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Model predictive scheduling of semi-cyclic discrete-event

systems using switching max-plus linear models and

dynamic graphs

Ton J.J. van den Boom, Marenne van

den Muijsenberg, and Bart De Schutter

Abstract In this paper we discuss scheduling of semi-cyclic discrete-event
systems, for which the set of operations may vary over a limited set of pos-
sible sequences of operations. We introduce a unified modeling framework in
which different types of semi-cyclic discrete-event systems can be described by
switching max-plus linear (SMPL) models. We use a dynamic graph to visual-
ize the evolution of an SMPL system over a certain period in a graphical way
and to describe the order relations of the system events. We show that the
dynamic graph can be used to analyze the structural properties of the system.

In general the model predictive scheduling design problem for SMPL sys-
tems can be recast as a mixed integer linear programming (MILP) problem.
In order to reduce the number of optimization parameters we introduce a
novel reparametrization of the MILP problem. This may lead to a decrease in
computational complexity.

Keywords Switching max-plus linear systems · Model predictive scheduling ·
Mixed integer linear programming

1 INTRODUCTION

Scheduling is the process of deciding how to allocate a set of jobs to limited
resources over time in such a way that one or more objectives are optimized [34,
46]. Here, a job is a sequence of operations according to a recipe that specifies a
partial ordering among these operations, and resources are the equipment units
where operations can take place. In a typical scheduling problem, resources are
scarce and constrained in various ways (e.g., in the capacity of resources or
the order of activities that can be performed on them), and one is looking for
a schedule of the activities that both satisfies the constraints and is optimal
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according to some criterion (e.g., the length of the schedule) [20]. A lot of
research on scheduling has been done since the original work of Johnson [28].
Several books already presented general surveys for these problems such as [7,
12,46] for some recent ones.

In scheduling three basic types of control decisions play a major role,
namely routing, ordering, and synchronization. Routing decides how a job
follows a sequence of resources. Usually a job follows a predetermined route
through the system [28]. Sometimes there are alternative routes and the rout-
ing for each job has to be determined. Once the routes of the jobs have been
fixed, conflicts may occur when multiple jobs need to be operated at the same
resource. This means we have determine the ordering of concurring jobs in
resources. Often job synchronization takes place, i.e. an operation of a job can
only start when a specific operation of another job on another resource has
finished.

A special type of scheduling problem is the flow shop scheduling problem,
in which the routes of the jobs and the order of operations are fixed. All of the
resources and jobs contribute to the achievement of some common goal, such
as a minimal idle time and a minimal total waiting time. After all jobs in a
system have been completed, the cycle is complete and a new cycle begins. An
overview of the cyclic scheduling problem is available in [13,23]. Many flow
shop scheduling problems can be solved very well by considering a class of
cyclic discrete event systems (DES), namely the class of max-plus linear sys-
tems [5,25], which is capable of representing job and resource unavailability.
The main reason to use these models is that the max-plus algebra is better
adapted for solving sequencing problems than the classical algebra. Flow-shop
scheduling problems using max-plus linear models have already been studied
in [9,18,27,44,52]. Model predictive control of a flow shop scheduling problem
with a just-in-time cost function and no constraint next to the non-decreasing
input constraint can be solved using a semimodule approach (with a lower
computational cost) [15]. More publications on control of max-plus linear sys-
tem can be found in [8,24,26,33,35,38,40].

An example of scheduling a cyclic DES is the synchronization of the legs
in a six-legged mobile robot [36]. The legs will move in a coordinated pattern,
called a gait. For a fixed gait the system will show a cyclic behavior, which
can be described by a max-plus linear model. Alirezaei et al. [2] design an
optimal schedule of multiple sheets in a printer using a max-plus framework.
The design variables are the feeding time and the handling time of the sheet
in the duplex loop. It is shown that the resulting optimization problem can
be solved using linear programming optimization methods. The scheduling
of energy flows between the parallel processes in the production of calcium
silicate stones is discussed in [43], where the authors use a max-plus linear
model in the formulation of the scheduling problem. A railway traffic system
with a cyclic timetable can described by a max-plus-linear model [11,25]. The
use of max-plus algebra allows fast computation of performance indicators
and delay propagation in short time even on large networks. Modeling a cyclic
DES using max-plus algebra has as advantage that the resulting max-plus-
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linear (MPL) system can be considered as a linear system that has a strong
analogy to conventional linear system theory.

A disadvantage of MPL systems is that the model structure is fixed, whereby
changes in the structure of the system (change of route, different order of op-
erations) cannot be modeled.

In the case of semi-cyclic processes the set of operations may vary over a
limited set of possible sequences of operations. Every possible set of operations
defines a mode of operation. By switching between different modes of opera-
tion (in each mode the system is described by an MPL model), we obtain a
switching max-plus linear (SMPL) system [49].

An example of scheduling a semi-cyclic DES is the synchronization of the
legs in a six-legged mobile robot with gait changes. The legs can change gait,
which means that the legs will move in different coordinated patterns. If gait
switching is possible, the system’s behavior is semi-cyclic and can be described
by an SMPL model [30]. Also paper handling in printers with different paper
sizes and/or both simplex and duplex printing, can be modeled as an SMPL
system (see Section 3). Other examples of scheduling semi-cyclic DESs are op-
erational traffic management of railway systems with changing train orders in
case of disturbances [31], and the scheduling of automated guided vehicles for
unloading ships in seaport container terminals, in which the vehicles transport
the containers from the quay cranes to the stack cranes [48].

Graph-based methods can be used in the scheduling procedure (see [39]).
There is a close relation between max-plus linear models and the graph repre-
sentation of the system [5]. From the precedence graph of the system we can
compute the eigenvalue and eigenvector of the system matrix, which play a
crucial role in the analysis of the system. For SMPL systems we cannot use
the precedence graph because the system matrix may change every event step.
In this paper we therefore use the dynamic graph [41,42]. From the dynamic
graph we can compute the spectral radius of the system (equivalent to the
max-plus eigenvalue for max-plus linear systems). Also controllability of the
SMPL system can be studied using the dynamic graph (See Section 6).

Many scheduling problems lead to integer optimization problems, or in
many cases, to mixed integer linear programming (MILP) problems [19,32,34,
46]. Also in this paper the final optimization problem will be an MILP problem.
This final optimization problem will often be identical to the one we obtain
using the MILP optimization problem that arises in conventional scheduling
techniques. The contribution this paper is that by considering SMPL systems
the performance of the scheduling procedure can be improved by using the
properties of SMPL models and dynamic graphs, such as detecting bottle-
necks and using reparametrization of the MILP problem based on max-plus
expressions to reduce the number of optimization parameters.

Motivation and contribution

There are advantages in using SMPL systems as a basic model for scheduling.
First of all there are many system-theoretical results for (S)MPL systems in
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literature [5,51]. We can use them for finding bottlenecks in the scheduling pro-
cess as well as good initial scheduling values by using system properties, based
on the max-plus eigenvalue and eigenvectors [30]. In this paper we discuss
model predictive scheduling of semi-cyclic DESs. By using an SMPL model of
the system we can make a prediction of its future behavior while searching for
an optimal schedule for the future. If the model is perfect, the optimal schedule
can be executed without feedback and the system will behave as predicted.
However, in general the system is affected by disturbances and/or the model
is not perfect, so we deal with model uncertainty. Therefore, the schedule has
to be adapted on-line in response to the unexpected events. This is called
operational scheduling or rescheduling.

The goal of this paper is to show how SMPL systems and their correspond-
ing dynamic graphs can be used for the scheduling of semi-cyclic systems. We
will introduce a unifying modeling approach and use it to analyze the prop-
erties of the SMPL systems. The use of a dynamic graphs eases the modeling
and gives insight in the routing and order relations of the system events.

This paper extends the results of [51]: We introduce the dynamic graph
for representing the switching behavior of an SMPL system. We highlight the
importance of the dynamic graph concept by discussing controllability and
maximum average path weight in terms of dynamic graphs and elaborate on
the relation between the makespan of a schedule and the maximum average
path weight of the SMPL system. Furthermore, we have added a section on
classification of SMPL scheduling problems and a section with two illustra-
tive examples of SMPL systems (with their corresponding dynamic graphs).
We prove that under mild conditions the relaxed model predictive scheduling
problem will give the same result as the original model predictive scheduling
problem. Finally we give a generalized framework for reparametrization of the
mixed integer linear programming problem and apply this to reparametriza-
tion of the ordering and routing variables.

The paper is organized as follows: In Section 2 we review SMPL systems
and introduce the concept of dynamic graphs. Section 3 gives some illustrative
examples of semi-cyclic systems that can be modeled as SMPL systems with
their corresponding dynamics graphs. Section 4 discusses the classification of
SMPL models. Section 5 analyzes the relation between the routing, ordering,
and job synchronization of the scheduling operations in the context of SMPL
systems. Section 6 presents some tools for the analysis of SMPL systems using
dynamic graphs. Section 7 formulates the model predictive scheduling problem
and shows how the related optimization problem can be solved. Section 8
concentrates on the case where the problem can be written as a mixed integer
optimization problem and shows that by reparametrization the number of
optimization variables can be reduced. Finally, in Section 9 some conclusions
are drawn.
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2 Max-plus linear systems

2.1 Max-plus algebra

Define ε = −∞ and Rε = R ∪ {ε}. The max-plus-algebraic addition (⊕) and
multiplication (⊗) are defined as follows [5,14]:

x⊕ y = max(x, y) , x⊗ y = x+ y

for any x, y ∈ Rε, and

[A⊕B]i,j = [A]i,j ⊕ [B]i,j = max([A]i,j , [B]i,j)

[A⊗ C]i,j =

n
⊕

k=1

[A]ik ⊗ [C]k,j = max
k=1,...,n

([A]i,k + [C]k,j)

[A⊙B]i,j = [A]i,j + [B]i,j

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε . The last operation (⊙) is the

max-plus Schur product. The matrix ε is the max-plus-algebraic zero matrix:
[ε]i,j = ε for all i, j. Define for n ∈ Z

+ the set n = {1, 2, . . . , n}. The matrix
En ∈ R

n×n
ε is the max-plus identity matrix with [En]i,i = 0, i ∈ n and

[En]i,j = ε, i ∈ n, j ∈ n, i 6= j. The max-plus-algebraic matrix power of

A ∈ R
n×n
ε is defined as follows: A⊗

0
= En and A⊗

k
= A ⊗ A⊗

(k−1)
for

k = 1, 2, . . . .
The max-plus Kleene-star of a matrix A ∈ R

n×n
ε is defined as

A∗ = En ⊕A⊕A⊗
2
⊕A⊗

3
⊕ . . .

Note that A∗ exists for any square matrix A with a precedence graph G(A)
having only nonpositive circuit weights [5].

Let u ∈ Bε = {0, ε} be a max-plus binary variable; then the adjoint variable
ū ∈ Bε is defined as follows:

ū =

{

0 if u = ε

ε if u = 0

2.2 Max-plus linear systems

A max-plus linear system is defined as follows [5]:

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) (1)

where A ∈ R
n×n
ε and B ∈ R

n×nu
ε are the system matrices, x(k) ∈ R

n
ε is the

state, u(k) ∈ R
nu
ε is the input of the system, and k is the event counter of the

system. In this paper k will also be called cycle counter, because in every cycle
k a number of jobs are completed using a fixed route and in a specific order.

Remark 1 Note that in this paper we use the dater description of the max-plus
linear system, which means that the matrices A and B are constant matrices
in R

n×n
ε and R

n×nu
ε , respectively.
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2.3 Switching max-plus linear systems

In [49] the class of switching max-plus linear (SMPL) systems was introduced,
described by

x(k) = A(ℓ(k))⊗ x(k − 1)⊕B′(ℓ(k))⊗ u(k) (2)

in which the matrices A(ℓ(k)) ∈ R
n×n
ε , B′(ℓ(k)) ∈ R

n×nu
ε are the system

matrices for mode ℓ(k) ∈ nℓ for cycle k. The moments of switching between
modes are determined by a switching mechanism. In general, the mode ℓ(k)
will depend on the previous state x(k − 1), the previous mode ℓ(k − 1), the
input variable u(k), and an additional control variable v(k). For this purpose
we define the switching function φs as:

ℓ(k) = φs(x(k − 1), ℓ(k − 1), u(k), v(k))

Model (2) is often referred to as an explicit SMPL model. In this paper, we
will also consider the implicit SMPL model, given by:

x(k) = A0(ℓ(k))⊗ x(k)⊕A1(ℓ(k))⊗ x(k − 1)⊕B(ℓ(k))⊗ u(k) (3)

The max-plus Kleene star of A0(ℓ(k)) for mode ℓ(k) at cycle k is given by

[A0(ℓ(k))]
∗ = En ⊕A0(ℓ(k))⊕ [A0(ℓ(k))]

⊗
2
⊕ . . .⊕ [A0(ℓ(k))]

⊗
n

Note that for a fixed ℓ(k) the matrix A0(ℓ(k)) is a constant matrix and so
[A0(ℓ(k))]

∗ can easily be computed. We can use the max-plus Kleene star of
A0(ℓ(k)) to rewrite the implicit SMPL model into an explicit one. Consider
an implicit SMPL system (3) for which a finite solution of [A0(ℓ(k))]

∗ exists.
Using Theorem 2.66 of [5] the implicit SMPL system can be written in the
explicit form of (2), where A(ℓ(k)) = [A0(ℓ(k))]

∗ ⊗ A1(ℓ(k)) and B′(ℓ(k)) =
[A0(ℓ(k))]

∗⊗B(ℓ(k)). In the current paper we consider the scheduling of semi-
cyclic DES. We study different types of semi-cyclic DES and model them with
an SMPL model. In some applications the mode ℓ(k) only depends on the
additional integer-valued control vector v(k), so ℓ(k) = φs(v(k)). Therefore,
we will also use the notation A0(v(k)), A1(v(k)), and B(v(k)).

If we rewrite the implicit SMPL model into an explicit SMPL model the
system matrices of the explicit model become A(v(k)) and B′(v(k)). These
matrices A(v(k)) and B′(v(k)) may become very complex functions of v(k).
For example, in [31] a railway traffic management problem was considered with
the optimization of the scheduling parameters. A comparison was done using
an explicit SMPL model and an implicit SMPL model. The explicit model
became very complex and introduced many additional constraints in the final
MILP problem. This made the optimization with the explicit model much
slower than the optimization with the implicit model. This motivates the use
of implicit models in model predictive scheduling.
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Dynamic graphs

There exists a close relation between max-plus algebra and graphs [5,21,22].
Important properties such as irreducibility, eigenvalues, and structural con-
trollability can be determined from the precedence graph of a max-plus sys-
tem. If we want to study the switching behavior in the system the precedence
graph cannot be used any more because the mode ℓ(k) and thus also the
A-matrix of the system may change for every cycle k. Only if the system re-
mains a longer time in one mode (so if ℓ(k) is constant in some event interval
{kstart, kstart + 1, . . . , kend}), we can study the behavior of the system in that
specific mode by considering the precedence graph. Examples of systems that
often remain a longer time in one mode for some event interval are printers,
where the paper type may be constant for some time [2], and legged robots
that move in a specific gait for some time [36]. For a better understanding of
the switching behavior we consider the dynamic graph concept, introduced by
Murota [41,42]. For the analysis of the dynamic graphs we can compute the
maximum average path weight, related to the maximum growth rate of the
system [50], and we can check the controllability of the system. This will be
discussed in Section 6.

Consider an SMPL system of the form (3) where nℓ is the number of modes.
For a given positive integer N , let the set LN = { [ ℓ(1) · · · ℓ(N) ]T | ℓ(m) ∈
nℓ, m ∈ N} denote the set of all possible consecutive mode switching vectors
within N cycles.

The main advantage of the dynamic graph is that it can handle the switch-
ing nature of SMPL systems. In the context of implicit SMPL systems the
dynamic graph for a given mode sequence ℓ̃ = [ ℓ(1) · · · ℓ(N) ]T ∈ LN , is
defined as follows:

Definition 1 Consider an implicit SMPL system for a given mode sequence
ℓ̃ ∈ LN . The dynamic graph G = (G1

0, G
1
1, G

2
0, G

2
1, . . . , G

m
0 , Gm

1 , H1, . . . , Hm)
is a sequence of graphs, where Gk

0 = (Xk, Ek
0 ) is a directed graph with only

nonpositive circuit weights, Gk
1 = (Xk, Xk−1, Ek

1 ), is a directed bipartite graph
with Ek

1 being the set of edges from Xk−1 to Xk, and Hk(Xk, Uk, Ek
(u)) is a

directed bipartite graph with Ek
(u) being the set of edges from Uk to Xk.

The nodes Xk represent the state of a system at cycle k and the nodes Uk

correspond to the input of the system at cycle k. The weight of the edge of
Gk

0 from node [Xk]j to [Xk]i is equal to [A0(ℓ(k))]i,j , the weight of the edge
of Gk

1 from node [Xk−1]j to [Xk]i is equal to [A1(ℓ(k))]i,j , and the weight of
the edge of Hk from node [Uk]j to [Xk]i is equal to [B(ℓ(k))]i,j .

In the following section we will show that SMPL models and the corresponding
dynamic graphs will help in the modeling of semi-cyclic DESs. System analysis
with the dynamic graph will be discussed in Section 6.

Example 1 For the implicit SMPL system

x(k) = A0(ℓ(k))⊗ x(k)⊕A1(ℓ(k))⊗ x(k − 1)⊕B(ℓ(k))⊗ u(k)
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with two modes

Mode 1 : A0(1) =

[

ε 2
ε ε

]

, A1(1) =

[

2 ε
ε 3

]

, B(1) =

[

0 ε
ε 1

]

Mode 2 : A0(2) =

[

ε ε
2 ε

]

, A1(2) =

[

1 ε
3 ε

]

, B(2) =

[

ε 1
ε 1

]

the dynamic graph for mode-sequence {1, 2, 1} is given in Figure 1.

Fig. 1 Dynamic graph of the example 1.

For a periodic mode sequence with ℓ(k+ c) = ℓ(k) the dynamic graphs can
be obtained from traditional precedence graphs by using a classical state-space
expanding technique.

3 EXAMPLES OF SWITCHING MAX-PLUS-LINEAR

SYSTEMS

In this section we discuss two applications in which the DES can be modeled
as an SMPL system, namely a production system and the paper flow in a
simplex/duplex printer. More examples can be found in literature (e.g. a rail-
way network [31], a legged robot [36], and a container terminal [48]). For the
mathematical modeling it is convenient if there is a general modeling method-
ology that one can follow. Moreover, when an adjustment must be made in
the obtained model, such as adding a resource, it is desirable that not the
whole system needs to be remodeled. It would be time saving if then only that
specific part can be added whereby automatically a new model is obtained. Fi-
nally, a systematic way of modeling will result in a structured control problem
to obtain the optimal schedule.

Due to the switching nature of SMPL systems, the Petri net representation
is not useful for SMPL systems because of the changing structure. To study
the mode changes in SMPL systems we consider the dynamic graph, which can
represent the switching behavior of SMPL systems. In addition the dynamic
graph can be used to derive the SMPL model of the system.
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3.1 Production system

Consider the production system of Figure 2. This system consists of five ma-
chinesM1, . . . ,M5 and operates in batches. The raw material is fed to machines
M1 and M2 where preprocessing is done. Afterwards the intermediate product
is fed to machine M3 or machine M4 for further processing. Finally, the two
parts are assembled in machine M5 and the end product leaves the system. We
assume that each machine starts working as soon as possible on each batch,
i.e., as soon as the raw material or the required intermediate product is avail-
able, and as soon as the machine is idle (i.e., the previous batch of products
has been processed and has left the machine). Define ui(k), i = 1, 2 as the
time instant at which machine Mi is fed for the kth time, y(k) as the time
instant at which the kth end product leaves the system, and xi, i = 1, . . . , 5
as the time instant at which machine i starts for the kth time. We define di,
i = 1, . . . 5 as the processing time on machine i for the kth batch, and we
assume the transportation times between the machines can be neglected.

Fig. 2 Production system with five machines

Assume that the system can run in two modes. In the first mode the prod-
uct from machine M1 will proceed to machine M3, and the product from ma-
chine M2 will proceed to machine M4, while in the second mode the product
from machine M1 will proceed to machine M4, and the product from machine
M2 will proceed to machine M3. In the first mode the system equations are
given by

x1(k) = max(x1(k − 1) + d1, u1(k))

x2(k) = max(x2(k − 1) + d2, u2(k))

x3(k) = max(x1(k) + d1, x3(k − 1) + d3)

x4(k) = max(x2(k) + d2, x4(k − 1) + d4)

x5(k) = max(x3(k) + d3, x4(k) + d4, x5(k − 1) + d5)

y(k) = x5(k) + d5
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Fig. 3 Dynamic graph of the production system of Section 3.1

leading to the following matrices for the first mode:

A0(1) =













ε ε ε ε ε
ε ε ε ε ε
d1 ε ε ε ε
ε d2 ε ε ε
ε ε d3 d4 ε













, A1(1) =













d1 ε ε ε ε
ε d2 ε ε ε
ε ε d3 ε ε
ε ε ε d4 ε
ε ε ε ε d5













, B(1) =













0 ε
ε 0
ε ε
ε ε
ε ε













In the second mode the system equations are given by

x1(k) = max(x1(k − 1) + d1, u1(k))

x2(k) = max(x2(k − 1) + d2, u2(k))

x3(k) = max(x2(k) + d2, x3(k − 1) + d3)

x4(k) = max(x1(k) + d1, x4(k − 1) + d4)

x5(k) = max(x3(k) + d3, x4(k) + d4, x5(k − 1) + d5)

y(k) = x5(k) + d5

leading to the following matrices for the second mode:

A0(2) =













ε ε ε ε ε
ε ε ε ε ε
ε d2 ε ε ε
d1 ε ε ε ε
ε ε d3 d4 ε













,
A1(2) = A1(1)

B(2) = B(1)

In Figure 3 the dynamic graph of the production system is given for the
case where we have mode 1 in cycle k and mode 2 in cycle k + 1.
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3.2 Paper flow in a simplex/duplex printer

In Figure 4 a schematic representation is given of the paper path in a sim-
plex/duplex printer (see [2]). In mode 1 (duplex mode) the paper runs from
the paper input module via the image transfer station, where the image is
printed onto the sheet, via the invert module and the re-entry module again
to the image transfer station for back side printing. Finally, the sheet leaves
the system via the paper output module. If the printer runs in mode 2 (simplex
mode), the paper runs via the paper input module and image transfer station
directly to the paper output module.

Fig. 4 Paper flow in a simplex/duplex printer

The collision avoidance of the sheets in the printer is the main constraint
in the paper path. We will first derive the model and then give the dynamic
graph.

Let u(k) be the time instant that the kth sheet enters the PIM, y1(k) the
time instant that the kth sheet enters the ITS, y2(k) the time instant that the
kth sheet enters the RM, y3(k) the time instant that the kth sheet enters the
ITS for the second time, y4(k) the time instant that the kth sheet leaves the
printer.

The evolution of the paper path are defined as follows for the duplex mode:

y1(k) = max(u(k) + τ1, y3(k − 2) + τ2)

y2(k) = max(y1(k) + τ2 + τ3, y2(k − 1) + τ4) (4)

y3(k) = max(y1(k + 1) + τ2, y2(k) + τ4)

y4(k) = y3(k) + τ2 + τ5

where τ1, τ2, τ3, τ4, and τ5 are the process time for feeding, printing, handling
in the first part of the loop, inverting, handling in the second part of the loop
and stacking, respectively. Note that when paper sheet k is in the IM/RM,
sheet k + 1 also enters the IM/RM. This means that the second time that
paper k enters the ITS (x3(k)) is scheduled after the first time that paper
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k + 1 leaves the ITS (x1(k + 1) + τ2). Therefore, the state x3(k) depends on
the future event x1(k + 1). In the same way, the first time paper k enters the
ITS (x1(k)) will be scheduled after the second time paper k−2 leaves the ITS
(x3(k − 2) + τ2).

To rewrite the model in the form of (3) we introduce the state x and a new
input ū as follows:

x(k) =









y1(k)
y2(k)

y3(k − 1)
y4(k − 1)









, ū(k) =

[

u(k)
u(k − 1)

]

The new set of state equations become

x1(k) = max(ū1(k) + τ1, x3(k − 1) + τ2)

x2(k) = max(x1(k) + τ2 + τ3, x2(k − 1) + τ4) (5)

x3(k) = max(x1(k) + τ2, x2(k − 1) + τ4)

x4(k) = x3(k) + τ2 + τ5

For the model description given in (3) we obtain the system matrices for
the first mode:

A0(1) =









ε ε ε ε
τ2 + τ3 ε ε ε

τ2 ε ε ε
ε ε τ2 + τ5 ε









, A1(1) =









ε ε τ2 ε
ε τ4 ε ε
ε τ4 ε ε
ε ε ε ε









, B(1) =









τ1 ε
ε ε
ε ε
ε ε









(6)

Now let us consider the case of mode 2 (simplex mode), where paper sheet
k only needs to be printed on one side. In that case we skip the states x1(k)
and x2(k) in the paper path and immediately go from the input to state x3(k).
The evolution of the paper path are defined as follows for the simplex mode:

y1(k) = y3(k − 2)

y2(k) = y2(k − 1) (7)

y3(k) = max(y1(k + 1) + τ2, u(k) + τ1)

y4(k) = y3(k) + τ2 + τ5

With the new set x(k) the state equations become

x1(k) = x3(k − 1)

x2(k) = x2(k − 1) (8)

x3(k + 1) = max(x1(k + 1) + τ2, ū2(k + 1) + τ1)

x4(k + 1) = x3(k + 1) + τ2 + τ5

The dynamic graph in Figure 5 shows the paper flow for the case were
sheets k − 2, k − 1, k + 1, and k + 2 are printed in duplex mode (mode 1)
and sheet k is printed in simplex mode (mode 2). Note that paper sheet k will
enter the system after paper sheet k + 1. Furthermore the states x1(k) and
x2(k) are actually redundant but remain in the dynamic graph to facilitate
the representation of the synchronization.
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Fig. 5 Dynamic graph of the printer paper flow system of Section 3.2 in duplex mode in
the cycles k − 2, k − 1, k + 1, and k + 2, but in simplex mode in cycle k.

4 CLASSIFICATION OF SWITCHING MAX-PLUS-LINEAR

SYSTEMS

In the previous section we have derived SMPL models for various applications.
In this section look at six features that classify the SMPL system:

1. Natural cycle.
2. Simultaneous or sequential processing.
3. Fixed or variable route.
4. Input type.
5. Due date or time table.
6. Re-entry.

These features give us information about the types of synchronization that
appear in the SMPL model. We will refer to the two applications of Section
3 (production system, printer) and some SMPL systems discussed in the lit-
erature (a railway network [31], a legged robot [36], and a container terminal
[48]) to illustrate these concepts.

1. Natural cycle

A natural cycle can be seen as a sequence of events whereafter the behavior
of the system repeats itself. This means that after one natural cycle, all jobs
enter the system again. In a railway network with a cyclic timetable, the cycle
period of the timetable can be regarded as a natural cycle. For a printer the
processing of one sheet of paper from the input module to the output module
can be seen as a natural cycle. Similarly in a container terminal the processing
of one container from quay crane to stack crane is a natural cycle. For a legged
robot the natural cycle is defined as the timespan between the moment when
all legs have lifted off and the moment they have all touched down again.
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It is important to notice that if we choose a natural cycle it is not said
that all events in a new cycle appear in the same order or appear at all: some
jobs may follow another route, or the order of processing operations at the
resources may be different, but the (semi-)cyclic behavior is still recognizable.

We can distinguish two cycle types for an SMPL model:

– Batch cycle or multi-job cycle: Every cycle consists of a batch of jobs.
Sometimes the system works according to a specific periodic timetable with
a fixed cycle period (railway network); sometimes multiple jobs are clearly
linked by synchronization (legged robot).

– Product cycle or single-job cycle: The system is based on handling
products in a (semi-)cyclic way (paper flow in printer, container terminal,
production system). The cycle time may be different for each product. The
cycle counter can be regarded as a ’product’-counter.

2. Simultaneous or sequential processing

The processing on the resources can take place in two different ways: sequen-
tially or simultaneously. In the sequential case there is only one operation
possible on a resource at the same time. The next operation on the resource
has to wait until the present operation has completely finished (e.g. the print-
ing of paper in the image transfer station has to be done sheet by sheet). In
the simultaneous case, multiple operations can take place at the same resource
simultaneously (e.g. multiple trains may run on the same track between sta-
tions, given a separation by the headway time). Simultaneous processing is
usually due to an aggregation of smaller segments. For example most railway
systems have block sections with signals to separate the trains. To analyze and
control a railway network the overall model will then become too complex. In
that case we aggregate a number of blocks to one block and separate trains
by headway constraints.

3. Fixed or variable route

In some applications there are multiple possible routes for the jobs. However
there are also applications where the routes of the jobs are fixed and only the
order of the events may change (this happens in railway systems [31]). If both
the routes and the order of the jobs are fixed, e.g. because operations from
future cycles always come after operations from the current cycle, the SMPL
system will only have one mode and we obtain an MPL system.

4. Input type

As mentioned before, u(k) can take different forms. It can represent a reference
under which the system needs to be operated: this is the case in a railway net-
work where trains can never leave earlier than indicated by the reference (time
table). In a printer the time instant at which paper is fed to the system can be
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chosen by the user and also in the case of a production system the input can be
controlled. Later on in Section 7 we use the input to control the SMPL system.

Table 1 Classification of the example SMPL systems

5. Due date or time table

The due date is defined as the time instant at which a job should be finished.
A time table gives the desired time instant at which a job should start. Due
dates and time tables are both a kind of reference signal, but they act in a
different way on the SMPL system.

The entries of a time table can be seen as a lower bound on the states
(e.g. in a railway system). If we consider the time table as a fixed input, the
time table constraint becomes a max-plus equation on the state and this fixed
input.

For some systems (e.g. the production system) there may be due dates that
define when a job should be finished. The due date is a desired upper bound
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on the state and may be so strict that it cannot be satisfied. The violation of
the due date can then be minimized using model predictive scheduling. This
will be discussed in Section 7.

6. Re-entry

A job consists of a number of operations on a sequence of resources. Usually
each resource in this sequence is only visited once during the job. However,
for some applications the job visits the same resource twice or more. We then
talk about re-entry. In the printer example we already saw that in the duplex
case the paper runs through the image transfer station twice. In the re-entry
case we will then assign two states for this operation, to distinguish between
the time that the first operation on that particular resource and the second
operation.

Overview

In Table 1 the classification of the five examples of SMPL systems (of Section
3 and literature) is given. The six discussed features characterize the types of
synchronization and as such the properties of the model. Of course for other
applications different combinations of the features are possible.

5 SCHEDULING AND SMPL MODELS

In Section 3 we have reviewed some examples of applications from scheduling
in which the system was described by SMPL models. In this section we will
discuss how to derive an SMPL model description for scheduling in a structured
and generic way.

In the previous sections we have seen that an SMPL model can switch
between different modes. In some applications the number of possible mode
can be very large. In that case it is often better to parameterize the modes.
There are three ways to do this parametrization:

Mode parametrization: We consider the set of all possible modes and enumer-
ate the set so that the specific mode number is the parameter.

Integer parametrization: If the set of all possible modes is large it is some-
times easier to describe the mode by a tuple of integers. The integers may
describe features like the ordering of the operations for a specific resource,
or determine the route for a specific job. For example in the container
terminal case the mode is described by which combination quay crane, au-
tomated guided vehicle, and stack crane is used for unloading a specific
container.

Binary parametrization: Binary variables can describe which of two opera-
tions go first for a resource, or can decide whether a synchronization is
made or not.



MPS of semi-cyclic DESs using SMPL models and dynamic graphs 17

Each parametrization has it advantages and disadvantages. Mode parametriza-
tion can be used if we have a small scheduling problem with a limited number
of modes. For medium-size problems integer or binary parametrization will be
better. If the number of possible modes is small, we can precompute the system
matrices for all modes and scheduling can be done by evaluating all possible
modes. When the number of modes gets large integer or binary parametriza-
tion will lead to more tractable problems. In this section we will consider
binary parametrization and study the three basic types of control decisions,
namely routing, synchronization, and ordering.

Routing in MPL systems

Consider a system that has to operate M jobs. For each job a specific route
through the system has to be scheduled and resources have to be ordered
accordingly. Let job j ∈ M consist of pj operations on the resources Rj =
(rj,1, . . . , rj,pj

) in processing order, and let Tj(k) = (τj,1(k), . . . , τj,pj
(k)) be

the corresponding processing times in cycle k with τj,i(k) ≥ 0 for all i, j. Each
operation is assigned to a unique machine and is not interruptible.

Finally, let x̂j(k) =
[

xj,1(k) . . . xj,pj
(k)

]T
be the vector with all starting

times of the operations of job j. This will give us the following inequalities for
all j ∈ M :

xj,m(k) ≥ xj,l(k) + τj,l(k), with m > l, m, l ∈ p
j
.

In max-plus matrix notation this can be written as










xj,1(k)
xj,2(k)

...
xj,pj

(k)











≥











ε ε . . . ε
τj,1(k) ε ε

...
. . .

. . .
...

ε . . . τj,pj−1(k) ε











⊗











xj,1(k)
xj,2(k)

...
xj,pj

(k)











or in short notation
x̂j(k) ≥ Âjob,j

0 (k)⊗ x̂j(k)

If we have M jobs, we can collect all starting times in one state vector x(k)
and we obtain:

x(k) =











x̂1(k)
x̂2(k)

...
x̂M (k)











≥











Âjob,1
0 (k) ε . . . ε

ε Âjob,2
0 (k) ε

...
. . .

...

ε . . . . . . Âjob,M
0 (k)











⊗











x̂1(k)
x̂2(k)

...
x̂M (k)











≥ Ajob
0 (k)⊗ x(k)
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In many applications jobs are not finished within one cycle, but need an-
other cycle to complete. This can happen for example in a railway network
with a cyclic timetable, in which a train that leaves a station in cycle k − 1
will arrive at the next station in cycle k. The state equation is then given by

x(k) ≥ Ajob
0 (k)⊗ x(k)⊕Ajob

1 (k)⊗ x(k − 1) (9)

Note that in (9) we use an inequality sign instead of an equality sign. This is
because the starting times may also depend on ordering and synchronization,
which can delay the starting times.

Often there are alternative routes available for the jobs. Alternative routes
may result in the same ‘product’ (e.g. various machines in production line may
execute the same operation) and sometimes the route may be changed to make
another ‘product’.

Let there be L alternative sets of routes for this system; then for each set
of routes we can define the matrices Ajob

µ,ℓ(k) for µ = 0, 1, ℓ = 1, . . . , nℓ. Let
us now define a set of max-plus binary variables (w1(k), . . . , wnℓ

(k)) such that
if we have the ℓth set of alternative routes for the system in cycle k, we find
wℓ(k) = 0 and wj(k) = ε for all j 6= ℓ. Now the job system matrices can be
written for µ = 0, 1 as

Ajob
µ (w(k)) =

L
⊕

ℓ=1

wℓ ⊗Ajob
µ,ℓ(k), (10)

Ordering operations on resources in MPL systems

Consider a system with n operations, divided over N resources. Following the
results of the previous paragraph, let the system allow L sets of alternative
routes, parameterized by the max-plus binary variables w(k). Furthermore, let
Pℓ ∈ Bε

n×n, ℓ ∈ {1, . . . , L}, be a matrix with max-plus binary entries, where
[Pℓ]i,j = 0 if operation i and operation j are executed on the same resource, and
[Pℓ]i,j = ε if operation i and operation j are executed on different resources.
The matrix P (w(k)) for assignment of the resources can now be expressed as
follows:

P (w(k)) =
L
⊕

ℓ=1

w(k)⊗ Pℓ

LetH(k) be a separation time matrix, whereHi,j(k) 6= ε is the separation time
between operations i and j if they may be scheduled on the same resource
and Hi,j(k) = ε if operations i and j can never be scheduled on the same
resource. Finally, let Zµ(k), µ = 0, 1 be order decision matrices with max-
plus binary entries, where [Zµ(k)]i,j = 0 if operation i in cycle k is scheduled
after operation j in cycle k + µ, and [Zµ(k)]i,j = ε if operation i in cycle k is
scheduled before operation j in cycle k + µ. Define zµ(k) as the vector with
the stacked column vectors of matrix Zµ(k), so zµ(k) = vec(Zµ(k)). Then we
can use the notation Zµ(k) = Z(zµ(k)).
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Finally define the ordering matrices

Aord
µ (w(k), zµ(k)) = P (w(k))⊙ Z(zµ(k))⊙H(k) (11)

Now the operation ordering constraints in the system can be formulated as
follows:

x(k) ≥ Aord
0 (w(k), z0(k))⊗ x(k)⊕Aord

1 (w(k), z1(k))⊗ x(k − 1) (12)

Note that certain values of zµ(k) may lead to an infeasible schedule because
of cycles in the ordering. An infeasible ordering occurs e.g. when in the case of
three starting times of operations x1, x2, x3, we choose an ordering x1 > x2,
x2 > x3, and x3 > x1.

Synchronization of operations in MPL systems

Synchronization occurs when a specific operation can only start when a specific
operation of another job has finished. In general we can define a number of
synchronization modes ℓ = 1, . . . , Lsyn, where for every mode we obtain a
system matrix for µ = 0, 1:

[Asyn
µ,ℓ (k)]ij =







0
if operation j in cycle k is to be scheduled behind
operation i in cycle k − µ.

ε elsewhere

Now the operation synchronization constraints in the system can be formulated
as follows:

x(k) ≥ Asyn
0 (s0(k))⊗ x(k)⊕Asyn

1 (s1(k))⊗ x(k − 1), (13)

where for µ = 0, 1:

Asyn
µ (sµ(k)) =

Lsyn
⊕

ℓ=0

[sµ(k)]ℓ ⊗Asyn
µ,ℓ (k), (14)

where sµ(k) ∈ B
Lsyn
ε are max-plus binary variables for scheduling the syn-

chronizations, where [sµ(k)]ℓ = 0 means that synchronization ℓ is made and
[sµ(k)]ℓ = 0 means that synchronization ℓ is canceled. Synchronizations may
be coupled and appear in groups (e.g. the synchronization of legs in a legged
robot [30]), but can also be an isolated phenomenon (e.g. the synchronization
of two trains on a platform to give passengers the chance to change trains
[10]).
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Combined A matrix

We have derived four conditions (9), (12), (13), and (16) for x(k). We also
have a set of scheduling decision variables from

– Routing: w(k).
– Ordering: zµ(k), µ = 0, 1.
– Synchronization: sµ(k), µ = 0, 1.

If we now stack all decision variables into one vector

v(k) =













w(k)
zµ0

(k)
zµ1

(k)
sµ0

(k)
sµ1

(k)













∈ B
Ltot
ε

where Ltot is the total number of scheduling variables, then we can write our
scheduling model as follows

x(k) ≥ A0(v(k))⊗ x(k)⊕A1(v(k))⊗ x(k − 1) (15)

where for µ = 0, 1:

Aµ(v(k)) = Ajob
µ (w(k))⊕Aord

µ (w(k), zµ(k))⊕Asyn
µ (sµ(k))

=

Ltot
⊕

ℓ=1

vℓ(k)⊗Aµ,ℓ(k)

Note that by choosing a specific control vector v(k) the system switches be-
tween different modes of operation [49].

Reference and input signal

Some DESs work with a predefined schedule that gives a lower bound for the
starting time of the operations in the system (e.g. in a railway system we have
a timetable with the departure times of the trains). Let ri(k) be the starting
time for operation i according to the given time schedule. To guarantees a
lower bound ri(k) on operation i we introduce the constraint

x(k) ≥ r(k). (16)

For operations without a lower bound on the starting time we choose ri(k) = ε.
Some DESs have a input signal that gives the starting time of ta job (e.g. in a
production system the input is the time instant at which the raw material is
fed into the system). To guarantees a lower bound we introduce the constraint

x(k) ≥ B(v(k))⊗ u(k) (17)
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with

B(v(k)) =

Ltot
⊕

ℓ=1

vℓ(k)⊗Bℓ(k)

where [Bℓ]ij is the minimum time between the input event uj(k) and state
event xi(k) if max-plus binary decision variable vℓ equals 0.

Now (15) can be replaced by

x(k) ≥ A0(v(k))⊗ x(k)⊕A1(v(k))⊗ x(k − 1)⊕B(v(k))⊗ u(k)⊕ r(k) (18)

For systems without an input signal we can discard the second term.

Final SMPL model

We now have taken into account all the constraints (9), (12), (13), (16), and
(17) that determine the starting times x(k). We assume that an event will take
place as soon as all constraints are satisfied, which means that we now have
an equality in (18) instead of an inequality:

x(k) = A0(v(k))⊗ x(k)⊕A1(v(k))⊗ x(k − 1)⊕B(v(k))⊗ u(k)⊕ r(k) (19)

Example 2 Consider the production system from Section 3. In this system
there are two routes, so we introduce the max-plus variables w1(k) and w2(k).
Note that because of the fact that the system can only be in one mode at
the time, we have w2(k) = w̄1(k). Now by choosing the scheduling variable
v(k) = w1(k) we obtain the system matrices:

A0(v(k)) =













ε ε ε ε ε
ε ε ε ε ε

d1 ⊗ v(k) d2 ⊗ v̄(k) ε ε ε
d1 ⊗ v̄(k) d2 ⊗ v(k) ε ε ε

ε ε d3 d4 ε













A1(v(k)) =













d1 ε ε ε ε
ε d2 ε ε ε
ε ε d3 ε ε
ε ε ε d4 ε
ε ε ε ε d5













, B(v(k)) =













0 ε
ε 0
ε ε
ε ε
ε ε













6 ANALYSIS OF SMPL SYSTEMS USING DYNAMIC GRAPHS

For max-plus linear system (1) we can determine the precedence graph G(A).
The maximum average circuit weight in the precedence graph G(A) is then
equal to the largest max-plus eigenvalue λ of the system matrix A [25].

For SMPL systems we use neither the concept of eigenvalue nor the prece-
dence graph because the system matrix A(ℓ(k)) may change in every cycle k.
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We therefore use the concept of maximum growth rate or spectral radius. This
section we start with the relation of the maximum average path weight in the
dynamic graph and the maximum autonomous growth rate of the SMPL sys-
tem [50]. Subsequently, we will discuss the controllability of an SMPL system
in terms of the dynamic graph. This controllability is of importance when we
want to perform scheduling and control of an SMPL system.

In [50] we introduced the maximum autonomous growth rate σmagr:

Definition 2 [50] Consider an SMPL system of the form (2) with system
matrices A(ℓ), ℓ ∈ nℓ. For a given α ∈ R, define the matrices Aα(ℓ) with
[Aα(ℓ)]i,j = [A(ℓ)]i,j−α. Define the set Sfin,n of all n×nmax-plus diagonal ma-
trices with finite diagonal entries, so Sfin,n = {S|S = diag⊕(s1, . . . , sn), si is finite}.
The maximum autonomous growth rate λ of the SMPL system is defined by

σmagr = min
{

α
∣

∣

∣
∃S ∈ Sfin,n such that [ S ⊗Aα(ℓ)⊗ S⊗

−1
]i,j ≤ 0, ∀ i, j, ℓ

}

Now consider the dynamic graph G of an SMPL system with mode switching
vector ℓ̃ = [ ℓ(1) · · · ℓ(N) ]T ∈ LN .

If the number of cycles N runs to infinity we obtain the maximum average
path weight. The maximum average path weight σmapw can be computed as
follows:

σmapw = lim
N→∞

max
i,j∈n,ℓ̃∈L

1/N
[

A(ℓ(N))⊗A(ℓ(N − 1))⊗ . . .⊗A(ℓ(2))⊗A(ℓ(1))
]

ij

Let Sσ be such that [ Sσ ⊗ Aα(ℓ) ⊗ Sσ
⊗
−1

]i,j ≤ 0 and define S−
σ = Sσ

⊗
−1

.
Now we can write

max
i,j∈n,ℓ̃∈L

[

A(ℓ(N))⊗ . . .⊗A(ℓ(1))
]

ij

= 1/N max
i,j∈n,ℓ̃∈L

[

S−
σ ⊗ Sσ ⊗A(ℓ(N))⊗ S−

σ ⊗ . . .⊗ Sσ ⊗A(ℓ(1))⊗ S−
σ ⊗ Sσ

]

ij

≤ 1/N max
i,j∈n,ℓ̃∈L

[

S−
σ ⊗ max

k,l∈n

[

Sσ ⊗A(ℓ(N))⊗ S−
σ

]

kl
⊗ E⊗

. . .⊗ max
k,l∈n

[

Sσ ⊗A(ℓ(1))⊗ S−
σ

]

kl
⊗ E ⊗ Sσ

]

ij

≤ 1/N max
i,j∈n

[

[

σ⊗
N

magr ⊗ S−
σ ⊗ E ⊗ Sσ

]

ij

]

= σmagr + 1/N max
i,j∈n

[

S−
σ ⊗ E ⊗ Sσ

]

ij

We find the bound

σmapw ≤ lim
N→∞

[

σmagr + 1/N max
i,j∈n

[

S−
σ ⊗ E ⊗ Sσ

]

ij

]

= σmagr

We can now summarize this in the following corollary:
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Corollary 1 Consider an SMPL system of the form (2) with system matrices
A(ℓ), ℓ ∈ nℓ, and let λℓ, ℓ ∈ nℓ be the maximum eigenvalue for matrix A(ℓ).
Then

max
ℓ∈nℓ

λℓ ≤ σmapw ≤ σmagr ≤ max
i,j∈n,ℓ̃∈L

[A(ℓ)]i,j

Note the maximum average path weight is the worst case average cycle dura-
tion over the set of all possible consecutive mode switching vectors for N → ∞.
In optimal scheduling we optimize over all possible consecutive mode switch-
ing vectors. This means that in scheduling the maximum average path weight
is an upper bound for the makespan divided by the length of the schedule.

Remark 2 The asymptotic growth rate and maximum average path weight is
related to the spectral radius [45] and the Lyapunov exponent.
For a max-plus-linear system (so nℓ = 1), the maximum autonomous growth
rate λ is equivalent to the largest max-plus-algebraic eigenvalue of the matrix
A(1).

The next system property we discuss is structural controllability

Definition 3 [5,50] Consider an SMPL system of the form (2) with system
matrices A(ℓ), B(ℓ), ℓ ∈ nℓ. The SMPL system is structurally controllable
if there exists a finite positive integer N such that for all mode sequences

ℓ̃ =
[

ℓ1 . . . ℓN
]T

∈ LN the matrices

ΓN
α (ℓ̃)=

[

A(ℓN )⊗· · ·⊗A(ℓ2)⊗B(ℓ1) . . . A(ℓN )⊗B(ℓN−1) B(ℓN )
]

are row-finite, i.e. in each row there is at least one entry different from ε.

Strong structural controllability means that all system states can be reached
from the inputs for all possible mode sequences. If it is possible to choose the
mode (like in case of scheduling) this concept of strong structural controlla-
bility is not always useful. We therefore also introduce the concept of weak
structural controllability.

Weak structural controllability in the context of dynamic graphs is defined
as follows:

Definition 4 [29] An SMPL system of the form (2) is said to be weakly
structurally controllable if there exist a finite positive integer N and a mode

sequence ℓ̃ =
[

ℓ1 . . . ℓN
]T

∈ LN such that for any initial state x(k), all state
vertices at t = k+N in the dynamic graph can be reached by a path originating
at an input node.

Strong structural controllability (or just structural controllability) in the
context of dynamic graphs is defined as follows:

Definition 5 [29] An SMPL system of the form (2) is said to be strongly
structurally controllable if there exists a finite positive integer N such that
the system is weakly structurally controllable for all feasible mode sequences.

This last definition corresponds to the definition of structural controllability
in [50].
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7 MODEL PREDICTIVE SCHEDULING

Model predictive control [16,37] is a one of the most popular advanced con-
trol strategies in industry. In this paper we will extend this methodology to
scheduling and will therefore refer to it as model predictive scheduling (MPS).
One of the main advantages of MPS is that we use the receding horizon prin-
ciple, which means that we do not optimize the whole schedule at once, but
we do this at regular time instants, where in each iteration we optimize only
the jobs in the nearest future (over a certain horizon), taking into account
the available information of past jobs. By using the receding horizon principle
we use this available information past and only consider a limited number of
future tasks. This reduces the number of scheduling variables to be optimized,
which implies a lower computational burden. A too long computation time
can cancel out the time gained by optimizing the schedule, or even deteriorate
the total solution.

Apart from the MPC methodology to control SMPL system [49,50] one
can also using residuation to obtain an appropriate schedule [3].

In this paper we aim for predictive operational scheduling, which means
that based on observations of the system events we can reschedule (reroute,
resynchronize, and reorder) the jobs of the system to optimize the performance.
This means that in every iteration the optimization has to be done in real time
using the available information of the past jobs (accumulated in the state of
the SMPL system).

Consider the SMPL system of (19) and let t be the present time instant.
Now we like to compute the optimal future control actions. Define the actual
current cycle k as follows:

k = max
κ

{ κ | x(κ− 1) ≤ t} (20)

This means that x(κ) ≤ t for κ ≤ k − 1, so these states are all known at time
t. Note that parts of the states x(κ) ≤ t for κ ≥ k may also be known. Define
the set Xt such that for all pairs (i, j) ∈ Xt we have xi(k+ j) = xpast

i (k+ j) ≤
t. Apart from the known states also specific scheduling variables and input
variables are fixed at time t. Therefore, define the set Vt such that for all pairs
(i, j) ∈ Vt, vi(k + j) = vpasti (k + j) is fixed at time t, and likewise define the
set Ut such that for all pairs (i, j) ∈ Ut, ui(k+ j) = upast

i (k+ j) ≤ t is fixed at
time t.

The optimization problem

The MPS problem can now be formulated as finding the optimal future sig-
nal (v(k; t), u(k; t)), j = 0, . . . , Np − 1 that solves the following optimization
problem for cycle k and time instant t:

min
(v(k+j;t),u(k+j;t),x(k+j;t)), j=0,...,Np−1

J(k; t) (21)
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subject to

x(k + j; t) = A0(v(k + j; t); t)⊗ x(k + j; t)

⊕A1(v(k + j; t); t)⊗ x(k + j − 1; t)

⊕B(v(k + j; t); t)⊗ u(k + j; t)⊕ r(k + j) (22)

Aµ(v(k + j; t); t) =

Ltot
⊕

ℓ=1

vℓ(k)⊗Aµ,ℓ(k) for µ = 0, 1 (23)

xi(k + j; t) = xpast
i (k + j; t) for (i, j) ∈ Xt (24)

ui(k + j; t) = upast
i (k + j; t) for (i, j) ∈ Ut (25)

vi(k + j; t) = vpasti (k + j; t) for (i, j) ∈ Vt (26)

where Np is the prediction horizon, and J(k; t) is the performance index for
cycle k at time t.

Remark 3 Note that we write x(k; t) rather than x(k), and A(v(k); t) rather
than A(v(k)). This is due to the fact that the available information depends
on time instant t, leading to a new estimate of the parameters in the system
matrices, and therefore a new optimal input sequence (u, v).

The prediction horizon Np determines how far (i.e. how many cycles) we
look into the future to optimize the schedule. The choice of Np can be seen
as a compromise between global optimality and computation time. Decreasing
(increasing) the prediction horizon will result in a shorter (longer) computation
time and a worse (better) closed-loop performance.

The performance index J(k; t) expresses a measurement of the efficiency
of the chosen control vectors v(k + j; t), j = 0, . . . , Np − 1. In some problems
the makespan (i.e. the time difference between the beginning and the end of a
sequence of jobs or tasks) will be the most important measure of performance
(i.e. for a printer or a container terminal). The smaller the makespan, the
higher the performance. For other applications (e.g. for a production system)
there is a (known) due date for the finished products and the performance
index will be equal to the penalty we have to pay for all delays. Also for a
railway system the performance index will be equal to the penalty we have to
pay for all delays with respect to a given time table (note that early departures
of trains are usually not allowed). Finally, the performance index for a legged
robot may vary from following a reference trajectory (with discrete targets at
specific time instants) to reaching a final goal as soon as possible.
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The performance index J(k; t) can usually be written as

J(k; t) = δ max
i∈n

xi(k +Np; t) +

Np−1
∑

j=0

n
∑

i=1

κj,i xi(k + j; t)

+

Np−1
∑

j=0

n
∑

i=1

λi max
(

xi(k + j; t)− xd,i(k + j) , 0
)

−

Np−1
∑

j=0

nu
∑

m=1

ρj,m um(k + j; t) +

Ltot
∑

l=1

σj,l v
♭
l (k + j; t). (27)

where

v♭l (k + j; t) =

{

0 for vl(k + j; t) = ε

1 for vl(k + j; t) = 0
(28)

is a conventional binary variable. Further δ, κj,i, λi, ρj,m, and σj,l are weighting
scalars, and nu is the number of inputs of the system. The first term of (27) is
related to the makespan over the prediction horizon (i.e. the total production
length over the next Np jobs), the second term is related to the weighted sum
of all predicted starting times, the third term is related to the delay of the
state events with respect to a specific due date signal xd(k), the fourth term
maximizes the inputs um(k+ j; t) (in manufacturing systems this corresponds
to minimizing the number of parts in the input buffers), and the final term
denotes the penalty for all changes in routing, ordering, or synchronization
during cycle k + j.

Often we like to minimize the global makespan, i.e. the total length of
the schedule. Let Ntot be the number of job cycles to be scheduled. Then the
aim will be to minimize maxi xi(k + Ntot; t). If Ntot is very big, it is usually
better to choose a prediction horizon Np ≪ Ntot, and the criterion will be to
minimize (27) where δ = 1, 0 ≤ κj,i ≪ 1, λi = 0 and 0 ≤ ρj,m ≪ 1, and
0 ≤ σj,l ≪ 1. A major advantage of a small prediction horizon Np is that the
computational complexity of the optimization problem is drastically reduced.

In other cases we like to minimize the sum of delays with respect to a due

date signal xd,i(k) i.e. max
(

xi(k+j; t)−xd,i(k+j) , 0
)

. We then have δ = 0,

0 ≤ κj,i ≪ 1, 0 ≤ λi ≤ 1 and 0 ≤ ρj,m ≪ 1, and 0 ≤ σj,l ≪ 1.

The relaxed MPS problem is defined as solving (21) subject to (23)-(26),
and the inequality constraints

x(k + j; t) ≥ A0(v(k + j; t); t)⊗ x(k + j; t)⊕A1(v(k + j; t); t)⊗ x(k + j − 1; t)

⊕B(v(k + j; t); t)⊗ u(k + j; t)⊕ r(k + j) (29)

Theorem 1 Let (x#, v#, u#) be an optimal solution of the relaxed model pre-
dictive scheduling problem with J# as the optimum. If we define x+(k + j; t)
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as follows:

x+(k + j; t) = [A0(v
#(k + j; t); t)]∗ ⊗

(

A1(v
#(k + j; t); t)⊗ x+(k + j − 1; t)

⊕B(v#(k + j; t); t)⊗ u#(k + j; t)⊕ r(k + j)
)

for j = 0, . . . , Np − 1, (30)

and x+(k − 1; t) = x(k − 1; t), then (x+, v#, u#) is a solution of the original
model predictive scheduling problem.

Proof:

Recall from (20) that x(k − 1; t) < t is completely known at time instant t.
From (30) we can derive for optimal solution (x#, v#, u#):

x#(k + j; t) ≥ [A0(v
#(k + j; t); t)]∗ ⊗

(

A1(v
#(k + j; t); t)⊗ x+(k + j − 1; t)

⊕B(v#(k + j; t); t)⊗ u#(k + j; t)⊕ r(k + j)
)

for j = 0, . . . , Np − 1,

Now assume x+(k + j − 1; t) ≤ x#(k + j − 1; t). Then we compute

x#(k + j; t) ≥[A0(v
#(k + j; t); t)]∗ ⊗

(

A1(v
#(k + j; t); t)⊗ x#(k + j − 1; t)

⊕B(v#(k + j; t); t)⊗ u#(k + j; t)⊕ r(k + j)
)

≥[A0(v
#(k + j; t); t)]∗ ⊗

(

A1(v
#(k + j; t); t)⊗ x+(k + j − 1; t)

⊕B(v#(k + j; t); t)⊗ u#(k + j; t)⊕ r(k + j)
)

The term on the right-hand side of the last inequality is equal to x+(k+ j; t),
and so we find that if x+(k + j − 1; t) ≤ x#(k + j − 1; t) then x+(k + j; t) ≤
x#(k + j; t). For j = 0 we compute

x+(k; t) = [A0(v
#(k; t); t)]∗ ⊗

(

A1(v
#(k; t); t)⊗ x(k − 1; t)

⊕B(v#(k; t); t)⊗ u#(k; t)⊕ r(k)
)

for j = 0, . . . , Np − 1,

and so x+(k; t) ≤ x#(k; t). This means that x+(k + j; t) ≤ x#(k + j; t) for all
j = 0, . . . , Np − 1.

Associate J# with the value of the cost function for the optimal solu-
tion (x#, v#, u#) and J+ with the value of the cost function for the solution
(x+, v#, u#). Note that J is a non-decreasing function in the state x. With
x+(k+ j; t) ≤ x#(k+ j; t) we find J+ ≤ J#. On the other hand, note that x+

is a feasible solution for the relaxed model predictive scheduling problem while
x∗ is an optimal solution. This means that J+ ≥ J#. Therefore, J+ = J# and
(x+, v#, u#) is a solution of the original model predictive scheduling problem.

End Proof
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Example 3 Consider the production system from Section 3 and Example 2,
and let us introduce a signal yd(k) which is a due date for the time instant at
which output event y(k) takes place. The cost criterion measures the tracking
error or tardiness of the system, which is equal to the delay between the output
y(k) and due date yd(k) if y(k) − yd(k) > 0, and zero otherwise. Now define
xd(k+j) = yd(k+j)−d5; then y(k+j; t)−yd(k+j) = x5(k+j; t)−xd,5(k+j).
Cost criterion (27) with δ = 0, κi = 0, λp = 0, p = 1, . . . , 4, λ5 = 1, 0 ≤ ρj,l ≪
1, and σj,m = 0, results in

J(k; t) =

Np−1
∑

j=0

max
(

x5(k + j; t)− xd,5(k + j) , 0
)

−

Np−1
∑

j=0

nu
∑

m=1

ρj,m um(k + j; t) (31)

Note that in this example we do not have a reference signal (i.e. r(k) = ε), so
constraints (22)-(23) boil down to the set of constraints

x1(k + j; t) = max(x1(k + j − 1; t) + d1, u1(k + j; t))

x2(k + j; t) = max(x2(k + j − 1; t) + d2, u2(k + j; t))

x3(k + j; t) = max(x3(k + j − 1; t) + d3, x1(k + j; t) + d1 + v̄(k + j; t),

x2(k + j; t) + d2 + v(k + j; t))

x4(k + j; t) = max(x4(k + j − 1; t) + d4, x1(k + j; t) + d1 + 1(k + j; t),

x2(k + j; t) + d2 + v̄(k + j; t))

x5(k + j; t) = max(x5(k + j − 1; t) + d5, x3(k + j; t) + d3, x4(k + j; t) + d4)

for j = 1, . . . Np−1. Together with constraints (23)-(26) this gives us the MPS
problem for the production system.

The mixed-integer programming problem

The MPS problem (21),(23)-(29) can be recast into a mixed-integer linear pro-
gramming (MILP) problem as follows. The scheduling parameters in the MPS
problem are either zero or minus infinity. For the actual numerical implemen-
tation the infinite value ε cannot be used. The first step will therefore be to
replace the max-plus binary variables by conventional binary variables. We
use the following approximation

vi(k; t) ≈ β (1− v♭i (k; t))

where β ≪ 0 is a very large (in absolute value) negative number and v♭(k; t) ∈
{0, 1}Ltot is a conventional binary vector. The adjoint of vi(k; t) can be ap-
proximated by

v̄i(k; t) = β v♭i (k; t)
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Let xmax ≥ maxi,j xi(k + j), then for β ≤ −xmax the solution using the
approximation and the original optimization variables will lead to the same
optimal solution.

Now consider constraint (29). This can be written as a set of constraints:

[x(k + j; t)]i ≥ [A0(β(1− v♭(k + j; t)); t)]il + [x(k + j; t)]l (32)

[x(k + j; t)]i ≥ [A1(β(1− v♭(k + j; t)); t)]il + [x(k + j − 1; t)]l (33)

[x(k + j; t)]i ≥ [r(k + j)]i (34)

for i ∈ n, l ∈ n, j = 0, . . . , Np − 1. In the absence of a reference signal, we can
drop constraint (34).

Consider cost criterion (27). Note that the first term and the second term
are linear in x̃(k; t), the fourth term is linear in ũ(k; t), and the fifth term
is linear in ṽ♭(k; t). For the third term we introduce an auxiliary variable
e(k; t) = max(x(k; t) − xd(k), 0); then minimizing the third term is equal to
minimizing

∑

j

∑

i ei(k + j; t), subject to

ei(k + j; t) ≥ x(k + j; t)− xd(k + j)
(35)

ei(k + j; t) ≥ 0

for i ∈ n, j = 0, . . . , Np − 1.
Define the vectors

x̃(k; t) =







x(k; t)
...

x(k +Np − 1; t)






, x̃d(k; t) =







xd(k; t)
...

xd(k +Np − 1; t)







ũ(k; t) =







u(k; t)
...

u(k +Np − 1; t)






, ṽ♭(k; t) =







v♭(k; t)
...

v♭(k +Np − 1; t)







ẽ(k; t) =







e(k; t)
...

e(k +Np − 1; t)






, r̃(k) =







r(k)
...

r(k +Np − 1)







Now cost criterion (21) can be rewritten as a linear cost criterion

JMILP(k) = c̄Tx x̃(k) + c̄Tv ṽ♭(k) + c̄Te ẽ(k) + c̄Tu ũ(k) (36)

and the MPS problem can be recast as the following MILP problem:

min
x̃,ẽ,ṽ♭,ũ

JMILP(k) (37)

subject to

Āx x̃(k) + Āv ṽ
♭(k) + Āe ẽ(k) + Āu ũ(k) ≤ b̄(k) (38)
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where

b̄(k) = −Ād x̃d(k)− Ār r̃(k)− Āx,past x(k − 1) + b̄0(k) (39)

In general, MILP problems are NP-hard [47]. In practice, this means that the
worst case computational complexity of a mixed integer linear programming
problem grows exponentially with the number of integer values in the prob-
lem. Nevertheless, there exist fast and reliable solvers (e.g. CPLEX, Gurobi,
XPRESS [4]) for these problems. Furthermore, the underlying scheduling prob-
lem may be not be NP-hard, and may be polynomially solvable (See also
Section 9).

Example 4 Consider the production system from Section 3 and Examples 2
and 3.

The cost criterion measures the tracking error or tardiness of the system,
which is equal to the delay between the output y(k) and due date yd(k) if
y(k)−yd(k) > 0, and zero otherwise. Define e(k+j; t) = y(k+j; t)−yd(k+j) =
x5(k+j; t)+d5−yd(k+j). Now define xd(k+j) = yd(k+j)−d5; then using cost
criterion (27) with δ = 0, κi = 0, λp = 0, p = 1, . . . , 4, λ5 = 1, 0 ≤ ρj,l ≪ 1,
and σj,m = 0, results in

J(k; t) =

Np−1
∑

j=0

e(k + j; t)−

Np−1
∑

j=0

nu
∑

m=1

ρj,m um(k + j; t) (40)

with constraints

e(k + j; t) ≥ x5(k + j; t) + d5 − yd,5(k + j)

e(k + j; t) ≥ 0

for j = 1, . . . Np−1. Note that cost criterion (40) is of the linear form (36). The
constraints can be rewritten in the linear form (38)–(39). This means that the
MPS problem for the production system can be recast as an MILP problem.

8 REPARAMETERIZING THE MILP

In this section we will discuss the reparametrization of the binary optimization
variables of the MILP. The goal is to reduce the number of binary variables
in the MILP. The complexity in MILP depends on, among other things, the
number of binary variables and the number of constraints. Based on this ex-
ponential behavior, the number of binary variables in a MILP is often used
as an indicator of the computational difficulty. If we can reduce the number
of binary parameters without adding too many constraints, the computation
of the MILP may well be reduced. However, the final computational benefits
depends on how the MILP optimization problem (21)–(21) is solved, and may
depend on the choice of branch and bound algorithm [6,53]. We start with the
general idea of reparametrization and then look at two specific cases, namely
routing and ordering.
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8.1 Reparametrization with max-plus functions

We start with the definition of a max-plus function:

Definition 6 A scalar max-plus function f : R
n
ε → Rε is defined by the

recursive grammar

f(x) := xi

∣

∣ max(fk(x), fl(x))
∣

∣ fk(x) + fl(x)
∣

∣ α , (41)

with i ∈ {1, . . . , n}, α ∈ Rε, and where fk : Rn
ε → Rε, fl : R

n
ε → Rε are again

scalar max-plus functions; the symbol | stands for “or”, and max is performed
entrywise.

A vector function f : R
n
ε → R

m
ε is an max-plus function if all entries are

scalar max-plus functions. A max-plus linear function is an max-plus function.
Furthermore from the above definition it is immediately clear that the max-
plus product of two max-plus functions is again an max-plus function.

Theorem 2 A scalar max-plus function f : Rn
ε → Rε can be rewritten in a

canonical form

f = max
i=1,...,L

(Γix+ δi)

for some integer L, matrix Γ and vector δ, and where Γi stand for the ith row
of Γ .

Proof:

This theorem is a special case of Theorem 3.1 in [17].

End Proof

Introduce a max-plus function f : BLred
ε → B

Ltot
ε with Lred < Ltot and let

v(k + j; t) = f(θ(k + j; t)) (42)

Now we substitute (42) in constraint (29). We obtain:

x(k + j; t) ≥

A0(f(θ(k + j; t)); t)⊗ x(k + j; t)

⊕A1(f(θ(k + j; t)); t)⊗ x(k + j − 1; t)

⊕B(f(θ(k + j; t)); t)⊗ u(k + j; t)⊕ r(k + j) (43)
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with

A0(f(θ(k + j; t)); t) =

Ltot
⊕

ℓ=1

vℓ(k)⊗A0,ℓ(k)

=

Ltot
⊕

ℓ=1

fℓ(θ(k + j; t))⊗A0,ℓ(k)

A1(f(θ(k + j; t)); t) =

Ltot
⊕

ℓ=1

vℓ(k)⊗A1,ℓ(k)

=

Ltot
⊕

ℓ=1

fℓ(θ(k + j; t))⊗A1,ℓ(k)

B(f(θ(k + j; t)); t) =

Ltot
⊕

ℓ=1

vℓ(k)⊗Bℓ(k)

=

Ltot
⊕

ℓ=1

fℓ(θ(k + j; t))⊗Bℓ(k)

Note that every entry of Aµ(f(θ(k+ j; t)); t), µ = 0, 1, and B(f(θ(k+ j; t)); t)
is a max-plus function in the variable θ and so the right-hand side of (43) is a
max-plus function in θ, x, u, and r.

Next we introduce conventional binary variables θ♭(k + j; t) similar to the
previous section, so

θi(k; t) ≈ β (1− θ♭i (k; t))

We can now find matrices Ā(k + j; t) such (43) can be rewritten as

x(k + j; t) ≥ Ā(k + j; t) ·









x(k + j; t)
r(k + j)

θ♭(k + j; t)
u(k + j; t)









and so in the implementation constraint (43) results in a set of linear con-
straints.

To give an idea how to find an appropriate mapping v(k + j; t) = f(θ(k +
j; t)) we will discuss reparametrization of the route scheduling variables and
the order scheduling variables.
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8.2 Reparametrization of the routing variables

We start by looking at the routing of the jobs. From (9) and (10) we know the
routing constraints can be written as

x(k) ≥

L
⊕

ℓ=1

wℓ ⊗Ajob
0,ℓ (k)⊗ x(k)

⊕
L
⊕

ℓ=1

wℓ ⊗Ajob
1,ℓ (k)⊗ x(k − 1) (44)

Now let 2m0−1 < L ≤ 2mo . Then we can parameterize the variables (w1, . . . , wL)
bymmax-plus binary variables (η1, . . . , ηm0

) and their adjoint values (η̄1, . . . , η̄m0
).

For example if L = 8 we can parameterize w1, . . . , w8 as follows:

























w1(k) = η̄1(k)⊗ η̄2(k)⊗ η̄3(k)
w2(k) = η̄1(k)⊗ η̄2(k)⊗ η3(k)
w3(k) = η̄1(k)⊗ η2(k)⊗ η̄3(k)
w4(k) = η̄1(k)⊗ η2(k)⊗ η3(k)
w5(k) = η1(k)⊗ η̄2(k)⊗ η̄3(k)
w6(k) = η1(k)⊗ η̄2(k)⊗ η3(k)
w7(k) = η1(k)⊗ η2(k)⊗ η̄3(k)
w8(k) = η1(k)⊗ η2(k)⊗ η3(k)

(45)

In general we can define a max-plus function f such that wi(k) = fi(η(k)). By
substitution of w(k) = f(η(k)) in (10) the number of variables can be reduced.
Instead of Ajob

µ (w(k)) we will use the notation Ajob
µ (η(k)).

Note that by the reparametrization the number of scheduling variables is
reduced from L to m0 = ⌈log2 L⌉. The difference between L and m0 will grow
rapidly with increasing L, as can be seen in Table 2.

Table 2 The number of route scheduling variables (L) and the reduced number of variables
(m0)

L m0 L m0

2 1 10 4
3 2 15 4
5 3 30 5

Remark 4 If L is not an exact power of 2, there will be more permutations
of ηi(k) and η̄i(k) than necessary. In that case we can introduce a constraint
on ηi(k) and η̄i(k) to describe the allowed set. Let η♭i (k) be the conventional
binary variable associated with the max-plus binary variable ηi(k). Then this
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constraint can be defined as
m0
∑

i=1

2m0−i η♭i ≤ L− 1.

For example, for L = 10, and so m0 = 4, we add the constraint:

8 η♭1 + 4η♭2 + 2η♭3 + η♭4 ≤ 9

8.3 Reparametrization of the ordering variables

Next we consider the operation ordering of the p jobs on a resource. From (12)
we know that the ordering constraints can be written as

x(k) ≥ Aord
0 (η(k), z0(k))⊗ x(k)⊕Aord

1 (η(k), z1(k))⊗ x(k − 1) (46)

The vector zµ(k), µ = 0, 1 consists of the entries of matrix Zµ(k). Note
that if operation i in cycle k is scheduled after operation j, so [Zµ(k)]i,j = 0,
then automatically operation j in cycle k is scheduled before operation i, so
[Zµ(k)]i,j = ε. In general we will find that [Zµ(k)]i,j = [Zµ(k)]i,j for i 6= j and

[Zµ(k)]i,i = ε. This means that for scheduling p operations the vector zµ(k) will
have dimension m1 = p(p−1)/2. Note that certain values of zµ(k) will lead to
an infeasible schedule because of cycles in the ordering. To avoid these infeasi-
ble schedules we can define the set Z with all feasible values zµ(k). For schedul-
ing p operations on one resource we have p! possible permutations. This is also
the maximum number of elements in the set Z. Let m2 = ⌈log2 p!⌉; then we

needm binary parameters γµ(k) =
[

[γµ]1(k) . . . [γµ]m(k)
]T

to model all possi-
ble allowed values zµ(k). We can define max-plus function f : (Bε)

m1 → (Bε)
m2

such that [zµ]i(k) = [fµ]i((γµ(k)). A way to derive a concise description of the
function f can be found in [1], where a binary decision tree is used to reduce
the number of decision parameters.

Example 5 Consider an example for p = 3, where we have a matrix

Z(z0(k)) =





ε [z0]1 [z0]3
[z0]1 ε [z0]2
[z0]3 [z0]2 ε





with p(p − 1)/2 = 3 variables. We have p! = 6 feasible combinations of
([z0]1, [z0]2, [z0]3) and so m = ⌈log2 3!⌉ = 3.

Table 3 shows the permutations (last column) with the corresponding val-
ues of the entries z0 of the matrix Z0 for the ordering P (1) − P (2) − P (3).
From the table we can see that

[z0]1 = ([γ̄]0]1 ⊗ [γ̄]0]2)⊕ ([γ0]1 ⊗ [γ0]3)⊕ ([γ0]1 ⊗ [γ0]2)

[z0]2 = [γ0]2 ⊕ ([γ̄]0]1 ⊗ [γ̄]0]3)

[z0]3 = ([γ̄]0]1 ⊗ [γ̄]0]2)⊕ ([γ̄]0]1 ⊗ [γ̄]0]3)⊕ ([γ0]1 ⊗ [γ0]2)
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Table 3 Max-plus truth table and corresponding permutation

0 1 2 3 4 5 6 7
[γ0]1 ε ε ε ε 0 0 0 0
[γ0]1 ε ε 0 0 ε ε 0 0
[γ0]1 ε 0 ε 0 ε 0 ε 0
[z0]1 0 0 ε ε ε 0 0 0
[z0]2 0 ε 0 0 ε ε 0 0
[z0]3 0 0 0 ε ε ε 0 0
P (1) 1 1 2 2 3 3 * *
P (2) 2 3 1 3 1 2 * *
P (3) 3 2 3 1 2 1 * *

Subsequently, we can substitute zµ(k) = fµ((γµ(k))) into (11) and we
obtain

Aord
µ (η(k), γµ(k)) = P (η(k))⊙ Z(f(γµ(k)))⊙H(k)

Using the variables θ(k + j; t) (e.g. η2(k) or γµ(k)) has two important
advantages: we need less parameters and there are less infeasible choices for
v(k).

Remark 5 Note that for the case in Example 5 there is no reduction because
for p = 3 we find m1 = 3 and m2 = 3. For higher values of p however the
difference between m1 and m2 grows very rapidly, as can be seen in Table 4

Table 4 The number of operations (p), the nominal number of ordering scheduling variables
(m1), and the reduced number of variables (m2)

p m1 m2 p m1 m2

2 1 1 10 45 22
3 3 3 15 105 41
5 10 7 30 435 108

8.4 Parameter reduction

We may conclude that for every job the reduction of the number of routing
variables is ⌈log2 L⌉ where L is the number of routes for that particular job and
that for every resource the reduction of routing variables is (⌈log2 p!⌉)/p(p−1)
where p is the number of jobs for that particular resource. Note that in both
cases the number of binary variables decreases in a logarithmic way. This is
often beneficial for the optimization.
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9 Conclusions

In this paper we have shown that various semi-cyclic discrete-event systems
can be modeled as switching max-plus linear (SMPL) systems and that dy-
namic graphs are a useful tool in the modeling and analysis process. The
SMPL model can be applied in the context of scheduling. This can be done by
formulating the model predictive scheduling problem, which can be recast as a
mixed-integer linear program. We have shown how the number of optimization
parameters can be reduced in a logarithmic way, which is often beneficial for
the optimization.

As was already stated in Section 7, MILP problems are NP-hard [47].
However the underlying scheduling problem is not always NP-hard, and may
be polynomially solvable. In future research we will continue our study on
the computational complexity of the scheduling problem defined in this paper.
Further we will do an in-depth investigation on how to accurately characterize
the effect of the reparametrization of Section 8 on the computation time.
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mal gait switching for legged locomotion. In Proceedings of the International Conference
on Intelligent Robots and Systems (IROS-2011), pages 2729–2734, San Francisco, USA,
September 2011.

31. B. Kersbergen, J. Rudan, T. van den Boom, and B. De Schutter. Towards railway
traffic management using switching max-plus-linear systems - structure analysis and
rescheduling. Discrete Event Dynamic Systems: Theory and Applications, 26(2):183–
223, 2016.

32. H. Ku and I.A. Karimi. Scheduling in serial multiproduct batch processes with finite
interstage storage: A mixed integer linear programming formulation. Industrial & En-
gineering Chemistry Research, 27:1840–1848, 1988.

33. S. Lahaye, J.-L. Boimond, and J.-L. Ferrier. Just-in-time control of time-varying dis-
crete event dynamic systems in (max,+) algebra. International Journal of Production
Research, 46(19):5337–5348, October 2008.

34. J.Y-T. Leung, editor. Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. CRC Press, Inc, Boca Raton, FL, USA, 2004.



38 Ton J.J. van den Boom, Marenne van den Muijsenberg, and Bart De Schutter

35. L. Libeaut and J.J. Loiseau. Admissible initial conditions and control of timed event
graphs. In Proceedings of the 34th IEEE Conference on Decision and Control, pages
2011–2016, New Orleans, Louisiana, December 1995.

36. G. Lopes, B. Kersbergen, T.J.J. van den Boom, B.D̃e Schutter, and R. Babuška. Model-
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