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A Robust MPC Energy Scheduling Strategy
for Multi-Carrier Microgrids

Raffaele Carli1, Member, IEEE, Graziana Cavone1, Member, IEEE, Tomas Pippia2,
Bart De Schutter2, Fellow, IEEE, and Mariagrazia Dotoli1, Senior Member, IEEE

Abstract— We present a Robust Model Predictive Control
(RMPC) approach for multi-carrier microgrids, i.e., microgrids
based on gas and electricity. The microgrid that we consider
includes thermal loads, electrical loads, renewable energy
sources, energy storage systems, heat pumps, and combined
heat and power plants. Moreover, the system under control is
affected by several external disturbances, e.g., uncertainty in
renewable energy generation, electrical and thermal demand.
The goal of the controller is to minimize the overall economical
cost and the energy exchange with the main grid, while
guaranteeing comfort. Whereas several RMPC methods have
been developed for electrical or thermal microgrids, little or no
attention has been devoted to robust control of multi-carrier
microgrids. Therefore, we consider a novel RMPC algorithm
that can improve the performance with respect to classical
deterministic Model Predictive Control (Det-MPC) controllers
in the context of multi-carrier microgrids. The RMPC method
relies on the box-uncertainty-set robust optimization, where
uncertain parameters are assumed to take their values from
different intervals independently. The RMPC approach is able
to successfully satisfy the constraints even in the presence of the
mentioned disturbances. Simulations of a realistic residential
case study show the benefits of the proposed approach with
respect to Det-MPC controllers.

Index Terms— Optimization and Optimal Control; Energy
and Environment-Aware Automation; Microgrid; Set-based
Uncertainty; Robust Model Predictive Control.

I. INTRODUCTION

The ongoing energy transition has led to many changes in
the energy networks in the recent years [1]. Both electrical
and thermal networks have benefited from the technological
advancements and from an increased share of renewables.
Moreover, technological improvements have made it possible
to consider grids of small size, i.e., microgrids [2], that have
many benefits, e.g., decrease in the energy waste due to re-
duced transportation. Microgrids also provide high resilience
and reliability and they can be electrical, thermal, or mixed.
However, due to the uncertainty in the renewable energy
generation and loads, microgrids open many challenges that
still have to be fully faced.
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Indeed, in microgrid control algorithms, the usual objec-
tive is to minimize an economical goal while simultaneously
achieving other goals, e.g., minimizing the exchange of
energy with the main grid [3]. In the literature context
of microgrid control, Model Predictive Control (MPC) [4]
stands out as one of the main control tools. MPC is an
optimization-based control approach, allowing to include
constraints and objectives in the control problem formu-
lation. Moreover, given the presence of several unknown
disturbances, it is important to consider an MPC controller
that can properly handle the system uncertainties, because a
deterministic MPC (Det-MPC) approach might lead to poor
performance. In this regard, two main classes of MPC have
been proposed to deal with disturbances, i.e., stochastic MPC
and robust MPC (RMPC) [5]. The adoption of either method
depends on the considered application. However, a stochastic
controller relies on a large amount of prior data, which might
not be available in the context of microgrid control. On the
other hand, a robust controller can properly handle every
possible disturbance, as long as it stays within predefined
bounds, guaranteeing constraint satisfaction at all times, by
having information only on the upper and lower bounds of
the disturbances, which are easy to obtain. Moreover, RMPC
is useful in applications in which a safe operation of the
grid as well as hard constraints on the amount of power
exchanged with the main grid have to be guaranteed [6].

Several MPC control schemes for microgrids have recently
been studied [6]–[14]. In [7], a modeling framework for elec-
trical microgrid energy management systems is presented.
Similarly, paper [8] presents a thermal microgrid modeling
framework and a Det-MPC approach, considering district
heating, thermal energy storage, and flexible loads. MPC
algorithms for multi-carrier microgrids have been proposed
in [6], [9], [10]. In particular, [9] presents a stochastic
MPC approach for microgrids containing both thermal and
electrical units, by using a two-stage optimization strategy.
The manuscript [10] presents an MPC approach for the en-
ergy management of a microgrid comprising both electrical
and thermal units, providing also stability of the controlled
system, where, however, the controller is deterministic.

For what concerns RMPC, some works have considered
its application to microgrids [6], [11]–[14]. In [11], a min-
max RMPC algorithm for fuel cell cars in a microgrid is
presented. Vehicles are used as a power plant when they
are parked and not in use. In [12], authors present an
economic RMPC controller subject to constraints on the
operation limits of the microgrid components and on the



energy balances under variations of the expected loads, using
a constraint tightening strategy. The authors of [13] present
an RMPC method that considers three types of uncertainty
scenarios and uncertainty budgets for islanded microgrids.
Paper [14] presents an RMPC controller in which the degree
of uncertainty of the method proposed in [15] is used for
islanded electrical microgrids. By using this method, the
controller can be made more or less conservative, based on
the importance given to the constraint satisfaction. Paper [6]
presents an RMPC approach for multi-carrier microgrids,
focusing on a demand response program of the United
Kingdom national grid; such a program provides security
of supply to the main grid while the flexibility provider
is economically rewarded for its commitment. Note that,
while all these papers, i.e., [6], [11]–[14], present an RMPC
controller, they consider a fully electrical microgrid without
any thermal equipment, with the only exception of [6].
While [6] does consider a multi-carrier microgrid, its focus
is limited to the short-term operating reserve in the United
Kingdom context.

From the previous discussion and to best of the authors’
knowledge, little attention has been devoted in the related
literature to RMPC algorithms for microgrids that contain
both electricity and heating systems. Indeed, articles from
the literature that present RMPC algorithms deal mostly with
electrical microgrids without considering heating systems.
On the other hand, the few papers that do consider both
systems do not tackle the challenge of uncertainties acting
in the microgrid, i.e., they do not adopt an RMPC approach.
Therefore, in this work, we address the robust optimal control
of a multi-carrier microgrid equipped with several elements,
including thermal loads (TLs), non-controllable electrical
loads or infeasible (NCELs) and controllable or feasible
electrical loads (CELs), renewable energy sources (RESs),
electrical energy storage systems (EESSs), thermal energy
storage systems (TESSs), heat pumps (HPs), combined heat
and power (CHPs) units, and auxiliary boiler. Differently
from the related literature, we propose a novel tractable
RMPC algorithm that can improve the performance with
respect to Det-MPC controllers. In particular, the proposed
RMPC method relies on the box-uncertainty-set robust op-
timization [16], where uncertain parameters are assumed
to take their values from different intervals independently.
The presented approach is able to successfully satisfy the
constraints even in the presence of disturbances in renewable
energy generation, and in the electrical and thermal demand.

II. SYSTEM MODEL

In this section we describe the system under control
extending the model presented by some of the authors in
[3]. We suppose that the prediction window at time t,
H(t) = {t+1, . . . , t+H}, has a fixed length H of equally
spaced time intervals, which moves ahead at every time slot
t. The proposed scheme is illustrated in Fig. 1. We consider
a typical multi-carrier microgrid, where the electrical and
thermal demands are supplied using the connection to the
electricity and natural gas main grids and the interaction
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Fig. 1. Scheme of energy flows and connections.

with the internal facilities such as the RES, HP, CHP
unit, auxiliary boiler, EESS, and TESS. We assume that
the exchange of electricity between the microgrid and the
electrical main grid is bidirectional (i.e., both selling and
buying are allowed), while the exchange with the gas main
grid is unidirectional (i.e., only buying is allowed for the
microgrid).

A. Electrical and Thermal Loads

As for the electrical loads, we assume that the microgrid
is equipped with NCELs, whose operation time cannot be
shifted in time and whose electrical consumption profile
cannot be modulated. We introduce a column vector of H
input parameters b(t) :=[b (t+1) , . . . , b (t+H)]

⊤ to denote
the overall energy consumption profile of the NCELs at time
t.

Secondly, we assume that the grid is also equipped with
CELs, which are loads with flexible and programmable
operation. We introduce a column vector xel

n (t) :=
[xeln (t+1) , . . . , xeln (t+H)]⊤ with H decision variables re-
ferring to the energy consumption profile of each CEL n ∈
N cel = {1, ..., N cel}. We collect the profiles of all the N cel

CELs in a column vector xel(t) := [xel
1 (t)

⊤, . . . ,xel
N (t)⊤]⊤

with length NH . Due to operational requirements, CELs
are restricted by minimum and maximum operating lev-
els. We use two column vectors of H input parame-
ters ln(t) := [ln (t+1) , . . . , ln (t+H)]⊤ and ln(t) :=
[ln (t+1) , . . . , ln (t+H)]⊤ to indicate the maximum and
minimum energy level for each CEL n, respectively. Fur-
thermore, for each CEL n a certain amount of energy Ln(t)
has to be consumed in the given time window. Summing up,
the following constraints hold:

ln(t) ≤ xel
n (t) ≤ ln(t), n ∈ N cel (1)

1H
⊤xel

n (t) = Ln(t), n ∈ N cel (2)

where 1H denotes an H-dimensional vector with all ones.
As for the thermal loads, we denote the thermal load con-

sumption profile over the time horizon by a vector of H input
parameters q(t) := [q (t+1) , . . . , q (t+H)]⊤ accounting for
both the space heating and water demand.

B. Renewable Energy Source

We assume that the microgrid incorporates a RES, e.g.,
a photo-voltaic (PV) panel or domestic wind turbine. We



define a column vector of H input parameters r(t) :=
[r (t+1) , . . . , r (t+H)]

⊤ collecting the energy profile pro-
duced by the RES.

C. Heat Pump

The main indicator for measuring the HP performance is
the so-called Coefficient of Performance (COP), which is
generally a function of the temperature level of the indoor
environment and temperature difference between indoor and
outdoor temperature. In this work the COP - denoted as
ηhp - is assumed to be constant over the time horizon. The
corresponding power and heat flow is thus described by:

yhp(t) = ηhp xhp(t) (3)

where xhp(t) :=[xxp(t+1), . . . , xhp(t+H)]⊤ and yhp(t) :=
[yhp(t+1) , . . . , yhp(t+H)]⊤ are the required input electri-
cal energy and the output thermal energy produced by the
HP over the time horizon, respectively. Due to operational
requirements, the thermal energy produced by the HP is
restricted by the minimum and maximum operating levels
php and php:

php1H ≤ yhp(t) ≤ php1H . (4)

D. Gas Boiler

We assume that the microgrid includes a gas-fired boiler.
Such a boiler is characterized by high efficiency in the
burning process (i.e., its efficiency ratio ηboi is around 100%)
and fast dynamics (i.e., they are able to react to sudden
changes in hot water demand) . This energy conversion
process can be modeled as follows:

yboi(t) = ηboizboi(t) (5)

where yboi(t) := [yboi(t+1), . . . , yboi(t+H)]⊤ and
zboi(t) := [zboi(t+1) , . . . , zboi(t+H)]⊤ represent the gen-
erated heating and the amount of gas burned by the auxiliary
boiler over the time horizon, respectively. Due to operational
requirements, the thermal energy produced by the boiler is
restricted by the minimum and maximum operating levels
pboi and pboi:

pboi1H ≤ yboi(t) ≤ pboi1H . (6)

E. Combined Heat and Power Unit

CHP or cogeneration units are generators that simulta-
neously produce heat and electrical (or mechanical) energy
from a single fuel source (usually natural gas). Electricity
production and heat generation in the CHP system are
strongly correlated at any time instant, as indicated by:

xchp(t) = ηchpe zchp(t) (7)

ychp(t) = ηchpt zchp(t) (8)

where ηchpe and ηchpt are respectively the thermal and
electrical efficiency of the CHP, whilst zchp(t) =
[zchp(t+1) , . . . , zchp(t+H)]⊤ represents the instantaneous
amount of gas burned by the CHP over the time horizon. Due
to operational requirements, the electrical and thermal energy

produced by the CHP unit is restricted by the minimum and
maximum electrical and thermal operating levels lchp, l

chp
,

pchp, and pchp:

lchp1H ≤ xchp(t) ≤ l
chp

1H (9)
pchp1H ≤ ychp(t) ≤ pchp1H . (10)

F. Electrical and Thermal Energy Storage System
We model the EESS as a first-order discrete-time

buffer, independently from the actual storage technol-
ogy. To define the charging/discharging activities of the
EESS within the time horizon, we introduce two vec-
tors xes

+(t) :=
[
xes+(t+1) , . . . , xes+(t+H)

]⊤
and xes

−(t) :=[
xes−(t+1) , . . . , xes−(t+H)

]⊤
, each collecting H decision

variables, where xes+(t+h) and xes−(t+h) is the energy stored
in and released by the EESS at time slot t+h, respectively.
The charge level is computed by:

ses(t+h) = ses(t+h− 1) + ηes+x
es
+(t+h)− 1

ηes−
xes−(t+h),

h∈H(t) (11)

where ηes+ and ηes− are the charging and discharging efficien-
cies, respectively. The maximum charge level is bounded by
the minimum and maximum EESS capacity Ses and S

es
:

Ses − ses(t+ h− 1) ≤ ηes+x
es
+(t+ h)− 1

ηes−
xes−(t+ h)

≤ S
es − ses(t+ h− 1) , h∈H(t). (12)

Denoting by ses and ses as the maximum charging and
discharging rates, the following constraints must be satisfied:

0 ≤ xes+(t+ h) ≤ δes+ (t+ h)ses, h∈H(t) (13)
0 ≤ xes−(t+ h) ≤ δes− (t+ h)ses, h∈H(t) (14)

where δes+(t) := [δes+ (t+1) , . . . , δes+ (t+H)]⊤ and δes−(t) :=
[δes− (t+1) , . . . , δes− (t+H)]⊤ are two vectors of supporting
binary variables, introduced to avoid simultaneous charging
and discharging:

δes+ (t+h) ∈ {0, 1} , δes− (t+h) ∈ {0, 1} , h∈H(t) (15)
δes+(t+h) + δes−(t+h) ≤ 1, h∈H(t). (16)

Note that it holds δes+ (t+h) = 1 or δes+ (t+h) = 0 if the EESS
is charged or is not charged at time slot t+h, respectively;
similarly, it holds δes− (t+h) = 1 or δes− (t+h) = 0 if the
EESS is discharged or is not discharged at time slot t+h,
respectively.

As for the TESS, we model this device
similarly to the EESS. We define two vectors
yts
+(t) :=

[
yts+(t+1) , . . . , yts+(t+H)

]⊤
and yts

−(t) :=[
yts−(t+1) , . . . , yts−(t+H)

]⊤
, each collecting H decision

variables, where yts+(t+h) and yts−(t+h) are the energy
stored in and released from the TESS at any time slot
t+h, respectively. Denoting the TESS charge level at time
slot t + h as sts(t + h), the following constraints must be
satisfied:

sts(t+h)=sts(t+h− 1) + ηts+y
ts
+(t+h)− (1/ηts

−)y
ts
−(t+h),

h∈H(t) (17)



Sts − sts(t+ h− 1) ≤ ηts+y
ts
+(t+ h)− (1/ηts

−)y
ts
−(t+ h)

≤ S
ts − sts(t+ h− 1) , h∈H(t) (18)

0 ≤ yts+(t+ h) ≤ δts+(t+ h)sts, h∈H(t) (19)

0 ≤ yts−(t+ h) ≤ δts−(t+ h)sts, h∈H(t) (20)

δts+(t+h)∈{0, 1} , δts−(t+h)∈{0, 1} , h∈H(t) (21)

δts+(t+h) + δts−(t+h) ≤ 1, h∈H(t) (22)

where ηts+ and ηts− are the charging and discharging efficien-
cies, Sts and S

ts
are the minimum and maximum capacities,

sts and sts are the maximum charging and discharging rates,
and δts+(t) := [δts+(t+1) , . . . , δts+(t+H)]⊤ and δts−(t) :=
[δts−(t+1) , . . . , δts−(t+H)]⊤ are two vectors of supporting
variables with an analogous meaning as in the EESS case.

G. Electrical and Thermal Energy Flow Balance

In a multi-carrier scenario, both the electrical and thermal
energy have to be balanced in the microgrid at any time
instant:

xgr
+ (t)+r(t)+xchp(t)+xes

−(t) =

xgr
− (t)+

N∑
n=1

xel
n (t)+b(t)+xes

+(t) (23)

q(t)+yts
+(t) = yboi(t)+ychp(t)+yhp(t)+yts

−(t) (24)

where xgr
+ (t) :=

[
xgr+ (t+1) , . . . , xgr+ (t+H)

]⊤
and xgr

− (t) :=[
xgr− (t+1) , . . . , xgr− (t+H)

]⊤
are two column vectors with

H decision variables denoting the profile of the electricity
bought and sold over the time horizon, respectively.

H. Grid Pricing and Constraints

A contractual obligation is enforced by the energy provider
as an additional constraint, restricting the residual microgrid
energy that could be bought from and sold to the power
grid to a maximum level at each time slot. We denote the
maximum purchasable and salable energy profile imposed
by the energy provider over the time horizon as column
vectors g(t) := [g (t+1) , . . . , g (t+H)]⊤ and g(t) :=
[g (t+1) , . . . , g (t+H)]⊤, respectively. Thus, the values of
the bought and sold energy profile over the time horizon
must be subject to the following constraints:

0H ≤ xgr
+ (t) ≤ g(t) ◦ δgr+ (t) (25)

0H ≤ xgr
− (t) ≤ g(t) ◦ δgr− (t) (26)

where symbol ◦ indicates the entrywise product and
δgr+ (t) := [δgr+ (t+1) , . . . , δgr+ (t+H)]⊤ and δgr− (t) :=
[δgr− (t+1) , . . . , δgr− (t+H)]⊤ are two vectors of supporting
binary variables introduced to avoid that energy is simulta-
neously bought from and sold to the power grid:

δgr+ (t) ∈ {0, 1}H , δgr− (t) ∈ {0, 1}H (27)

δgr+ (t) + δgr− (t) ≤ 1H . (28)

Note that it holds δgr+ (t+h) = 1 or δgr+ (t+h) = 0 if
the microgrid buys or does not buy energy from the main
grid at time slot t + h, respectively; similarly, it holds
δgr− (t+h) = 1 or δgr− (t+h) = 0 if the microgrid sells
or does not sell energy to the main grid at time slot
t+ h, respectively. We assume that the pricing function
for the electricity bought from and sold to the main grid
is linear. In particular, we consider two different sets of
pricing coefficients κ+(t) := [κ+ (t+1) , . . . , κ+ (t+H)]⊤

and κ−(t) :=[κ− (t+1) , . . . , κ− (t+H)]⊤ for the electricity
bought from and sold to the grid, respectively. The electricity
cost incurred by the microgrid over the time horizon is
defined as follows: cgr = κ+(t)

⊤xgr
+ (t)− κ−(t)

⊤xgr
− (t).

In order to encourage self-consumption in the micro-
grid, we introduce a penalty cost that limits the amount
of energy exchanged per time slot by the microgrid
with the main grid in a given range [−gπ, gπ]. To
this aim, we introduce two vectors of H slack variables
ψ+(t) := [ψ+ (t+1) , . . . , ψ+ (t+H)]⊤ and ψ−(t) :=
[ψ− (t+1) , . . . , ψ− (t+H)]⊤ denoting the profile of the
surplus of energy bought from and sold to the main grid
with respect to the bounding gπ and gπ , respectively:

ψ+(t) ≥ 0H (29)
ψ+(t) ≥ xgr

+ (t)− gπ1H (30)
ψ−(t) ≥ 0H (31)

ψ−(t) ≥ xgr
− (t)− gπ1H . (32)

Hence, the penalty cost incurred by the microgrid over
the time horizon is defined with a quadratic formulation:
cpen = π

(
ψ+(t)

⊤ψ+(t) +ψ−(t)
⊤ψ−(t)

)
, where π indicates

a weighting factor.
Finally, we assume that the pricing function for the

natural gas bought from the main grid is linear. Intro-
ducing the vector of gas pricing coefficients ν(t) :=
[ν (t+1) , . . . , ν (t+H)]⊤, the gas cost incurred by the mi-
crogrid over the time horizon is defined as follows: cgas =
ν(t)⊤

(
zboi(t) + zchp(t)

)
.

III. DETERMINISTIC ENERGY SCHEDULING STRATEGY

In the preliminary deterministic MPC approach to the en-
ergy scheduling, uncertainty is disregarded and the schedul-
ing problem is solved based on nominal forecasted values of
electrical and thermal energy demand and RES generation.
We first formulate the problem aiming at determining the
optimal microgrid energy schedule including the operations
of controllable CELs and HP, the amount of electricity to be
bought from and sold to the grid, the amount of natural gas
to be bought for the boiler and CHP unit operations, and the
charging/discharging strategy for the EESS and TESS over
the time window H(t):

min (cgr+cpen+cgas)

s.t. (1)-(32). (33)

where xgr
+(t), xgr

−(t), xel(t), xhp(t), xchp(t), xes
+(t), xes

−(t),
ychp(t), yboi(t), yts

+(t), y
ts
−(t), z

boi(t), zchp(t), δes+(t), δ
es
−(t),

δts+(t), δ
ts
−(t), δ

gr
+(t), δ

gr
−(t), ψ+(t), ψ−(t) form the set of



decision variables. The real-time optimization problem (33)
- that is labeled deterministic or nominal - is iteratively
solved at each time slot t in accordance with the receding
horizon paradigm, based on the most recent input data.
Only the results referring to the first time slot are applied
to the system as the optimal control signals, whilst the
horizon is shifted ahead. Then, for the next time slot, a new
optimization problem is solved using the updated information
on forecasts and system states. The resulting closed-loop
control algorithm is referred to as deterministic MPC.

IV. ROBUST ENERGY SCHEDULING STRATEGY

The previously defined deterministic scheduling problem
unrealistically assumes perfect knowledge of electrical and
thermal energy demand and RES generation (i.e., of vectors
b, q, and r). However, the variation in the forecast of these
profiles may cause a large deviation from the optimum in the
obtained results, leading to inefficient scheduling. Following
the so-called set-based uncertainty model [16], we define
a computationally tractable method to tackle uncertainty,
which consists in finding the solutions that are feasible for
any realization of uncertainty in a given set.

A. Data Uncertainty Set Definition

Following the approach proposed in [17], we define the
uncertainty set as a box. However, differently from [17], in
this paper we adopt a mechanism to adjust the conservatism
of solutions based on tunable scalar parameters. In particular,
introducing the so-called robustness factors (also known as
budgets of uncertainty) γb, γq , γr related to NCELs, TLs,
and RES generation, respectively, the box uncertainty sets
related to the time window H(t) are defined as follows:

b(t)− γbb̂(t) ≤ b̃(t) ≤ b(t) + γbb̂(t) (34)
q(t)− γqq̂(t) ≤ q̃(t) ≤ q(t) + γqq̂(t) (35)
r(t)− γr r̂(t) ≤ r̃(t) ≤ r(t) + γr r̂(t) (36)

where b, q, and r and b̃, q̃, and r̃ are the nominal and
uncertain profiles of NCELs, TLs, and RES generation,
respectively, whilst b̂, q̂, and r̂ denote the semi-amplitude
profiles of the uncertain variables variations. We finally
assume that both nominal and semi-amplitude values are
available based on historical data.

B. Robust MPC Formulation

We preliminary note that uncertainty affects the constraints
of (33). Replacing b̃(t), q̃(t), and r̃(t) defined in (34)-(36)
to b(t), q(t), and r(t) in constraints (23)-(24), (33) turns
into a robust optimization problem. Leveraging on the box-
uncertainty-set in (34)-(36), we can straightforwardly provide
the robust counterpart of the optimization problem (33),
which aims at achieving a solution that is feasible for any
realization of the uncertainty within the defined uncertainty
set. The robust counterpart is given by the following Mixed
Integer Quadratic Programming (MIQP) problem:

min (cgr+cpen+cgas) (37)

s.t. (1)-(22), (25)-(32), and

xgr
+ (t)+r(t)−γr r̂(t)+xchp(t)+xes

−(t) =

xgr
− (t)+

N∑
n=1

xel
n (t)+b(t) + γbb̂(t)+xes

+(t) (38)

q(t)+γqq̂(t)+y
ts
+(t)=yboi(t)+ychp(t)+yhp(t)+yts

−(t). (39)

By solving the robust problem (37)-(39), the energy
schedule can be obtained with different robustness levels.
Indeed, the robustness of the energy schedule varies with
the robustness factors γb, γq , and γr. Here, the role of
γb, γq , and γr is to adjust the robustness of the proposed
scheduling method against the level of conservativeness of
the solution. For γb = γq = γr = 0, the problem is solved
without considering forecast uncertainties (i.e., deterministic
scheduling). The obtained results thus refer to the most
optimistic case. Instead, for γb = γq = γr = 1, the largest
amount of uncertainty is considered. Hence, uncertainties are
fully addressed during the operations, but the problem refers
to the most conservative case (i.e., the worst case over all the
possible realizations of the uncertain variables). To curtail the
level of conservativeness in the solution, the value of these
parameters can be tuned between 0 and 1: the optimization
results over different values of the robustness factors can be
observed to choose the best solution in terms of trade-off
between cost and conservatism [16].

We finally remark that, similarly to the deterministic case,
the robust problem (37)-(39) is solved iteratively at each
time slot t in accordance with the receding horizon principle.
The resulting closed-loop control algorithm is referred to as
robust MPC (RMPC).

V. NUMERICAL EXPERIMENTS

A. System Setup

In this section, the effectiveness of the proposed RMPC
control scheme for multi-carrier microgrids is tested on
three different scenarios of a realistic residential case study.
The multi-carrier microgrid is assumed to be installed in
a residential building in the Netherlands, including N = 4
households. The system is characterized by electrical and
thermal demand profiles calculated on the basis of aggregated
Dutch national data [18] for year 2018. The average yearly
demand of electricity and thermal energy for a household
amounts respectively to 3.5 MWh and 14.0 MWh. The elec-
trical demand is partitioned into CELs and NCELs, which are
equal to 1.5 MWh and 2 MWh, respectively. In this work we
compute the profile of the hourly electrical non-controllable
loads b(t) [kWh] as a function of the available real data
[18] as follows: b(t) = N B(t)∑T

i=1 B(i)
Del

Y with t = 1, . . . , T ,
where: Del

Y [kWh] is the hourly average residential electrical
demand for NCELs over one year; B(t) [kWh] is the hourly
residential electrical demand for NCELs;

∑T
i=1B(i) is the

total residential electrical demand for NCELs; T = 8760 is
the simulation horizon (i.e., one year, time step 1 h).

Similarly, the profile of the hourly thermal demand q(t)
[kWh] based on the aggregated national Dutch data [18] is:
q(t) =N QSH(t)+QHW(t)∑T

i=1(Q
SH(i)+QHW(i))

Dtl
Y with t = 1, . . . , T , where:



TABLE I
TECHNICAL PARAMETERS OF THE SYSTEM DEVICES

Parameter Value Unit
ηchpe 0.20 -
ηchpt 0.80 -
lchp 1 kWh

l
chp, pboi 7 kWh
pchp 4 kWh
pchp 28 kWh
ηhp 3.5 -
php 1.75 kWh
php 21 kWh
ηboi 1 -

pboi, lel2 ,

l
el
3 , lel4 0.5 kWh
ηes+ ,ηes− 0.95 -

ses, sts, lel2 0 kWh
ses 5 kWh

Ses, Sts 0 kW

Parameter Value Unit
S
es, Sts 20 kW

ηts+ , ηts− 0.95 -
sts 5 kWh
lel1

(12:00 - 15:59) 0.4 kWh

lel1
(16:00 - 11:59) 0.1 kWh

l
el
1

0.6 kWh
Lel
1 7.5 kW

Lel
2 2.5 kW

lel3
(12:00 - 15:59) 0.2 kWh

lel3
(16:00 - 11:59) 0.1 kWh

Lel
3 6 kW

lel4 0 kWh
Lel
4 4 kW

Dtl
Y [kWh] is the hourly average residential thermal demand

over one year; QSH(t) [kWh] is the hourly residential space
heating thermal demand; QHW(t) [kWh] is the hourly resi-
dential hot water thermal demand;

∑T
i=1(Q

SH(i)+QHW(i))
is the total residential thermal demand.

The considered system includes N cel =4 different CELs
having constant upper and lower bounds (l

el

1 , l
el

2 , l
el

3 , l
el

4 and
lel1 , l

el
2 , l

el
3 , l

el
4 ). For each controllable load, it is imposed that

its cumulative power consumption cannot overcome a well-
defined threshold to complete the corresponding task in the
defined time horizon (i.e., 24 hours).

Furthermore, we assume that the microgrid is equipped
with generation and storage technologies, as well as electrical
and thermal loads, as specified in Section II. As for the
storage systems, we consider a lithium-ion battery and a
water storage system for water and space heating. As for
the energy generation, we consider: PV panel, HP, CHP unit,
and auxiliary boiler. In particular, we consider a PV panel (15
kWp capacity) the generation profile of which is calculated
on the basis of the 2018 Dutch solar power time series
[19]. This profile is based on the concept of Capacity Factor
(CF), which is the ratio of the energy produced by a solar
panel (kWh) and its maximum possible generation, i.e., the
Installed Capacity (IC), r(t) = CF(t)IC, with t = 1, . . . , T .
All the technical parameters that characterize the system
devices and their values and units are reported in Table I.

The prices of the energy and natural gas are computed
based on the prices of various Dutch retailers. In particular,
we consider the price of the electricity component equal to
κ+(t)=0.145 C/kWh in the time period 9:00-21:59, while
it is equal to κ+(t)=0.120 C/kWh in the time period 22:00-
8:59. The natural gas price is considered constant and equals
ν(t) = 0.08 C/kWh [20]. The selling price, in general lower
than the purchasing price (due to of taxes and transportation
costs), is here reasonably assumed to be equal to κ−(t)=0.1
C/kWh. As for the energy exchange with the main grid, we
set a maximum purchase g(t)=8 kWh and a maximum sale

TABLE II
PERFORMANCE INDICES VALUES WITH VARIABLE ROBUSTNESS

γ 0 0.25 0.5 0.75 1

C
as

e
A

EC [C] 2896 3556 4254 5047 5840
SS 0.90 0.95 0.98 0.99 1

FESR 0.97 0.95 0.93 0.90 0.87
EI 0.42 0.38 0.35 0.31 0.28

C
as

e
B

EC [C] 4831 5376 5922 6525 7128
SS 1 1 1 1 1

FESR 0.97 0.95 0.93 0.90 0.87
EI 0.01 0.02 0.04 0.05 0.07

C
as

e
C

EC [C] 8236 9194 10152 11125 12098
SS 0.65 0.68 0.71 0.75 0.75

FESR 0 0 0 0 0
EI 0.98 0.98 0.97 0.96 0.94

TABLE III
ANALYSIS OF THE CVR (SCENARIO A) IN A MONTECARLO

SIMULATION WITH 1000 RUNS

γ 0 0.25 0.5 0.75 1
CVR [%] 34.8 24.0 14.7 7.60 0.00

g(t)= 8 kWh, where the values for the soft constraints are
gπ=12.8 kWh and gπ=12.8 kWh.

Four performance indices are considered as follows:
• the overall energy cost:

EC=

T∑
t=1

(
κ+(t)x

gr
+ (t)−κ−(t)xgr− (t)+ν(t)(zboi(t)+zchp(t))

)
• the self-supply:

SS = 1−
∑T

t=1 x
gr
− (t)∑T

t=1 r(t) + xchp(t)

• the fuel energy saving ratio:

FESR = 1−
∑T

t=1 x
boi(t) + xchp(t)∑T
t=1 q(t)

• the energy independence:

EI=1−
∑T

t=1 x
gr
+ (t)∑T

t=1x
hp(t)+

∑N
n=1 x

el
n(t)+b(t)

.

B. Simulation Results

The MIQP problem (37)-(39) is solved in the Matlab
R2019a environment using Gurobi [21]. The RMPC is tested
on three scenarios defined as follows:

• Scenario A: the system includes CELs and NCELs, TLs,
PV panel, CHP, HP, auxiliary boiler, TESS, and EESS;

• Scenario B: same as Scenario A without the PV panel;
• Scenario C: same as Scenario A without the HP.

In all the defined scenarios, we assign a weight π=1 to the
penalty cost cpen, so as to encourage self-consumption in
the microgrid. The RMPC technique is applied to the system
over the whole year 2018 and tested under various robustness
conditions. In particular, we vary the robustness factors as
follows: γ=γb=γq =γr ∈ {0, 0.25, 0.5, 0.75, 1}, i.e., from
no robustness to maximum conservativeness. In Table II we



show for each scenario the values of the performance indices
obtained under the various robustness conditions.

The results in Table II show that the minimum EC value is
reached in Scenario A, i.e., when all the energy and thermal
devices are included in the microgrid, whereas higher costs
are incurred in Scenario B and Scenario C, due to the absence
of PV generation and HP respectively. It can also be observed
that in each test case the EC index increases with the increase
of the robustness level, attesting a minimum variation of
almost 50% in Scenario A and a maximum variation of
almost 70% both in scenarios B and C. As for the SS index,
it grows with the robustness level both in Scenarios A and C,
while it stays constant and equal to 1 in Scenario B due to the
absence of PV generation, as then all the produced energy
is locally consumed. In addition, the FESR index decreases
with the increase of the robustness level both in Scenarios A
and B, while it stays constant and equal to 1 in Scenario C
due to the absence of the HP. Finally, the EI index decreases
with the increase of the robustness in Scenarios A and C,
while it presents the opposite trend in Scenario B, due to the
absence of the PV generation.

With the aim of evaluating the effects of the RMPC with
respect to the Det-MPC, we assess the constraint violation
rate CVR [%] in a Montecarlo simulation with 1000 runs.
Such an index measures the number of times a given solution
does not satisfy the inequality constraints in (37)-(39) in ref-
erence to several realizations of the uncertainty parameters.
In particular, we compute the CVR for the considered values
of the robustness factors, i.e., γ ∈ {0, 0.25, 0.5, 0.75, 1},
where γ = 0 corresponds to the deterministic case while
γ = 1 corresponds to the robust case. Table III shows that
the lower the value of the robustness factor, the higher the
violation rate. This confirms the effectiveness of the RMPC
approach with respect to the Det-MPC approach in achieving
a balanced trade-off between performance objective opti-
mization and constraint violation mitigation.

VI. CONCLUSIONS AND FUTURE WORK

In this work we propose a novel robust model predictive
control approach for multi-carrier energy microgrids that
include thermal and electrical loads (both non-controllable
and controllable), renewable energy sources, energy storage
systems, heat pumps, and combined heat and power plants.
Our aim is to extend the benefits of robust MPC, that has
been largely applied to electrical or thermal microgrids, also
to the multi-carrier ones, for which only very few contribu-
tions have been proposed. The goal of our control strategy
is to minimize the overall economical cost and the energy
exchange with the main grid, while guaranteeing thermal
comfort. Furthermore, the proposed robust MPC approach
can deal with uncertainties in the system model, which can
be due to external disturbances on loads, renewable energy
generation, and electrical and thermal demand. Simulations
done for a residential building in the Netherlands and based
on a real dataset show the benefits of the proposed approach,
allowing the reduction of the electric and thermal balance
violation with respect to the deterministic MPC.

Future work will take into account model flexibility in the
thermal load demand, as well as the possibility to represent
the sale of thermal energy to the district.
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