity markets is a very challenging task as selecting the
right control algorithms or right markets is not straightforward.

A. Control algorithms for STESSs with market trading

Considering the difficulty of market trading, state-of-the-art
control approaches, e.g. MPC [42] or reinforcement learning
(RL) [43], are highly desirable. However, in the case of MPC
[42], several problems appear:

• MPC requires realistic forecasts and/or scenarios of elec-
tricity prices over yearly horizons. While there are several
forecast methods [3], [38], [39] and scenario generation
methods [44]–[46] for short-term horizons, i.e. days, there
are no reliable methods, to the best of our knowledge, to
forecasts or generate scenarios for long-term horizons.

• In real-time electricity markets, e.g. imbalance markets,
an action has to be taken within seconds. As the MPC
works with a year horizon and the price resolution is
typically 15 min, the number of variables in the optimiza-
tion problem grows very large. As a result, MPC suffers
from computational tractability problems to provide the
optimal action within the available time frame.

While data-driven and RL techniques can mitigate or solve
these two issues, they also have problems of their own:

• While they do not require forecasts or scenarios of elec-
tricity prices, they need to generate artificial time series of
electricity prices to simulate the market conditions. Thus,
a method to generate realistic prices is still needed.

• As they are trained offline, they do not have the real-
time computation issues of MPC. However, that comes
at the cost of adaptability: if market conditions change
or if the STESS suffers from a problem, e.g. a heat
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exchanger breaks, the controller has to be re-trained
again. As the training can take several days, this limits
the adaptability of RL to changes in the environmental
conditions. In contrast, as MPC computes the solution
online, any change in the environment can be directly
included as a change in the optimization problem or by
re-estimating the dynamical model with little impact on
computation cost.

• The solutions of RL are at best a good approximation
of the optimal solution while MPC obtains an optimal
solution by explicitly solving the given control problem.

• Unlike MPC, RL cannot explicitly model hard constraints
(they can only be modeled as part of the reward). As such,
RL cannot guarantee that the provided solutions do not
violate constraints.

Based on these arguments, it becomes clear that the perfect
method does not exist and considering RL or MPC involves
several trade-offs. As a result, for this research, we will
propose different methods based on the two families and
analyze the performance of each.

B. Electricity markets for trading with STESSs

Another important point to consider is that not all electricity
markets are the same. While in theory STESSs could trade in
any electricity market, there are two trading strategies that
are especially relevant: trading only in the day-ahead market
and trading in both the day-ahead and the imbalance market.
Trading only in the day-ahead market is arguably the safest
trading strategy for STESSs as the day-ahead market is the
electricity market with the largest volume of renewable energy
trading, i.e. with low but volatile prices, and players incur no
risks as they submit bidding curves.

While trading only in the day-ahead market is a low-risk
and cost-effective trading strategy, it might still not be the most
optimal economic strategy for STESSs. In particular, while on
average, prices in the imbalance market are larger than in the
day-ahead market, since the imbalance prices are much more
volatile, there are periods of time where imbalance prices are
much lower (sometimes becoming even negative). In addition,
by participating in the imbalance market, STESSs might be
able to help reduce grid imbalances: as during periods of
positive imbalances, i.e. generation larger than consumption,
prices are low, STESSs could wait for these periods to buy
their energy; by doing so, they would not only reduce grid
imbalances but also increase their own profits. Similarly, as
prices are high during periods of negative imbalances, STESSs
can make use of their charging flexibility to first buy energy
in the day-ahead market, and then sell it in the imbalance
market if imbalances are negative or use it if they are positive.
By doing so, STESSs could potentially increase their profits
while helping to reduce negative imbalances.

It is important to note that, despite all these potential
benefits, trading strategies for the imbalance market have much
higher risks: in the imbalance market, agents take an action
for the next time interval without knowing the imbalance
price. Particularly, as imbalance prices are based on the
grid imbalances during a period of time, the price is only

known after the period is over. Thus, trading strategies for the
imbalance market heavily rely on price forecasters and have
an associated risk.

In this paper, we will explore both trading strategies, i.e.
trading in just the day-ahead market and trading in both the
day-ahead and imbalance markets, and study the benefits of
each.

III. SEASONAL STORAGE SYSTEM FRAMEWORK

In order to introduce the control algorithms, we need to
define the framework of a general STESS interacting with the
electricity markets. For notational simplicity, concatenations
of several vectors, e.g. [x⊤, y⊤]⊤, will be shortened as (x, y).

A. Dynamical model
An STESS can be defined as a general dynamical system

with an internal state x(t), controls u(t) = (Q̇in(t), Q̇out(t)),
nunits storage units, and external disturbances d(t). The in-
ternal state x(t) represents the state of charge of the system.
The controls Q̇in(t) ∈ Rnin and Q̇out(t) ∈ Rnout respectively
represent the rate at which energy is injected and extracted
into/from the system. The disturbance represents any uncon-
trollable input, e.g. the external temperature.

The dynamics of the system are defined by a partial
differential equation (PDE). For a sensible heat storage device
with water stratification, the system can be divided into nunits

layers acting as individual storage units, and the dynamics of
a layer i represented by the following PDE [47]:

∂xi

∂t
= a1

∂2xi

∂z2
+ a2(d− xi) + a3(Q̇

in
i − Q̇out

i ), (1)

where z represents the direction of stratification.

B. Heat demand and purchased energy
In general, an STESS is required to supply an uncertain heat

demand Q̇d(t). To do so, an STESS buys energy Q̇m(t) from
some market, stores it, and then delivers it to follow Q̇d(t). To
maximize the profits, it needs to consider the price of Q̇m(t),
the storage efficiency, and an estimation of the future heat
demand Q̇d(t). Therefore, the following holds:

Q̇d(t) =

nout∑
i=1

Q̇out
i (t), Q̇m(t) =

nin∑
i=1

Q̇in
i (t), (2)

i.e. the heat demand should equal the sum of the energy
extracted from the STESS and the energy bought in the market
should equal to sum of the energy introduced in the STESS.

C. Trading in the day-ahead market
Given a day-ahead market with unknown daily hourly prices

(λdam
1 , . . . , . . . λdam

24 ), the goal of any control algorithm for
an STESS is to build optimal bidding curves to maximize the
profit. In particular, the aim is to, one day in advance, build
24 optimal bidding curves Q̇b

1(·), . . . , Q̇b
24(·) such that, while

the STESS always has enough energy to satisfy the demand
Q̇d(t), the cost of the purchased power Q̇dam(t) is minimized.
In this market structure, the purchased power Q̇dam(t) at every
hour h is defined by:

Q̇dam(t) = Q̇b
h(λ

dam
h ), ∀ t ∈ [h, h+ 1]. (3)
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D. Trading in the imbalance market

For the imbalance market, the imbalance price λimb is
always unknown when purchasing/selling power as the price
λimb is determined in real time by the reserves activated by
the TSO. In particular, at time step k, a market agent has
to decide whether to sell, buy, or not trade without knowing
the imbalance price λimb

k for the interval. As λimb
k is usually

known immediately at the next interval, the agent can take
the decision based on past imbalance prices λimb

k−1, λ
imb
k−2, . . .

or any other information available at time step k − 1.
Defining as Q̇imb(t) the energy traded in the imbalance mar-

ket, with positive and negative values respectively representing
energy that is bought and sold, it holds that:

−Q̇imb(t) ≤ Q̇dam(t), (4)

i.e. the energy sold in the imbalance market by an STESS
is limited by the energy purchased on any previous market
(the day-ahead market in the case of the proposed control al-
gorithms). Particularly, because the STESS cannot effectively
convert heat back to electricity, any energy sold is limited by
the energy bought within the same day in other markets, and
the STESS cannot sell any energy that was previously stored.
Similarly, it holds that:

Q̇m(t) = Q̇dam(t) + Q̇imb(t), (5)

i.e. the total energy purchased for the STESS is the sum of the
energy purchased in the day-ahead and imbalance markets.

Considering these definitions, a control algorithm for the
imbalance market has to select the value of Q̇imb(t) for each
time step k so that, while the STESS has enough energy to to
satisfy the demand Q̇d(t), the total cost of trading Q̇dam(t)
and Q̇imb(t) is minimized. To do so, the control algorithm
receives as an input the energy Q̇dam(t) purchased in the day-
ahead, and selects the value of Q̇imb(t).

IV. MPC APPROACHES

In this section, we derive and explain the two proposed
MPC approaches: one to trade exclusively on the day-ahead
market, and a second one to trade on both the day-ahead and
the imbalance market.

A. Bidding functions

In the case of the day-ahead electricity market, the goal
of the MPC is to provide the 24 optimal bidding functions
Q̇b

h(·), for h = 1, 2, . . . , 24. Since standard MPC can only
provide the optimal market power Q̇dam

λ̃
for a fixed price λ̃,

an additional step is needed. For each hour h, we propose the
following approach:

1) Predefine np discrete prices {λ1, λ2, . . . , λnp} for the
price λdam at hour h.

2) Fix the remaining 23 day-ahead prices using their ex-
pected value, e.g. a forecast.

3) Solve the MPC for each of these np prices
and obtain the associated optimal market powers
{Q̇dam

λ1 , Q̇dam
λ2 , . . . , Q̇dam

λnp } at hour h.

4) Build the bidding function as a piecewise constant
function based on the obtained solutions:

Q̇b
h(λ

dam) =



Q̇dam
λ1 , λdam ≤ λ1

Q̇dam
λ2 , λ1 < λdam ≤ λ2

...
Q̇dam

λnp , λnp−1 < λdam ≤ λnp

0, λnp < λdam

(6)

This approach for building bidding functions is obviously
only possible as long as the bidding functions within one day
are independent of each other. However, since STESSs are
very large storage devices, their internal state does not vary
much within one day. As a result, the choice of one bidding
function does not affect much the others and the assumption
of independent bidding functions holds in practice.

Moreover, due to the market structure and the long opti-
mization horizons of STESS, the 24 bidding functions are very
similar. In detail, as the 24 daily bids are submitted at the same
time, all the bids are built based on the same information, e.g.
the STESS state. Moreover, as the STESS is flexible, it does
not matter at which hour of the day it buys energy: because
of the large storage size of the STESS, the state of the STESS
barely changes with the action taken in a given hour. As such,
the STESS states between consecutive days never differ too
much, and, as the optimal bidding functions only depend on
the STESS state, it follows that the optimal bidding function
for every hour of a given day are similar. As a result, in a
given day, the difference in price distribution between hours
is not important, and the STESS reacts almost equally to a
market price independently of the hour, i.e.:

Q̇b
1(λ

dam) ≈ Q̇b
2(λ

dam) ≈ . . . ≈ Q̇b
24(λ

dam), ∀ λdam. (7)

Thus, to build the 24 bidding functions, it is only needed to
obtain the bidding function Q̇b

1(·) for the first hour.

B. MPC for day-ahead trading

As motivated in the previous section, we only need to
estimate the bidding function Q̇b

1(·) for the first hour of the
day. However, instead of solving a single OCP like in standard
MPC, we need to discretize the first price λdam

1 into a discrete
set of prices {λ1, λ2, . . . , λnp}, and for each of these prices
solve the relevant OCP.

For the sake of simplicity, in this section we will as-
sume that each OCP is optimized using a discrete time
grid t1, t2, . . . , tN+1, i.e. using an optimization horizon equal
to tN+1 − t1; the details of how the time grid is defined
will be covered in Section IV-D. Similarly, we will assume
that the expected day-ahead prices {λ̄dam

k }Nk=1, the expected

heat demand values { ¯̇Q
d

k}Nk=1, and the expected disturbances
{d̄k}Nk=1 are also provided; the method to obtain these values
are explained in Appendix A.

Considering the previous definitions, at every day and for
each price λj , the MPC approach solves the following OCP:
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OCP(λj):

minimize
x1,Q̇

in
1 ,Q̇out

1 ,Q̇dam
1 ,x2,...,

Q̇in
N ,Q̇out

N ,Q̇dam
N ,xN+1

λj Q̇dam
1 +

N∑
k=2

λ̄dam
k Q̇dam

k (8a)

subject to

x1 = x̃1, (8b)

xk+1 = f(xk, Q̇
in
k , Q̇out

k , d̄k), for k = 1, . . . N, (8c)

Q̇dam
k ≤ Q̇m

max, for k = 1, . . . N, (8d)
nin∑
i=1

Q̇in
k,i = Q̇dam

k , for k = 1, . . . N, (8e)

nout∑
i=1

Q̇out
k,i = ¯̇Q

d

k, for k = 1, . . . N, (8f)

0 ≤ Q̇in
k ≤ gin(xk), for k = 1, . . . N, (8g)

0 ≤ Q̇out
k ≤ gout(xk), for k = 1, . . . N, (8h)

xmin ≤ xk ≤ xmax for k = 1, . . . N, (8i)
xN+1 = x̃1, (8j)

where:
• The objective function represents the cost of purchasing

energy considering that the first price is fixed and given
by λj and that the remaining prices in the horizon are
the expected prices in the market.

• Equation (8b) fixes the initial state, which is assumed to
be known and given by x̃1.

• Equation (8c) ensures that the dynamics of the system are
ensured at every time step. To discretize the continuous
PDE, i.e. (1), we consider an explicit Euler integration
scheme [47] as it provides a good trade-off between speed
and accuracy for long optimization horizons

• To model the discrete dynamics, a multiple shooting
[48] scheme is used. Unlike single shooting, multiple
shooting explicitly includes the state x in the optimization
problem. This is done to obtain a sparse Hessian and an
easier to optimize problem.

• The maximum power purchased from the market is
limited by (8d).

• Equation (8e) ensures that the input power equals the
power purchased from the market.

• Through (8f) it is ensured that the heat demand is met.
• Equations (8g) and (8h) ensure the individual charging

and discharging limits of each individual storage device.
The upper limit is usually a function of the state as the
maximum power that can be charged/discharged usually
depends on the state of charge.

• The limits on the STESS state are defined by (8i).
• The OCP should avoid depleting the STESS at the end

of the horizon. To do so, as the optimization horizon is
usually a seasonal periodic cycle (see Section IV-D for
details), (8j) constrains the STESS to have the same state
of charge at the beginning and at the end.

• The objective function is simplified to leave out some
costs, e.g. maintenance costs, start-up costs, or utility
costs. Simplifying the objective function to only include
the market cost is a design choice motivated by two

reasons: first, some of these costs are orders of magnitude
lower than the market cost1. Second, some costs simply
offset the profitability by a constant or a scaling factor
and are not relevant for the control algorithm.

After solving an OCP for each discrete price λj, the optimal
bidding function Q̇b

1(·) can be estimated using (6), where the
optimal market power Q̇dam

λj equals Q̇dam
1 .

C. MPC for day-ahead and imbalance trading

The MPC-based approach to trade in both the day-ahead and
the imbalance market consists of two separate MPC algorithms
that run one after the other:

• A first MPC algorithm that trades in the day-ahead market
but, unlike the MPC algorithm defined in the previous
section, it considers that there is also a possible future
interaction with the imbalance market.

• A second MPC algorithm that trades in the imbalance
market and that considers that there is also possible future
interactions with the day-ahead market. However, unlike
the MPC algorithm for the day-ahead market, it runs on
real time and it does not build bidding functions. Instead,
at time step k−1, it considers a forecast λ̂imb

k of the next
imbalance price and then solves a single OCP to obtain
the optimal power Q̇imb

k to trade in the imbalance market.

It is important to note that, as with the day-ahead market,
both algorithms are based on deterministic MPC. Given the
uncertainty in electricity prices, one could argue that a more
optimal approach would be to employ stochastic MPC. How-
ever, due to the long horizons involved, the computation time
required for stochastic MPC makes the approach infeasible for
real-time application (especially for the imbalance market).
Particularly, for trading in the imbalance market, the MPC
approach already requires (in the deterministic setting) to
approximate the 1-year horizon to 1 month, i.e. the obtained
optimal solution is approximated and no longer optimal w.r.t.
the yearly seasonal period. A stochastic setting would only
make this approximation worse. While larger computation
capabilities could perhaps mitigate the issue, there are is
another problem: as MPC solves a non-convex problem, there
is no guarantee on the maximum computation time and more
computational power might not help much.

C.1 MPC for the day-ahead market

To define the OCP of the first MPC algorithm, we will
again consider that the discrete time grid t1, t2, . . . , tN+1,
the expected day-ahead prices {λ̄dam

k }Nk=1, imbalance prices

{λ̄imb
k }Nk=1, heat demand values { ¯̇Q

d

k}Nk=1, and disturbances
{d̄k}Nk=1 are given. In addition, we will simplify the vector
of input controls by uk = (Q̇in

k , Q̇out
k , Q̇dam

k , Q̇imb
k ). Then, at

every day and for each discrete price in {λ1, λ2, . . . , λnp},
the MPC solves the following OCP:

1This information was obtained from the case study site company.
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OCP(λj):

minimize
x1,u1,x2,...,
uN ,xN+1

λj Q̇dam
1 +

N∑
k=2

λ̄dam
k Q̇dam

k +

N∑
k=1

λ̄imb
k Q̇imb

k

(9a)
subject to

x1 = x̃1, (9b)

xk+1 = f(xk, Q̇
in
k , Q̇out

k , d̄k), for k = 1, . . . N, (9c)

Q̇dam
k + Q̇imb

k ≤ Q̇m
max, for k = 1, . . . N, (9d)

nin∑
i=1

Q̇in
k,i = Q̇dam

k + Q̇imb
k for k = 1, . . . N, (9e)

nout∑
i=1

Q̇out
k,i = ¯̇Q

d

k, for k = 1, . . . N, (9f)

0 ≤ Q̇in
k ≤ gin(xk), for k = 1, . . . N, (9g)

0 ≤ Q̇out
k ≤ gout(xk), for k = 1, . . . N, (9h)

xmin ≤ xk ≤ xmax for k = 1, . . . N, (9i)

Q̇dam
k ≥ 0, for k = 1, . . . N, (9j)

− Q̇dam
k ≤ Q̇imb

k , for k = 1, . . . N, (9k)
xN+1 = x̃1. (9l)

While the main structure is very similar to (8), there are some
important differences:

• The algorithm minimizes the cost of purchasing energy
like in (8a) but includes the future transactions in the
imbalance market.

• The constraints that contain the power purchased from
the market, i.e. (9d) and (9e), consider now the sum of
the power purchased in both markets.

• Unlike the case of trading only in the day-ahead market,
the STESS can now sell energy on the imbalance market
if it has previously bought it in the day-ahead market.
This is modeled by (9j) and (9k), which respectively
guarantee that in the day-ahead market energy can only be
bought, and that the energy sold in the imbalance market
is limited to the energy bought in the day-ahead market.

• The amount of energy traded is not limited by the system
demand. In particular, the total energy traded is limited
by Q̇m

max, which represents a safety upper bound that can
be much larger than the heat demand Q̇d and that simply
models how risk-averse the STESS is to price arbitration.

C.2 MPC for the imbalance market

To define the second MPC algorithm, let us first make the
following assumptions and definitions:

• The MPC algorithm for the imbalance market considers a
new time grid t′1, t

′
2, . . . , t

′
N1+1 with t′N1+1 ≤ tN+1, i.e. a

shorter horizon and a different discretization. The details
on this discretization are provided in Section IV-D.

• The expected day-ahead prices {λ̄dam
k }N1

k=1, imbalance

prices {λ̄imb
k }N1

k=1, heat demand values { ¯̇Q
d

k}
N1

k=1, and
disturbances {d̄k}N1

k=1 are again provided. (See Appendix
A for details).

• The optimal state at time tN1+1 is defined by x⋆
N1+1 and

obtained from the solution of the MPC for the day-ahead
market. In particular, this value can be obtained from the
optimal solution of any of the np OCPs solved in the
latest day-ahead market.

• An accurate forecast λ̂imb
1 of the next price in the imbal-

ance market is available. The details of this forecast are
explained in Appendix B.

Based on these definitions, before each imbalance market
clearance, MPC solves the following OCP and trades the
optimal solution Q̇imb

1 in the imbalance market:

minimize
x1,u1,x2,...,
uN1

,xN1+1

λ̂imb
1 Q̇imb

1 +

N1∑
k=1

λ̄dam
k Q̇dam

k +

N1∑
k=2

λ̄imb
k Q̇imb

k

(10a)
subject to

(9b) − (9k), (10b)
xN1+1 = x⋆

N1+1. (10c)

The new MPC scheme is very similar to the previous MPC
for the day-ahead market but with some differences:

• As a bidding function is not needed, instead of solving
the OCP multiple times for different possible prices, this
MPC algorithm solves a single OCP considering the most
likely imbalance price λ̂imb

1 in the next market clearance.
Then, it trades directly the optimal solution Q̇imb

1 in the
imbalance market.

• A distinction is made between the future expected im-
balance prices {λ̄imb

k }N1

k=2 and the forecast price λ̂imb
1 in

the next time step. This distinction is made because the
accuracy of the forecast is better than that of the method
used to generate the expected future values.

• As this MPC algorithm runs in real time, the computation
time should be as small as possible. To reduce the
computation time, a smaller horizon t′N1+1 < tN+1 is
considered.

• As the optimization horizon t′N1+1 is now smaller than
a periodical seasonal cycle, it is suboptimal to constrain
the final state to be equal to the initial state. However,
not constraining the final state leads to an OCP that does
not account for what happens after t′N1+1. To solve this
problem, (10c) constrains the final state to be equal to
the optimal state x⋆

N1+1 at time t′N1+1, which is obtained
from the solution of the latest day-ahead MPC algorithm.

D. Time grid and optimization horizon

In the previous sections, we assumed that the discrete time
grids where the OCPs were defined were given. In this section,
we explain the methodology to define these time grids.

In general, to define a discrete-time grid, we also need to
define the optimization horizon T and the discrete time step
∆t. For an STESS, T represents its seasonal horizon, which is
typically a year. While most applications consider a constant
∆t along the optimization horizon, we argue that for an STESS
this not necessary and should in fact be avoided:

• As day-ahead markets have a different price every hour,
the minimum time step at the beginning of the horizon
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is ∆t = 1 h. However, due to the long optimization
horizons, it is not possible to accurately estimate with
hourly resolutions the price and demand distributions at
the end of the horizon. Instead, it is better to estimate
the distributions over larger intervals, e.g. several hours,
where due to noise averaging the uncertainty can be better
quantified.

• Another reason to consider a variable ∆t is the compu-
tational cost: by increasing ∆t towards the end of the
horizon, we reduce the number of optimization points N
and the computational complexity of the OCP.

• As MPC only needs the optimal control at the first time
point, it can be argued that lowering the time resolution
at the end of the horizon has little impact on the first
optimal control.

Finally, based on T and ∆t, the number of time intervals N
is defined.

D.1 Day-head market

Considering that the day-ahead electricity market is cleared
every day, the hourly resolution should only be needed for the
first day. Based on this and the arguments above, for the day-
ahead market MPC we consider a time grid t1, t2, . . . , tN+1

with a year horizon, using four different ∆t, and containing
N = 1233 time intervals:

t1

0
t25

1 day
t97

1 week 4 weeks
t223

1 year
t1234

∆t = 1h

N = 24

∆t = 2h

N = 72

∆t = 4h

N = 126

∆t = 8h

N = 1011

D.2 Imbalance market

For the case of the imbalance market, the minimum ∆t
is 15 minutes. Moreover, considering the large uncertainty in
imbalances prices, we argue that the 15 min resolution is only
needed for the first hour. Finally, as the MPC algorithm for
the imbalance market runs in real time, the computation time
should be as small as possible. Based on these arguments,
we consider a time grid t′1, t

′
2, . . . , t

′
N1+1 for the imbalance

market with a horizon of four weeks, using four different ∆t,
and containing N1 = 225 time intervals:

t′1

0
t′5

0
t′23

1 day
t′100

1 week 4 weeks
t′226

∆t = 15min

N1 = 4

∆t = 1h

N1 = 23

∆t = 2h

N1 = 72

∆t = 4h

N1 = 126

It could be argued that considering a horizon of four
weeks instead of a year (the standard seasonal cycle) leads
to suboptimal solutions, i.e. the MPC cannot account for what
happens during a full seasonal cycle. However, as explained
in Section IV-C2, MPC avoids this by constraining the state
at the end of the four weeks to be equal to the optimal state
x⋆
226 at that time point.

V. RL APPROACHES

In this section, we present the two proposed RL approaches:
one to trade in the day-ahead market, and a second one to trade
in both the day-ahead and the imbalance markets.

A. RL for day-ahead trading

As with MPC, any RL control algorithm for the day-ahead
market needs to estimate the bidding functions Q̇b

h(·), for
h = 1, 2, . . . , 24. While in the case of MPC that required
discretizing prices and solving multiple OCPs, for RL the
bidding functions can be directly obtained from the optimal
policy π⋆(sk). In detail, if the RL agent is set up so that:

• The reward represents the cost of purchasing energy.
• The RL state s contains the day-ahead price λdam.
• The action u includes the power Q̇dam purchased from

the market.
Then, by definition, the bidding function Q̇b(λdam) is im-
plicitly defined by the optimal policy u⋆ = π⋆(s) =
π⋆(λdam, . . .). Below we provide further details on the pro-
posed RL algorithm.

A.1 State and control spaces

The first step to define the RL algorithm is to define its
state and control spaces. For the proposed algorithm, the state
s = (x, τ, λdam) is defined by three different features:

1) The state x of the STESS.
2) The time position τ within the periodic seasonal cycle,

e.g. the day of the year.
3) The market price λdam.

The reason for selecting these three features is twofold:
• The optimal action u⋆ = π⋆(s) can be selected based on

both the state of the STESS and the environment.
• As we will show in Section V-A6, given a fixed time point

τ̃ and STESS state x̃, the bidding function Q̇b(λdam) is
by definition given by the optimal policy π̃⋆(x̃, τ̃ , λdam).

To define the action space U, we consider that a single
action u ∈ Rnin+1 has the following format:

u = (u1, u2, . . . , unin
, j). (11)

In detail, we consider that each input control ui can take ndis+
1 discrete values uniformly separated between 0 and 1 and that
the real power Q̇in

i into the storage i is obtained by multiplying
ui by the maximum power Q̇max

i , i.e. Q̇in
i = ui Q̇

max
i . This

scaling is done because Q̇max
i might depend on the system

state and can change throughout time. For the output control, a
single storage unit j is selected to provide the demand Q̇d, i.e.
Q̇d = Q̇out

j . The action space is then defined by the possible
combinations of all these values.

A.2 Reward function

The reward rk at time step k is defined as the negative
of the cost of the energy purchased. Thus, assuming that the
agent is at state sk = (xk, τk, λ

dam
k ) and takes an action

uk = (u1,k, . . . , unin,k, j), rk is defined as −λdam
k

∑nin

i=1(ui,k·
Q̇max

i,k ). In addition, if the agent depletes the system and
the demand Q̇d

k cannot be satisfied, the reward penalizes
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this situation with a cost 10 times larger than the cost of
instantaneously buying Q̇d

k in the market2. Finally, as with
standard RL algorithms, the reward at the last point in an
episode is 0:

rk =


0, If k = Te

−λdam
k

(∑nin

i=1(ui,k Q̇
max
i,k ) + 10 Q̇d

k

)
,

If the system
is depleted

−λdam
k

∑nin

i=1(ui,k · Q̇max
i,k ), Otherwise.

(12)

A.3 Episode length and time grid
Another critical point when designing an RL algorithm is to

select the episode length Te. For STESS, it can be argued that,
to avoid optimal policies that deplete the STESS, the minimum
Te should be two seasonal periodic cycles. In particular, if the
episode length equals the cycle length, the agent would know
the time position within an episode as the agent knows the time
position τ within a seasonal cycle. Using that information,
the agent could potentially deplete the STESS at the end of
the episode/cycle to reduce the cost. This behavior would be
undesirable as the STESS needs to provide energy for more
than a seasonal periodical cycle.

For the size of the discrete time grid, we consider that a
time transition k → k + 1 spans a day. In particular, as with
MPC, it is assumed that the state of charge does not change
dramatically from one day to another and that the optimal
bidding curves within a day are very similar. It is important to
note that selecting this time step size is just a design choice
and that it is equally possible to consider time steps of one
hour at the expense of increasing the computation load.

A.4 Simulation environment
To train a RL agent to control STESSs, we use a simulation

environment that recreates the world an STESS lives in. In
detail, this environment consists of two modules:

• STESS simulator: a simulator of the dynamical model
of the STESS: xk+1= f(xk, Q̇

in
k , Q̇out

k , d̄k).
• Environment simulator: a simulator that produces re-

alistic day-ahead market prices λdam, heat demand Q̇d,
and disturbances d. To obtain a simulator that generates
realistic time series, the method for scenario generation
explained in Appendix A is considered.

A.5 Training algorithm
The last step before training the agent is to select the

specific RL algorithm to estimate the optimal policy π⋆(s).
For the case of STESSs, we propose using fitted Q-iteration
[43], [49] with boosting trees [50]. The reason for selecting
this algorithm is that we empirically observed (using the real
system presented in Section VI) that this algorithm performed
as good as more advanced RL algorithms but without the
additional computational complexity. Unlike the deterministic
MPC approach, price uncertainty is implicitly included in this
approach as the RL agent is trained with a probabilistic reward.
Therefore, the RL agent can learn some notion of risk that
quantifies the distribution of a reward for a given state.

2Selecting a factor of 10 is a design choice. The agent just needs a large
penalty cost whenever it depletes the STESS.

A.6 Building bidding functions

After the RL agent is trained, the optimal bidding functions
Q̇b(·) are directly obtained. In particular, given a fixed time
point τ̃ and STESS state x̃, we have an optimal policy u⋆ =
π⋆(x̃, τ̃ , λdam) = π̃⋆(λdam) that selects the power purchased
from the market as function of the market prices; thus, by
definition, Q̇b(λdam) is directly defined by π̃⋆(λdam).

B. RL for day-ahead and imbalance trading

As with MPC, the RL-based approach to trade in both
markets consists of two separate RL algorithms:

• A first RL algorithm that trades with the day-ahead
market. This is the algorithm proposed in Section V-A
and it is agnostic of what happens in the imbalance
market.

• A second RL algorithm that trades in the imbalance
market and that considers the interaction with the day-
ahead market. This algorithm runs in real time and it
does not build bidding functions.

B.1 Training multiple RL agents

As each electricity market has its own rules and working
principles, it is clear that a different RL agent for each market
is needed. As an example, an RL agent for the imbalance
market has a different state s as it knows more information
than the agent for the day-ahead market, e.g. it knows the
prices and allocations of the day-ahead market.

Based on this premise, when using RL to trade in two
electricity markets, the problem becomes a multi-agent RL
problem [51]. More specifically, as both agents are trying to
minimize the economic cost, it becomes a collaborative multi-
agent RL problem [52], [53].

While the literature has several methods for collaborative
RL, e.g. join-action learners [52], we argue that the available
methods might not be very suitable for the case of STESS.
In particular, when training several agents at the same time,
the environment becomes non-stationary [51], i.e. as each
agent improves and changes its own policy the environment
that the other agents perceive changes as well. This non-
stationary condition invalidates the convergence properties of
most single-agent RL algorithms [51]. While there are methods
that address this by allowing every agent to observe the state
and actions of the other agents, these are not applicable to
STESSs. In particular, due to the sequential decision making
nature of electricity markets, while the imbalance agent can
know the state of the day-ahead agent, the opposite is not true,
i.e. the information of the imbalance market is unknown at the
time bids need to be submitted to the day-ahead market.

Based on the previous argument, we propose an RL ap-
proach for trading in the two markets where agents are not
trained simultaneously. Instead, the day-ahead agent is trained
first using the algorithm proposed in Section V-A, and the
imbalance agent is trained afterwards including in its state
information from the day-ahead market. This scheme has two
benefits:
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• Convergence: as the two RL agents are independently
trained in two stationary environments, standard RL al-
gorithms have guarantees of convergence.

• Flexibility: as the imbalance market is highly volatile,
STESSs owners could potentially want to stop the trading
in the imbalance market during periods of high volatility.
As the agent for the day-ahead market is independent,
STESSs could simply use the controls of this agent and
be optimal in the more stable day-ahead market.

B.2 RL for the imbalance market

As the RL agent for the day-ahead is the same as the one
described in Section V-A, we only need to define the RL agent
that uses the information from the day-ahead and trades in
the imbalance market. For the state space, besides the three
values included in the state of the day-ahead agent, the new
state includes past imbalance prices, past imbalance volumes,
and the day-ahead price and energy allocation. In detail, at
step k:

sk = (xk, τk, λ
dam
k , Q̇dam

k , λimb
k−1, V

imb
k−1 , . . . , λ

imb
k−nhrl

, V imb
k−nhrl

)
(13)

where V imb represents the overall grid imbalance, and where
the number of historical past values nhrl is defined by the last
lag uncorrelated to the imbalance price λimb

k . As an example,
for The Netherlands, we observed nhrl = 3 to be a good
choice.

To define the action space U, a single action u ∈ Rnin has
a similar format as before:

u = (u1, u2, . . . , unin
). (14)

In detail, we consider that each input control ui can take
ndis + 1 discrete values uniformly separated between −1 and
1. In particular, defining by Q̇in,dam

i the energy purchased for
storage device i in the day-ahead market, a value of ui = −1
represents selling all the energy Q̇in,dam

i in the imbalance
market, i.e. Q̇in

i = 0. By contrast, a value of ui = 1 represents
buying all the energy that is still possible, i.e. Q̇max

i −Q̇in,dam
i ,

for storage device i, i.e. Q̇in
i = Q̇max

i . The selection of the
output power is not considered as it is already selected by the
day-ahead agent.

Besides the reward r that includes now the cost/income
obtained in the imbalance market, and the simulation envi-
ronment that also generates imbalance prices, the other parts
of the RL agent remain the same.

B.3 Market interaction

In terms of the interaction with the agent for the day-
ahead market, the STESS is controlled with both agents acting
sequentially. First, one day-ahead, the day-ahead agent builds
the bidding functions for the next day’s day-ahead market.
Next, the day-ahead market is cleared and the energy is
allocated. Then, in real time, the imbalance agent uses the
existing information of the day-ahead and imbalance markets
to select the optimal power to buy/sell.

Unlike the agent for the day-ahead market, the imbalance
agent does not build bidding functions as the imbalance market
requires direct selection of the power Q̇imb to buy/sell. As a

 Heat Buffer 1 
   

 Heat Buffer 2 
   

 Heat Buffer 3 
   

 Heat Buffer 4  
  

 Heat Buffer 5  
  

 Heat Buffer 1 
   

 Heat Buffer 2 
   

 Heat Buffer 3 
   

 Heat Buffer 4  
  

 Heat Buffer 5  
  

Fig. 1. Schematic representation of the STESS. Left: technical scheme rep-
resenting the five heat buffers in the real system. Right: scheme representing
the underground installation of the STESS.

result, the optimal policy π⋆(sk) at time k directly selects the
power to be traded based on available data sk at that time step
k, but not on the imbalance market price λimb

k .

VI. CASE STUDY

To study the quality of the proposed control strategies, and
in order to analyze the merits and disadvantages of each one
of them, we consider the Ecovat vessel [54], a real SSTES.
The system will be evaluated in eight case studies: first, the
STESS will need to satisfy an uncertain heat demand during
one year while minimizing the cost through the day-ahead
market. Second, the STESS will need to supply the same
heat demand but interacting with both the day-ahead and the
imbalance market. For each of the two scenarios, we will
consider two different heat demand profiles and two different
countries.

A. Real STESS

The considered STESS is a large subterranean thermal
stratified storage vessel with the ability to store heat for
seasonal periods and to supply heat demand to a cluster of
buildings. The system is divided into different segments or
heat buffers that can be charged and discharged separately; the
system has 5 thermal buffers with the top 4 buffers (see Figure
1) being able to be charged and discharged independently.
Figure 1 provides a schematic representation of the vessel
and Figure 2 illustrates the real system when it was under
construction. For further details on the system we refer to
[47].

B. System dynamics

The state of the STESS at time step k is defined by
xk = (T1,k, T2,k, T3,k, T4,k, T5,k), i.e. by the temperature
stored in each of the 5 buffers as it is proportional to the
stored energy. Similarly, as the top 4 buffers can be charged
and discharged independently, the input and output power
are respectively defined by Q̇in

k = (Q̇in
1,k, . . . , Q̇

in
4,k) and
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Fig. 2. Construction of the STESS. Left: installation of the last heat buffer.
Right: STESS almost completely sealed.

Q̇out
k = (Q̇out

1,k , . . . , Q̇
out
4,k ). Finally, using the dynamical model

for thermal stratified vessels proposed in [47], the dynamics
of each heat buffer i at time k can be defined by:

Ti,k+1 =Ti,k + a1 (Ti+1,k + Ti−1,k − 2Ti,k)

+ a2 (T∞ − Ti,k) + a3(Q̇
in
i,k − Q̇out

i,k ), (15)

where T∞ represents the ambient temperature and is the only
disturbance d. For further details on the model we refer to
[47]. Note that this is the dynamical model used for the RL
simulator and for defining the dynamics constraint in the MPC.

C. Data

To set up the study, we consider the day-ahead and imbal-
ance prices between 2015–2017 in The Netherlands3, and the
heat demand of a cluster of 5 buildings with a yearly-average
heat demand of 220 MWh during the same time period4.
As a second case study, we consider the day-ahead and the
imbalance markets in Belgium, and the same heat demand.

The data of 2015 and 2016 is used as training data for the
RL agents, and as the historical data for generating scenarios.
The data of 2017 is used as out-of-sample data to evaluate the
performance of the different algorithms.

D. Experimental Setup

To compare and study the control approaches, we evaluate
their performance in terms of the economic cost that they incur
when controlling the STESS for the full 2017 year in both
The Netherlands and Belgium. As a baseline, we consider
the economic cost of directly buying the instantaneous heat
demand Q̇d at the day-ahead market price. This baseline serves
us to establish whether a control approach learns to trade
energy, i.e. to study whether a control approach can use the
STESS to reduce the energy cost. Moreover, to compare the
algorithm in different conditions, the demand data is multiplied
by 2 and used to evaluate the algorithms in the case of having
10 buildings, i.e. a yearly-average demand of 440 MWh.

The MPC algorithm is modeled using Casadi [55] and
python, and then solved using Ipopt [56]. For the RL
approach, the fitted-Q-iteration algorithm is implemented in
python using the Xgboost [50] library. The forecaster of
imbalance prices is also done via the Xgboost library.

It is important to note that, although both methods are based
on completely different concepts, i.e. RL largely depends on

3Collected from https://transparency.entsoe.eu/.
4Obtained from one of our research partners.

the training data while MPC on the underlying optimization
problem, the comparison between the methods is fair as the
available data and dynamical model for both methods is
exactly the same. In particular, MPC uses historical data to
build price forecasts and RL uses the same historical data
to build the simulation framework. Moreover, both methods
consider the same dynamical model: MPC does it explicitly
in the optimization problems while RL uses it in the simula-
tion framework. While their solvers are different, this is the
standard scenario in any comparison as different approaches
have tailored solvers to the specific optimization problem, e.g.
when comparing convex and non-convex models the convex
models are estimated using a convex solver even though the
non-convex models cannot make use of it.

E. MPC approaches

To use the MPC approaches proposed in Section IV, a
discrete set of prices has to be defined to build the bidding
functions. To do so, we selected 15 discrete prices equally
spaced between 0 and 70e/MWh. This selection was done
based on the price distribution in 2015–2016 and considering
the computation time of solving a single OCP; however, a
coarser or finer discretization could be used to respectively
decrease the computation time or to increase the accuracy of
the bidding functions. For prices above 70e/MWh the bidding
function was set to 0 considering the seldom occurrence of
prices above this threshold. For negative prices, the bidding
function was defined as the solution at 0 e/MWh.

The OCPs are defined by (8), (9), and (10), where:
• The dynamical constraint is represented by (15).
• The maximum power Q̇in

max to be traded in the market is
defined by the electrical installation to charge the STESS.
In our case Q̇in

max = 300MW.
• The individual upper limits of charging and discharging,

i.e. gin(xk) and gout(xk), are defined by the maximum
heat transfer of the heat exchangers, which in turn is
proportional to the temperature difference between the
tank temperature and the temperature of the fluid in the
heat exchangers.

• The limits on the STESS state are given by xmax = 286K
and xmin = 263K, where the lower limit is defined by the
outer soil temperature and the upper limit by the safety
margin to prevent water boiling in the tank.

F. RL approaches

The RL control algorithms proposed in Section V can be
directly applied to the current case study:

• The time position τ is simply the day of the year.
• As the STESS has a seasonal cycle of a year, a RL

episode length is defined as two years.
• The time-dependent constraints on the maximum power

are implicitly enforced within the action space as the
actions are normalized w.r.t. the maximum power.

G. Day-ahead market trading

The main results of the first study, i.e. the comparison of
MPC and RL when only trading in the day-ahead market, are
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listed in Tables I and II. Table I displays the yearly economic
cost when using both algorithms and the cost of not having an
STESS, i.e. the cost of buying directly the heat demand in the
day-ahead market; it also lists the economic savings of both
algorithms w.r.t. the case of not having an STESS. Table II
lists the offline costs, i.e. one-time computations, and online
costs, i.e. real-time computations, of both algorithms.

TABLE I
MPC AND RL COMPARISON IN TERMS OF THEIR ECONOMIC COST WHEN

ONLY TRADING IN THE DAY-AHEAD MARKET. THE SAVINGS ARE
COMPUTED W.R.T. THE COST OF NOT HAVING AN STESS. FOR EACH CASE

STUDY, THE BEST METHOD IS INDICATED IN BOLD.

The Netherlands Belgium
10 buildings 5 bldgs. 10 bldgs. 5 bldgs.

C
os

t
[e

] No STESS 19384 9692 23490 11744

MPC 15206 6825 16826 7033

RL 15942 7465 17636 7027

Sa
vi

ng
s MPC 21.6% 29.6% 28.4% 40.1%

RL 17.8% 23.0% 24.9% 40.2%

TABLE II
MPC AND RL COMPARISON IN TERMS OF THEIR COMPUTATION TIME

WHEN TRADING IN THE DAY-AHEAD MARKET. THE COMPARISON IS DONE
IN TERMS OF ONLINE AND OFFLINE COMPUTATION TIME.

Offline Online
MPC 0 10–15 minutes

RL 1–2 days <1 second

Independently of the country or heat demand level consid-
ered, the following observations can be made:

• Both algorithms can trade energy and make use of the
STESS to reduce the economic cost. In particular, using
the STESS and trading optimally, the algorithms can
reduce the economic cost by 20–40%.

• The performance of both algorithms is similar, but MPC
can obtain slightly lower costs and larger profits.

• While RL requires a long offline computation time, its
cost online is almost negligible. In particular, as the
optimal bidding functions are estimated offline, the com-
putation time in real time is almost 0.

• By contrast, while MPC does not require offline com-
putations, it needs 10–15 minutes in real time to build
the bidding functions. However, as the bidding functions
are submitted once per day and one day in advance, this
large real-time computation cost does not represent a real
problem/disadvantage.

Finally, to illustrate the generated bidding curves of both
methods, Figure 3 displays the generated bidding curves the
first day of the 5-buildings case study for the day-ahead market
in The Netherlands. As it could be expected based on the
results in Table I, both bidding curves are very similar.

H. Day-ahead and imbalance market trading
The main results of the second study, i.e. the comparison

between MPC and RL when trading in both the day-ahead and
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Fig. 3. Generated bidding curves by the MPC and RL algorithms on
01/01/2017 in The Netherlands when supplying heat for 5 buildings.

imbalance markets, are listed in Tables III, IV, and V. Table
III displays the yearly economical cost and economic savings
of both algorithms. Table IV lists their offline and online
computation cost when trading in the imbalance market (the
computation cost for trading in the day-ahead is the same as
in Table II). As an extra comparison, Table V summarizes the
percentage of times that each algorithm correctly up-regulates
and down-regulates the grid, i.e. the percentage of times that
the algorithm sells (buys) energy in the imbalance market
while the TSO tries to up-regulate (down-regulate) the system.

TABLE III
MPC AND RL COMPARISON IN TERMS OF THEIR ECONOMIC COST WHEN
TRADING IN THE DAY-AHEAD AND IMBALANCE MARKETS. THE SAVINGS
ARE COMPUTED W.R.T. THE COST OF NOT HAVING AN STESS. FOR EACH

CASE STUDY, THE BEST METHOD IS INDICATED IN BOLD.

The Netherlands Belgium
10 buildings 5 bldgs. 10 bldgs. 5 bldgs.

C
os

t
[e

] No STESS 19384 9692 23490 11744

MPC 9227 3544 10569 4401

RL 11176 3437 11468 3872

Sa
vi

ng
s MPC 52.4% 63.4% 55.0% 62.5%

RL 42.3% 64.5% 51.8% 67.0%

TABLE IV
COMPUTATION COST OF THE MPC AND RL APPROACHES WHEN TRADING

IN THE IMBALANCE MARKET. THE COMPARISON IS DONE IN TERMS OF
ONLINE AND OFFLINE COMPUTATION TIME.

Offline Online
MPC 0 30–45 seconds

RL 1–2 days <1 second

As before, independently of the case study considered, the
following observations can be made:

• As for day-ahead trading, both algorithms perform very
similar to each other. However, unlike in the case of
only day-ahead trading, MPC no longer performs slightly
better. Instead, RL performs slightly better for lower heat
demand profiles (5 buildings), and MPC performs better
for higher heat demand profiles (10 buildings).

• Trading in both markets is much more beneficial than
trading only in the day-ahead market as the costs are



13

TABLE V
MPC AND RL COMPARISON IN TERMS OF THE % OF TIMES THAT THEY
CORRECTLY UP-REGULATE OR DOWN-REGULATE THE GRID, I.E. % OF

TIMES THAT THEY SELL/BUY ENERGY IN THE IMBALANCE MARKET WHEN
THE TSO UP/DOWN-REGULATES. FOR EACH CASE STUDY, THE BEST

METHOD IS INDICATED IN BOLD.

The Netherlands Belgium
10 buildings 5 bldgs. 10 bldgs. 5 bldgs.

Up-regul.
MPC 51% 47% 44% 47%

RL 49% 46% 50% 52%

Down-reg.
MPC 70% 66% 68% 55%

RL 81% 81% 81% 80%

halved w.r.t. day-ahead trading. In particular, while day-
ahead trading reduces the economic cost by 20–40%,
trading in the two market reduces the cost up to 60–70%.

• As before, RL requires large offline computation costs
but negligible online computation costs. By contrast,
MPC has no offline computation costs but requires 30–
45 seconds to obtain the optimal trading strategy for the
imbalance market. Since the imbalance market is cleared
every 15 minutes and optimal decisions are made within
seconds, it can be argued that the online computation cost
of MPC might now represent a problem.

• When buying energy in the imbalance market, the RL
algorithm helps the TSO to down-regulate the grid. In
particular, approximately 80% of the times the RL algo-
rithm buys energy, the TSO simultaneously tries to reduce
the grid generation or to increase the grid consumption.
While the MPC algorithm also helps, this contribution is
worse as it only helps to down-regulate 55–70% of the
time.

• By contrast, when selling energy in the imbalance market,
none of the algorithms help much to up-regulate: only
45–55% of the times an algorithm sells energy the TSO
is simultaneously trying to up-regulate.

VII. DISCUSSION

In this section, based on the obtained results, we discuss the
merits and disadvantages of the proposed control approaches,
the benefits of using STESSs for energy trading, how to
optimally operate STESSs to maximize their profits, and the
generality and optimality of the proposed methods.

A. Merits of each control approach

We start the discussion by analyzing the merits of the
different proposed approaches in the two trading contexts.

A.1 Day-ahead trading

When trading only in the day-ahead market, both ap-
proaches can trade energy with a similar performance despite
their underlying differences. Therefore, while MPC obtains
slightly lower economic costs than RL, it is necessary to con-
sider other metrics in order to make a meaningful comparison.

When considering the online computation time, both algo-
rithms are feasible for real-life applications. Thus, the largest

difference between both approaches is the offline computation
time. While this metric does not play a role most of the
time, i.e. it usually represents one-time computation costs,
it might be important when the system regularly goes under
maintenance, something breaks down, or the market has a big
change. In particular, if any of these events happens, MPC
can easily adapt itself by a change in the OCP or by re-
estimating the dynamical model (which does not take more
than some minutes). By contrast, RL requires 1–2 days to re-
estimate the optimal policy under the new conditions, which
hinders the day-ahead trading. Thus, MPC has in general better
adaptability to environmental conditions.

Based on this analysis, it becomes clear that MPC is a
better approach when trading only in the day-ahead market.
Particularly, slightly better optimal solutions together with a
better adaptability to environmental changes make the pro-
posed MPC approach a better solution in this case.

A.2 Day-ahead and imbalance trading

Similar to the case of only day-ahead trading, when trading
in the day-ahead and imbalance market the two proposed
approaches obtain good solutions. In particular, while RL
performs slightly better for lower heat demand profiles (5
buildings) and MPC performs better for higher heat demand
profiles (10 buildings), these difference are not very large and,
as before, other metrics need to be considered.

While the online computation time for day-ahead trading
was not an issue, for the case of imbalance trading it becomes
one. In detail, due to the real-time nature of the imbalance
market, optimal decisions should be made in seconds. As the
proposed MPC approach requires 30–45 seconds to compute
an optimal solution, it can potentially fail to provide an optimal
trading strategy.

As a result, while the proposed MPC approach still has
a better adaptability to environmental changes, one could
argue that it is a less appropriate control strategy than the
proposed RL approach. The latter, with its negligible real-time
computation cost, equal quality solutions, and better regulatory
capabilities, is a better choice when it comes to trading in the
imbalance market.

B. The importance of market trading for STESSs

Based on the obtained results, it is clear that optimal control
approaches, either MPC or RL, are key to maximize the profits
of STESSs and to ensure their widespread use as optimal
control strategies and can reduce the energy cost by 60–70%.
In this context, the largest profits are obtained when the STESS
trades in multiple markets. In particular, while a traditional
STESS would restrict its trading to the day-ahead market to
avoid unnecessary risks, in this paper we show that STESSs
can dramatically reduce their costs by using optimal control
strategies and trading also in the imbalance market.

C. STESSs as regulation tools

Looking at the results of Table V, it can be argued that
the economic goal of STESSs is (partially) aligned with the
regulatory duties of the TSO. In particular, in the case of RL,
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80% of the times the STESS buys energy in the imbalance
market, it helps the TSO to down-regulate the system. This
behavior is seen for the various case studies considered,
which included different imbalance markets and different heat
demands. In the case of MPC, this effect is not so pronounced;
nevertheless, it sill helps the TSO 55–70% of the times.

While the same cannot be said about up-regulation, i.e. only
50% of the times the STESS sells energy in the imbalance mar-
ket it is actually helping up-regulate the grid, it can be argued
that wrongly up-regulating is less critical than wrongly down-
regulating. In particular, if the STESS wrongly sells energy in
the imbalance market, the TSO can always request somebody
to reduce their generation, i.e. down-regulate. However, if the
STESS wrongly buys energy in the imbalance market, the TSO
has to request somebody to increase their generation; as the
generation is limited, there might not be an available agent
that can provide that service.

As additional remark, to further improve the regulatory
services of STESSs, communication between the TSO and the
STESS could be established. In particular, in the current setup,
the STESS simply optimizes its profit without considering the
TSO. Thus, to improve this, the TSO could simply indicate the
STESS whether it is allow to buy or sell energy, i.e. whether
the TSO plans to down or up-regulate, and the STESS could
take its optimal action if it helps the TSO and its own profit.

D. Generality of the methods

While the case study focused on a specific STESS, i.e.
a latent heat storage via water stratification, the proposed
methods are general and can be applied to any STESS.
Indeed, with the proposed methods, the several challenges
that prevent the development of efficient control solutions for
STESS trading can be tackled, namely: scenario generation
and quantification of price uncertainty for long horizons, small
computation costs for real-time control, and adaptability to
market changes.

E. Optimality of the methods

The optimality property of the proposed methods is affected
by the following elements: 1) the optimization problems are
non-convex, 2) the quality of the solutions depend on the
accuracy of the forecasting method, and 3) in a multi-stage
optimization problem the decision taken at the first stage will
have an effect in future stages. In this context, it is important
to remark that the methods are nonetheless optimal from the
perspective that they take a local optimal solution at every
state with the information that is known:

• The first optimization problem takes an optimal decision
considering that at the moment of the decision only
knows a forecast of the future prices.

• The second optimization problem takes an optimal de-
cision with updated information and considering that
market conditions have been changed. While this decision
may differ from the first optimal solution, the solution is
nonetheless a local optimum at the time that the decision
is made.

Within the same context of optimality, to evaluate the
proposed methods, the obtained solutions should ideally be
compared with the real optimal solutions considering perfect
knowledge of the future. However, this is not possible nor fair
for two reasons:

1) The optimization problem that provides the optimal so-
lution is non-convex. Therefore, such an analysis would
involve comparing two local minima and it would not
involve a real optimal baseline.

2) The proposed approaches need to rely on forecast-
ing methods while the baseline solution have perfect
knowledge of the future. In this context, the quality
of the proposed methods depend on an external factor
(forecasts) that the baseline solution does not.

VIII. CONCLUSIONS

We have proposed several optimal control strategies for
seasonal thermal storage systems (STESSs) when interacting
with electricity markets. Particularly, while in the literature
there are control strategies for STESSs and there are optimal
trading strategies for traditional storage systems, the former
do not allow STESSs to trade in the markets and the latter are
not suitable for STESSs. To fill that gap, we have proposed a
model predictive control (MPC) and a reinforcement learning
(RL) approach for the case of having an STESS trading in
the day-ahead electricity market. In addition, we argued that
trading in one market is not optimal, and proposed another
MPC and another RL approach for the case of having an
STESS trading in both the day-ahead and the imbalance
markets.

Based on a case study involving a real STESS, it was shown
that, despite the similarity in the optimal solutions of the
proposed algorithms, MPC is a better trading strategy for the
day-ahead market due to its larger adaptability. In contrast, for
trading in the imbalance market, the proposed RL approach is
a more suitable control strategy as it has negligible real-time
computation costs, leads to similar economic costs as MPC,
and has better regulatory capabilities.

It was also shown that STESS are potential tools for grid
regulation and that the economic incentive of STESSs are
aligned with the regulatory duties of TSOs. Similarly, it was
demonstrated that optimal control strategies are needed to
optimize the profit of STESSs and to ensure their widespread
use.

In future research, we intend to further explore the use
of STESSs as regulation devices. Moreover, as stochastic
approaches can further improve the performance of the control
algorithms in the context of long horizons, we will analyze the
advantages of using stochastic MPC approaches for seasonal
storage systems. Finally, we will also study the trade-offs
between MPC and RL to obtain a set of generalizable trade-
offs that are independent from the case study.
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LIST OF SYMBOLS

Type Symbol Definition

Indices
t Continuous time index
k Discrete time index
h Discrete hourly time index

Dynamic

x State of a general dynamic system

Systems

u Controls of a general dynamic system
d Disturbances of a general dynamic system

Q̇in Input power
Q̇out Output power
Q̇d Heat demand

Q̇max Maximum input power
nin Number of inputs
nout Number of outputs
nunits Number of individual storage units

Electricity

Q̇m Allocated power from a general market

Markets

Q̇dam Allocated power from the day-ahead market
Q̇in,dam

i Power for device i from the day-ahead market
Q̇imb Allocated power from the imbalance market
Q̇b(·) Biding function for electricity market
λ General price

λdam Price in the day-ahead market
λimb Price in the imbalance market
V imb Volume of the imbalance

Forecast

¯̇Q
d

Generated scenarios of heat demand
λ̄dam Generated scenarios of day-ahead prices
λ̄imb Generated scenarios of imbalance prices
λ̂imb Forecast of imbalance market prices

MPC

N Number of discrete time intervals
T Optimization horizon
λb Discrete price for building bidding functions
np Number of discrete price in bidding functions

RL

s State of agent
u Action taken by agent
U Discrete set of possible actions
r Reward obtained when taking action
π Agent policy used to take actions
Te Episode length
τ Seasonal time index in the agent state

nhrl Number of past lags in the RL state
ndis Number of discretized inputs

APPENDIX A
SCENARIO GENERATION

When defining the MPC algorithms, it was assumed that
the expected day-ahead prices {λ̄dam

k }Nk=1, imbalance prices

{λ̄imb
k }Nk=1, heat demand values { ¯̇Q

d

k}Nk=1, and disturbances
{d̄k}Nk=1 were given. In this appendix, the methodology to
generate these time series is explained.

A. Motivation

In order for the MPC to provide good solutions, the expected
time series have to be realistic. Therefore, any forecasting
method for these time series has to model the time correlation
of a single time series and the inter-correlation between the

different times series. While there are methods in the literature
to create those forecasts, these are limited to short-term hori-
zons with small resolutions, e.g. hourly, or long-term horizons
with broad resolutions, e.g. daily, [57]. The main problem of
generating forecasts with small resolutions and long horizons
is the accuracy: due to the large uncertainty, it is nearly
impossible to forecast electricity prices or loads with an hourly
resolution one year in advance. Instead of forecasting the
expected value, one could generate a set of different scenarios
representing possible future realizations. However, as with the
literature of forecasts, the field of scenario generation has, to
the best of our knowledge, no reliable method to generate
long-term scenarios with small resolutions. In particular, the
literature of scenario generation for correlated time series is
limited to short-term horizons [44]–[46]. In this case, the
problem is computational tractability: whether the methods are
based on trees [58] or on copulas [44]–[46], the computational
cost is too large, e.g. in the case of trees the number of
scenarios grows exponentially with the horizon [59].

B. Method

In this paper, we propose a very simple, yet useful, method
to generate scenarios of correlated time series for long-term
horizons. Then, we use the average of the scenarios at every
time point as the expected values used in the MPC. The only
two requirements of the proposed method are: 1) to have at
least as many historical data as the horizon length of the
scenarios; 2) to have historical data with a resolution equal
to or lower than the resolution of the scenarios.

Given a set of nts historical time series of length nh, i.e.
{x1,j}nh

j=1, {x2,j}nh
j=1, . . . ,{xnts,j}

nh
j=1, the proposed method

generates any number ns of future scenarios of length N ≤ nh:{
{x̄i

1,k}
nh+N
k=nh+1, {x̄

i
2,k}

nh+N
k=nh+1, . . . , {x

i
nts,k}

nh+N
k=nh+1

}ns

i=1
,

(16)
In detail, the method consists of 7 steps:

1) Select a representative horizon N ′ << N so that, given
any two time series of length N ′, any point after N ′ is
uncorrelated with the first point of both time series. In
the case of day-ahead market prices, hourly resolution,
and a year horizon, we empirically observed N ′ = 8
days to be a good choice as N ′ includes the weekly and
daily seasonalities correlations w.r.t. the first price.

2) Define a subset {j1, j2, . . .} of past indices whose as-
sociated values are correlated to the expected values at
time step k = 1. For time series with seasonalities, these
indices represent past values at lags equal to multiples of
these seasons, e.g. for time series with daily and weekly
seasonalities these indices could represent the values 1
day and 1 week in the past. In general, one could use a
correlation study to determine the relevant indices.

3) Sample from the historical dataset a subset {x1,j}ji+N ′

j=ji
,

{x2,j}ji+N ′

j=ji
, . . . , {xnts,j}

ji+N ′

j=ji
, where the time index ji

is randomly selected from the past indices {j1, j2, . . .}.
4) Use the previous sample as the first N ′ points

{x̄1
1,k}N

′

k=1, {x̄1
2,k}N

′

k=1, . . . , {x1
nts,k

}N ′

k=1 of the first sce-
nario.
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5) Repeat steps 2–4 but defining the subset {j1, j2, . . .} as
the time indices correlated to the next time point in the
scenario, i.e. k = N ′ + 1.

6) Repeat step 5 until a whole scenario is obtained, i.e.
N/N ′ times.

7) Repeat 6 until the ns scenarios are obtained.

It is important to note that, depending on the application, the
selection of ji will vary. For example, in the case of electricity
prices and N ′ = 1week, considering that prices have yearly,
weekly and daily seasonalities, we observed that a good choice
for the subset {j1, j2, . . .} are time indices representing 1, 2,
50, 51, 52, 53, 54, 102, 103, 104, 105, or 106 weeks in the
past, i.e. past time indices that respect the yearly and weekly
seasonality (the indices represent the last 2 weeks, last year ±
2 weeks, and 2 years ago ± 2 weeks). In a more general setup,
one could use a correlation study or a method like k-nearest
neighbors [60] to determine the relevant past indices.

APPENDIX B
IMBALANCE PRICE FORECAST

As explained in Section IV, a forecast of the imbalance
price λ̂imb

1 at the first time step of the MPC algorithm is
needed. In particular, as the MPC algorithm for the imbalance
market decides the traded power directly based on λ̂imb

1 , it
is important for λ̂imb

1 to be as accurate as possible. While
the expected imbalance price λ̄imb

1 obtained from the scenario
generation method could be used as a forecast, this is not the
most accurate prediction as the scenario generation method
simply resamples from past data and does necessarily consider
the most recent information.

As the literature of electricity price forecasting does not
contain, to the best of our knowledge, a method for imbalance
price forecasting, in this paper we propose a first method for
it. In detail, the boosting trees model [50] is selected as the
forecasting model due to its simplicity and recent success in
forecasting day-ahead prices [3]. As input features, the model
considers:

• The last n1 imbalance prices, where n1 is optimized.
• The last n2 imbalance volumes, where n2 is optimized.
• The day-ahead electricity price at the hour of interest.
• The hour of the day and the day of the week.

The hyperparameters of the boosting tree model, e.g. number
of trees, are simultaneously optimized with n1 and n2 using
the tree-Parzen estimator [61]. The selection of this algorithm
to do the feature and hyperparameter selection is motivated
by its recent success in other energy applications [3], [39]. In
this context, it is important to note that, as any method for
forecasting time series data, no performances guarantees can
be provided as the accuracy of any forecasting method will
always depend upon the data under study. Moreover, since the
main goal of the paper is the control solutions and not the fore-
casting methods, a comparison between the proposed method
and typical time series methods, e.g. ARIMA, is not presented.
However, for a thorough comparison of different forecasting
methods for electricity prices we refer the interested reader to
[3].

As a final remark, it is important to note that, while this
is the first method for forecasting imbalance prices, there
exist other methods to forecast real-time local marginal prices
(LMPs) [40], [41], [62]. However, real-time LMPs have differ-
ent characteristics and represent a different concept than im-
balance prices. In particular, the volatility of imbalance prices
is larger than real-time LMPs; thus, forecasting imbalance
prices is arguably harder than forecasting real-time LMPs (in
our experience, forecasting imbalance prices with a horizon
larger than one hour is nearly impossible; however, methods
for real-time LMPs usually have forecasting horizons up to
6 hours). To demonstrate this argument, we will compare the
difference in volatility during the whole year 2019 between the
real-time LMPs in the Pennsylvania-Jersey-Maryland (PJM)
market and the imbalance prices in the Dutch market. Then,
we will analyze two time series related to volatility:

1) The spread between the day-ahead and the real-
time/imbalance market: the lower the spread, the more
stable the real-time/imbalance prices are.

2) The price difference ∆λk between successive prices
λk+1 and λk: low volatility is characterized by low
variations between successive prices.

Table VI represents four different statistics for the two time
series. Since volatility is determined by the absolute size of the
spread and ∆λk (but not by their sign), the mean is computed
as the mean of the absolute value. Three main observations
can be made:

• The difference between successive prices is much larger
for the imbalance price. This illustrates that the volatility
of imbalance prices is larger, and thus, that imbalance
prices are harder to forecast.

• The spread and its variation are much larger for the
imbalance prices. Thus, this also shows that imbalance
prices are harder to forecast.

• The maximum deviations (both for spread and ∆λk) are
larger for imbalance prices. This means that imbalance
prices have larger price spikes, which in turn means that
forecasting imbalance prices is harder.

TABLE VI
COMPARING THE VOLATILITY BETWEEN THE PJM REAL-TIME MARKET

AND THE DUTCH IMBALANCE MARKET IN 2019. THE MEAN IS COMPUTED
AS THE MEAN OF THE ABSOLUTE VALUE.

Spread ∆λk

Real-time Imbalance Real-time Imbalance
Mean 4.79 26.12 9.05 24.94

Std 18.69 44.31 20.83 45.81

Max 81.38 525.65 70.56 526.5

Min -630.69 -832.42 -672.26 -897.27

APPENDIX C
ELECTRICITY MARKETS

In this appendix, we introduce the electricity markets con-
sidered in this paper. In particular, while electricity is traded
in different markets, in this paper we focus on the day-ahead
and imbalance markets.
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A. Trading in the day-ahead market

The day-ahead electricity market [63] is a type of power
exchange widely used around the world. In this market, con-
sumers/producers submit bids for day d before some deadline
on day d−1, where a bid indicates how much they are willing
to pay/ask for different power volumes. With some exceptions,
these bids are usually hourly based, i.e. each market player
submits 24 bids. After the deadline, the market operator takes
into account all the bids and computes the market clearing
price for each of the 24 hours. Then, consumer/producer bids
higher/lower than or equal to the market clearing prices are
approved, and a contract is established.

B. Trading in the imbalance market

Electricity, unlike most commodities, cannot be stored in
very large amounts and requires almost equal consumption
and generation at all times [64], [65]. However, as electric-
ity consumption and generation are uncertain and weather
dependent, in practice there are always imbalances between
generation and consumption created by market agents that
do not consume or generate what they had promised in the
markets [66]. These imbalances have an adverse impact on the
electrical grid frequency [66], and can lead to grid problems
and instabilities and in some cases even blackouts [64]. To
correct these imbalances, the transmission system operator
(TSO) manages a so-called reserve market [65], [67]. On
this market, specific market agents sell their available energy
reserves to the TSO, i.e. their capacity to reduce and increase
their generation and consumption, and the TSO purchases
some of these reserves days or weeks in advance. Then, the
TSO activates the required reserves on real time to correct grid
imbalances.

Based on the price the TSO had to pay to correct the
imbalances, it invoices the market agent that have caused the
imbalance [68]. This mechanism where all the market agents
pay for their imbalances is known as imbalance market or im-
balance settlement [68]. Usually, this market is cleared every
15 minutes, i.e. each market agent pays for their cumulative
positive or negative imbalance in intervals of 15 minutes.

In some countries, it is discouraged or even forbidden to
use such a market for electricity trade, i.e. market agents are
expected to trade honestly in the markets available before
delivering time and only produce unexpected imbalances.
However, as during periods of positive imbalances, i.e. when
generation is larger than consumption, prices are low, and
during period of negative imbalances prices are high, the
economic incentive of market agents in this imbalance market
is aligned with the regulatory duties of the TSO. Based on
that, some other countries, e.g. The Netherlands [69], allow
and encourage participation in this market.

APPENDIX D
CONTROL ALGORITHMS

In this appendix, we introduce the control algorithms con-
sidered in the paper. Particularly, we focus on the two most
important state-of-the-art control families: predictive control
via MPC and artificial intelligence via RL.

A. Introduction to MPC

The general idea of MPC is to, at each discrete time step k,
obtain the optimal control u⋆

k by using the following iterative
structure:

1) Read current state xk.
2) Based on xk, solve the relevant optimal control problem

(OCP) over a horizon of N time intervals.
3) Based on the solution of this optimization problem,

obtain the optimal control u⋆
k.

4) Apply this control to the system.
5) Repeat the process again for the next time step k + 1.

For more details on MPC we refer to [42].

B. Introduction to RL

The general idea of RL is to, at each time step k, obtain
the optimal control u⋆

k by using an optimal policy π⋆(sk) (a
function that outputs the optimal action u⋆

k for each state sk).
To learn the policy π⋆(sk), the RL algorithm assumes that the
dynamical system and its environment can be modeled via a
Markov decision process [43], [49]. In detail, it assumes that:

• The system lives in a discrete-time world.
• The system is controlled by an agent that takes actions

u among a discrete set of actions U = {u1, . . .una}.
• The system and the environment are modeled by the agent

state s where, in general, the state x of the system is part
of the state s of the RL agent.

• At every discrete time step k, the agent takes an action
uk and transitions from state sk to sk+1 based on some
probabilistic dynamics p(sk+1|sk,uk).

• In the transition, the agent receives a reward rk based on
a distribution q(rk|sk,uk).

During training, the RL agent iteratively performs an explo-
ration step and an exploitation step:

• Exploration: the agent controls the system to interact
with the environment for a number of nsteps steps. Then,
it gathers the data resulting from that interaction in a
memory dataset M = {(sk,uk, sk+1, rk}

nsteps

k=1 . To select
uk during the exploration, the agent uses both optimal
actions from π⋆(sk) and random actions. In future repe-
titions of this exploration step, new data is added to the
memory M.

• Exploitation: the agent uses M to improve the optimal
policy π⋆(sk). In particular, π⋆(sk) is estimated so that
the expected value of the cumulative sum of discounted
rewards R is maximized:

R =

Te∑
k=1

γTe−k E
q(rk|sk,uk)

{rk}, (17)

where Te is the length of a RL episode, i.e. for how long
the RL agent takes decisions, and γ is a discount factor
that prioritizes earlier rewards and allows R to be finite
even for episodes with an infinite horizon.

In general, what defines and separates the large family of
RL algorithms is the manner in which these two steps are
performed, i.e. the number of steps nsteps, the size of the
memory M, or the algorithm to estimate π⋆(sk).
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