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Abstract

In this paper a new multi-class urban traffic model is proposed based on the features of a single-
class urban traffic model and the characteristics of a multi-class freeway traffic model. The
heterogeneous traffic flow is represented using the concept of Passenger Car Equivalent (PCE)
for congestion and free-flow regimes separately. The proposed multi-class urban traffic model is
intended for model-based control applications. The single-class model and the proposed multi-
class traffic model are compared with microscopic simulation data obtained using the SUMO
(Simulation of Urban MObility) open-source simulator. The two models are calibrated through
optimal parameter estimation and their performance is evaluated and compared by taking into
account the error index between the models and the simulation data. Simulation results show
that the multi-class model gives a significantly better fit.

Keywords: Urban traffic network, macroscopic traffic model, Passenger Car

Equivalent (PCE), heterogeneous traffic, traffic simulation.

1. Introduction

Nowadays, modern major cities have problems resulting from their accelerated and often uncon-
trolled growth. One of these are traffic jams, which affect mobility and have adverse environ-
mental, social, and economic impacts. Efficient management of the traffic network can reduce
congestion and its associated consequences such as emission of polluting gases, fuel consumption,
noise, accident rates, and waiting times.
In order to solve these mobility problems, it is important to implement efficient and effective
online (monitoring and control) and offline (planning of new roads, government policy measures)
management strategies for the urban traffic network. Usually, these strategies require an urban
traffic representation, i.e., a dynamic mathematical model that describes the evolution of the
traffic flows in the system. However, urban traffic is not homogeneous as there are several types
of vehicles on the road: cars, sport utility vehicles (SUVs), vans, buses, trucks, and motorcycles,
with their own characteristics such as engine power, weight, and size. As a result, the vehicle flow
is a composition of different types of vehicles interacting with each other and their characteristics
should be represented by the mathematical model. In addition, this model should have a high
accuracy and, as it is used for on-line model-based applications, a low computational burden.
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In general, the urban traffic models used in model-based controllers (Diakaki et al., 2000; Tetta-
manti et al., 2008; de Oliveira and Camponogara, 2010; Geroliminis et al., 2013; Tettamanti et al.,
2014; Diakaki et al., 2002; Viti and van Zuylen, 2004; Keyvan-Ekbatani et al., 2015; Lu et al.,
2017; van den Berg et al., 2003) and monitoring applications (Tiriolo et al., 2014; Adacher and
Tiriolo, 2015) describe the vehicles using one generic class (average class) of vehicles, which does
not allow to identify the particular dynamics of the different vehicle types. Nevertheless, multiple
classes of vehicles have been included in some macroscopic models based on the generalization
of the cell transmission model (Tiaprasert et al., 2017; Tuerprasert and Aswakul, 2010), in con-
tinuous models based on gas-kinetic and fluid dynamics modeling principles (Hoogendoorn and
Bovy, 2000; Gashaw et al., 2018), and in cellular automata models (Meng et al., 2007; Zhao et al.,
2008; Chen et al., 2013; Meng and Weng, 2011). However, these models are not adequate for
real-time implementation of optimal control strategies due to their high computational burden.
On the other hand, most papers about multi-class traffic modeling focus on highways (Pasquale
et al., 2017; van Lint et al., 2008; Dhamaniya and Chandra, 2013; Liu et al., 2017; Wong and
Wong, 2002; Logghe and Immers, 2008). Particularly, van Lint et al. (2008); Liu et al. (2017)
describe the relation between vehicles for different congestion regimes on highways. On the other
hand, different vehicle classes have been represented based on the Passenger Car Equivalent/Unit
(PCE) concept which relates any vehicle class with a standard vehicle. Since the first definition
of PCE given in the Highway Capacity Manual (TRB, 1950) that explains the effect of buses and
heavy traffic with respect to other vehicles. Several studies have been carried out on adjusting
the values of different classes of vehicles in PCE for different road geometries, congestion levels,
and control conditions (traffic signals). The calculation methods for the PCE values mainly
depend on the variables that are considered (Giuffrè et al., 2015; Shalini and Kumar, 2014),
i.e., the measured or estimated variables such as flow, density, headway, queue discharge flow,
speed, delay, capacity ratio, and travel time. However, taking into account that variables such as
maximum acceleration, maximum speed, emissions, noise, fuel consumption, vehicle occupancy,
etc. are related to the vehicle class, the equivalences given in the PCE values do not always are
correct, e.g., 1motorcycle = 0.3 × PCE could be a good approximation for traffic models but not
for noise models. Since explicit models of various classes have been developed for highways, our
contribution in this paper is the development of a macroscopic urban traffic model that considers
different classes of vehicles separately. Based on van Lint et al. (2008); Liu et al. (2017) and on a
macroscopic urban traffic model for single-class vehicles (the S model) (Lin et al., 2012), we will
propose in this paper a new multi-class urban traffic model that is also suited for model-based
optimization-based control applications.
This paper is organized as follows: in Section 2 the single-class S model is presented. Next, in
Section 3 the new multi-class S model is proposed. Then, in Section 4 parameter estimation for
the single-class and the multi-class S model is discussed. After that, in Section 5 a case study is
presented that compares the performance of the multi-class and the single-class S model using a
microscopic simulator (SUMO) as reference. Finally, in Section 6 conclusions and future research
are presented.

2. Single-Class S Model

The S model is a macroscopic urban traffic model that was developed for single-class traffic (Lin
et al., 2012). This model was based on the BLX model (Lin and Xi, 2008; Lin et al., 2009) and
the Berg model (van den Berg et al., 2003), reducing the computational burden without overly
decreasing the degree of accuracy of representation, which is important for real-time control
applications. In order to describe the S model it is necessary take into account some definitions.
As shown in Figure 1 the urban road between the intersections u and d is called link (u, d). For
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every time step k two state variables are considered: nu,d(k) and qu,d,o(k), which represent the
number of vehicles in the link (u, d) at time step k and the number of vehicles at time step k
waiting in the queue in link (u, d) that have downstream intersection o as their next destination.
For each intersection u and d the simulation time steps are counted based on the cycle time values
cu and cd respectively, i.e., simulation time steps can be different for different intersections.

Figure 1: Two interconnected intersections in an urban traffic network.

The inflow αenter
u,d (k) into link (u, d) and the outflow αleave

u,d (k) from link (u, d) in the period
[k cd, (k + 1) cd] are given by the sum of flows over incoming and outgoing links as follows:

αenter
u,d (k) =

∑
i∈Iu,d

αleave
i,u,d (k), (1)

αleave
u,d (k) =

∑
o∈Ou,d

αleave
u,d,o(k), (2)

where Ou,d and Iu,d are the set of downstream and upstream intersections from link (u, d)
respectively. Moreover, the outflow towards downstream intersection o is calculated as:

αleave
u,d,o(k) = min

{
µu,d,o gu,d,o(k)

cd
,
qu,d,o(k)

cd
+ αarriv

u,d (k),
βu,d,o(k)(Cd,o − nd,o(k))∑

i∈Id,o
βi,d,o(k)cd

}
, (3)

where µu,d,o, gu,d,o(k), βu,d,o(k), nd,o(k), and Cd,o represent the maximum outflow from link
(u, d) to downstream intersection o, the green time of the traffic light for the traffic in link (u, d)
going to downstream intersection o at time step k, the split ratio of vehicles going to destination
o, the number of vehicles in link (d, o) at time step k, and the capacity of link (d, o) respectively.
Furthermore, αarriv

u,d (k) is the arriving flow at the tail of the queue, which is obtained through a

variable delay σu,d(k)cd + γu,d(k) for
1 σu,d(k) ≤ 1 (Jamshidnejad et al., 2018b), as follows :

αarriv
u,d (k) =

cd − γu,d(k)

cd
αenter
u,d (k − σu,d(k)) +

γu,d(k − 1)

cd
αenter
u,d (k − σu,d(k − 1)− 1), (4)

with

1The case σu,d(k) > 1 is more complex and is given in (Jamshidnejad et al., 2018a).
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σu,d(k) = floor

{
(Cu,d − qu,d(k)) lveh

N lane
u,d vfreeu,d cd

}
, (5)

γu,d(k) = rem

{
(Cu,d − qu,d(k)) lveh

N lane
u,d vfreeu,d

, cd

}
, (6)

where lveh, N
lane
u,d , and vfreeu,d represent the average vehicle length, the number of lanes in link

(u, d), and the free-flow speed in link (u, d). Further, the remainder function is represented in
(6) as “rem”. The arrival flow at the tail of each queue is:

αarriv
u,d,o(k) = βu,d,o(k)α

arriv
u,d (k). (7)

The states of the S model are defined through the following vehicle balances:

nu,d(k + 1) = nu,d(k) +
(
αenter
u,d (k)− αleave

u,d (k)
)
cd, (8)

qu,d,o(k + 1) = qu,d,o(k) +
(
αarriv
u,d,o(k)− αleave

u,d,o(k)
)
cd, (9)

where

qu,d(k) =
∑

o∈Ou,d

qu,d,o(k). (10)

When the cycles times cu and cd are not the same, it is necessary to synchronize the flow rates
because the simulation steps for the intersections u (ku) and d (kd) are different. The leaving flow
rate from intersection u can be recast into the entering flow to intersection d, by transforming
the leaving flow in continuous time as:

αleave,cont
i,u,d (t) = αleave

i,u,d (ku), ku cu ≤ t < (ku + 1) cu. (11)

Then, the average entering flow rate in time step kd can be calculated as (see also (Jamshidnejad
et al., 2018b)):

αenter
i,u,d (kd) =

∫ (kd+1)cd

kdcd

αleave,cont
i,u,d (t)

cd
dt. (12)

The S model described by (1)–(12) represents the behavior of single-class vehicles, i.e., this
model assumes vehicles with the same parameters: the average length of the vehicles and the
free-flow speed. Previously, the S model has been extended in order to consider origin queues and
emissions (Jamshidnejad et al., 2018b; Lin et al., 2013), but these extensions of the model also
considered a single class of vehicles. However, real urban traffic networks contain different types
of vehicles, so in reality there is non-homogeneous traffic. In the next section, a new extension
of the S model to multi-class traffic is proposed.
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3. Multi-Class S Model

In order to explain the multi-class S model, consider two interconnected intersections (u and d)
as shown in Figure 1 occupied by several vehicles classes, indexed by c, where C is the number of
vehicle classes. There can be several types of vehicles in an urban traffic network that can have
different sizes, speeds, engines power, etc. In general, these different types of vehicles generate a
non-homogeneous occupancy of the urban road, as illustrated in Figure 2.

Flow

Figure 2: Non-homogeneous occupancy in an urban traffic network.

In order to describe the multi-class S model, passenger car equivalents (PCE) (HCM 1650) are
introduced, which are used to represent all other classes c with respect to a representative vehicle
class r. Then, based on van Lint et al. (2008) and Liu et al. (2017), the PCE (θu,d,c) in link
(u, d) for vehicle class c is given by:

θu,d,c =
su,d,c + th,u,d,c · vu,d,c
su,d,r + th,u,d,r · vu,d,r

(13)

where r, su,d,c, th,u,d,c, and vu,d,c represent the index of the reference class, the gross stopping
distance of vehicle class c (i.e., the length of the vehicle including the vehicle separation with the
preceding vehicle), the time headway (i.e., the minimum temporal space between two vehicles)
of vehicle class c, and the speed of vehicle class c in link (u, d).

CongestionFree flow

Figure 3: Free-flow and congestion regimes

In urban traffic there are mainly two regimes: free flow and congestion as illustrated in Figure 3.
Vehicles are in free flow when the vehicular density in the link is small enough and the interactions
between vehicles are negligible. In this regime, the vehicles are moving at the free-flow speed,
which is the minimum of the maximal vehicle speed and the maximal speed allowed in the
link (Kerner, 2009). On the other hand, the congestion regime is defined as “a state of traffic in
which the average speed is lower than the minimum average speed that is still possible in free flow”
(Kerner, 2009). For urban traffic networks, the congestion regime and the traffic lights generate
vehicular queues. The free-flow and the congestion regimes have their own characteristics, since
vehicles from different vehicle classes in free flow could have different speeds, while when vehicles
are in the queue, they have the same speed regardless of which class they belong to. Taking into
account (13) the PCE of the vehicles of class c in link (u, d) in the free-flow regime is given by:

θfreeu,d,c =
su,d,c + th,u,d,c · vfreeu,d,c

su,d,r + th,u,d,r · vfreeu,d,r

, (14)
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where vfreeu,d,c is the free-flow speed of the vehicles of class c. On the other hand, the PCE of the
vehicles of class c in link (u, d) in the queue is:

θqueueu,d,c =
su,d,c + th,u,d,c · vqueueu,d,c

su,d,r + th,u,d,r · vqueueu,d,r

, (15)

where vqueueu,d,c is the queue speed of the vehicles of class c. Assuming that vqueueu,d,c = vqueueu,d,r and

that the vehicles in the queue regime are stopped (vqueueu,d,c = vqueueu,d,r ≈ 0), (15) can be
rewritten as:

θqueueu,d,c ≈ su,d,c
su,d,r

. (16)

The total number of passenger car equivalents in the link (u, d) at time step k is:

ntotal
PCE,u,d(k) = nfree

PCE,u,d(k) + nqueue
PCE,u,d(k), (17)

with

nfree
PCE,u,d(k) =

∑
c∈C

θfreeu,d,c n
free
u,d,c(k) (18)

and

nqueue
PCE,u,d(k) =

∑
c∈C

θqueueu,d,c

 ∑
o∈Ou,d

nqueue
u,d,o,c(k)

 (19)

where nfree
u,d,c(k) and nqueue

u,d,o,c(k) are the number of vehicles of class c in link (u, d) at time step
k in free-flow regime and the number of vehicles of class c in the queue waiting to turn to o
respectively. These two variables are considered states of the system and they are updated as
follows:

nfree
u,d,c(k + 1) = nfree

u,d,c(k) +
(
αenter
u,d,c(k)− αarriv

u,d,c(k)
)
cd, (20)

nqueue
u,d,o,c(k + 1) = nqueue

u,d,o,c(k) +
(
αarriv
u,d,o,c(k)− αleave

u,d,o,c(k)
)
cd, (21)

where αenter
u,d,c(k), α

arriv
u,d,c(k), α

arriv
u,d,o,c(k), and αleave

u,d,o,c(k) are variables related with vehicles class c
of link (u, d); they indicate inflow, total arriving flow at the tail of the queue, arriving flow, and
outflow from the queue turning towards intersection o respectively. The inflow and outflow are
described by:

αenter
u,d,c(k) =

∑
i∈Iu,d

αleave
i,u,d,c(k), (22)

αarriv
u,d,c(k) =

∑
o∈Ou,d

αarriv
u,d,o,c(k), (23)

with

αleave
u,d,o,c(k) = αleave

PCE,u,d,o(k)


θqueueu,d,c

(
nqueue
u,d,o,c(k)

cd
+ αarriv

u,d,o,c(k)

)
nqueue
PCE,u,d(k)

cd
+ αarriv

PCE,u,d,o(k)

 , (24)
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where αarriv
PCE,u,d,o(k) represents the arriving PCE flow at the tail of the queue given by:

αarriv
PCE,u,d,o(k) =

∑
c∈C

θqueueu,d,c αarriv
u,d,o,c(k). (25)

The arriving flow of vehicles class c at the tail of the queue is:

αarriv
u,d,o,c(k) = βu,d,o,c(k)α

arriv
u,d,c(k), (26)

where βu,d,o,c is the split ratio of vehicles of class c in link (u, d) going to destination o. Moreover,

αleave
PCE,u,d,o(k) = min

{
µPCE,u,d,o gu,d,o(k)

cd
,
nqueue
PCE,u,d(k)

cd
+ αarriv

PCE,u,d,o(k),

βu,d,o(k)
(
CPCE,d,o − ntotal

PCE,d,o(k)
)

∑
i∈Id,o

βi,d,o(k)cd

 . (27)

The flow of vehicles class c that enters the link (u, d) arrives at the tail of the queue after the
time σu,d,c(k)cd + γu,d,c(k) with σu,d(k) ≤ 1 as follows2 (Jamshidnejad et al., 2018b):

αarriv
u,d,c(k) =

cd − γu,d,c(k)

cd
αenter
u,d,c(k − σu,d,c(k)) +

γu,d,c(k − 1)

cd
αenter
u,d,c(k − σu,d,c(k − 1)− 1), (28)

with

σu,d,c(k) = floor


(
CPCE,u,d − nqueue

PCE,u,d(k)
)
lveh,r

N lane
u,d vfreeu,d,c cd

 , (29)

γu,d,c(k) = rem


(
CPCE,u,d − nqueue

PCE,u,d(k)
)
lveh,r

N lane
u,d vfreeu,d,c

, cd

 . (30)

In order to synchronize the intersections u and d when the cycle time values cu and cd and thus
also the simulation steps ku and kd are different, the leaving flow rate from intersection u is
recast into the entering flow to intersection d, by transforming the leaving flow of vehicles class
c in continuous time as:

αleave,cont
i,u,d,c (t) = αleave

i,u,d,c(ku), ku cu ≤ t < (ku + 1) cu. (31)

Then the average entering flow rate of vehicles class c in time step kd can be calculated as:

αenter
i,u,d,c(kd) =

∫ (kd+1)cd

kdcd

αleave,cont
i,u,d,c (t)

cd
dt. (32)

The S multi-class model is presented by (14)–(32), and this model makes it possible to describe
traffic flows involving several vehicle classes in an urban traffic network.

2A more refined model is given in (Jamshidnejad et al., 2018a).
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4. Parameter estimation

The single-class S model and the multi-class S model described in Sections 2 and 3 have unknown
parameters, which have to be measured or estimated. However, sometimes it is not possible
to obtain a direct measure of these parameters due to the lack of sensors or due to physical
limitations. As an alternative, this section presents a parameter estimation approach based on
optimization, where the error is computed by comparing the estimated and measured states at
each time step for the entire simulation. For this purpose, a vector ϕ is defined as the parameter
vector, which is different for the multi-class S model and the single-class S model. The parameter
estimations of each model are presented below.

4.1. Single-class Case

Considering an urban traffic network with a set of links L and the single-class S model described
in Section 2, it is possible to formulate the network model as a general non-linear model-based
system as follows:

x̂(k + 1) = f(x̂(k), u(k),ϕ), (33)

where f(·), x̂(k), u(k), and ϕ represent the dynamic function of the estimated states, the vec-
tor of estimated states, the input vector, and the parameter vector. The estimated state vector3

x̂(k) = (n̂u,d(k), q̂u,d,o(k))
T

(u,d)∈L, o∈Du,d
, contains the number of estimated vehicles and the num-

ber of estimated vehicles waiting in the queue of the set of links L, where Du,d is the set of down-
stream intersections of link (u, d). The input vector is u(k) = (gu,d,o(k), d(k), βu,d,o(k))

T

(u,d)∈L, o∈Du,d
,

where d(k) is the demand for origin links of the set of links L in the period [k cd, (k+1) cd]. The
parameter vector ϕ = (µu,d,o, Cu,d, lveh, v

free
u,d )

T

(u,d)∈L, o∈Du,d
, represents the set of unknown pa-

rameters of the set of links L. On the other hand, x(k) = (nu,d(k), qu,d,o(k))
T

(u,d)∈L, o∈Du,d
, is

the vector of measured states of vehicles in the set of links L. Further, the vector of estimated
states for the set of links L of the traffic network for Ns simulation steps is:

x̂ =
(
x̂(k)

)T
k=1...Ns

(34)

where x̂(0) is known. In addition, the vector of measured states and the vector of inputs of the
whole network are known and can be written as:

x =
(
x(k)

)T
k=1...Ns

(35)

u =
(
u(k)

)T
k=0...Ns−1

(36)

For the estimation, the objective function is defined by the quadratic error between the measured
and estimated states as follows:

J(x̂ ,x ,u ,ϕ) =

Ns∑
j=1

∥x̂(j)− x(j)∥2

∥x(j)∥2 + 1
(37)

Finally, the optimization problem is defined as:

3We use the notation v = (ai)i∈N with N = {i1, i2, . . . , im} to define a row vector v = [ai1 ai2 . . . aim ].
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min
ϕ

J(x̂ ,x ,u ,ϕ)

subject to:

x̂(k + 1) = f(x̂(k), u(k),ϕ),

ϕ ≥ 0,

k = 1, ..., Ns − 1, (38)

where 0 is a vector of zeros whose dimension depends on the dimension of ϕ.

4.2. Multi-class Case

The parameter estimation problem for the multi-class S model described in Section 3, can be
formulated like the one for the single-class S model, by using equations (34)–(38) and taking into
account a general non-linear system model based can be formulated as:

x̂(k + 1) = g(x̂(k), u(k),ϕ), (39)

where g(·) represents the dynamic function of the estimated states,
x̂(k) = (n̂free

u,d,c(k), n̂queue
u,d,o,c(k))

T

(u,d)∈L, o∈Du,d, c=1,...,C
is the vector of estimated states for all

vehicles classes for all links, u(k) = (gu,d,o(k), d(k), βu,d,o,c(k))
T

(u,d)∈L,o∈Du,d, c=1,...,C is the input

vector, and ϕ = (su,d,r, th,u,d,r, su,d,c, th,u,d,c, v
free
u,d,r, v

free
u,d,c, Cu,d)

T

(u,d)∈L, c=1,...,C
is the vector of

parameters for the set of links L. Further, x(k) = (nfree
u,d,c(k), nqueue

u,d,o,c(k))
T

(u,d)∈L, o∈Du,d, c=1,...,C

is the vector of measured states of vehicles of class c for the set of links L.

4.3. Solution methodology

The optimization problem formulated in (38) is, in general, a non-linear and non-convex least
squares problem. For this type of problems, there are usually many local minima; so the conver-
gence to the global minimum is not guaranteed. Thus, algorithms such as multi-start sequential
quadratic programming (Pardalos and Resende, 2002), simulated annealing (Eglese, 1990), pat-
tern search (Audet and Dennis Jr, 2007), or genetic algorithms (Davis, 1991) can be used.

5. Case study and simulation results

In order to test and compare the performance of the single-class S model and the multi-class S
model proposed in Sections 2 and 3, the urban traffic network depicted in Figure 4 is selected as
case study. The calibration of these models is possible thanks to data collected through SUMO
(Krajzewicz et al., 2012), which is a free and open source microscopic traffic simulator.
The urban traffic network shown in Figure 4 has: 8 origin-destination nodes (origins/destinations),
86 links (43 bi-directional links), and 24 internal nodes (intersections) with allowed turning di-
rections indicated by the arrows for each lane. The case study considers cars, buses, motorcycles,
and vans, which have particular characteristics, i.e., different vehicle sizes, speed, accelerations,
driving conditions, etc. For this particular network the default microscopic parameters defined
by SUMO were assumed. In addition, some physical and operating characteristics of the network
are defined as follows:

• All links have two lanes with two directions.

9



Figure 4: Urban traffic network defined for the case study

• Traffic lights have a red-amber-green configuration where the cycle time is cd = 90 s, the
green time is 42 s, the red time is 42 s, and the amber time is 3 s for each switch between
red and green. For simplicity, the green time and the red time are fixed to the same value;
then, traffic lights do not prioritize any flow direction in the intersection, keeping similar
conditions for all links.

• The flow split rate on links with two allowed turning directions is 0.5 for all vehicle classes.

• The total simulation time is equal to 3 600 s.

• For simplicity, numerical identifiers for each link (link ID) are included, as presented in
Table 1.

Origin nodes allow the inflow of vehicles into the network; as a result, the inflow to the origin
links should be measured or estimated. The demand profiles entering to the origin links are
shown in Figure 5 where demands for cars, buses, motorcycles, and vans are given in veh/h.
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Table 1: Link IDs based on the layout of Figure 4.

Link ID Link Link ID Link Link ID Link Link ID Link Link ID Link
1 (o1, o2) 18 (o3, o11) 35 (o16, o12) 52 (o19, o20) 69 (o32, o23)
2 (o2, o1) 19 (o11, o3) 36 (o13, o17) 53 (o20, o18) 70 (o24, o25)
3 (o2, o3) 20 (o5, o12) 37 (o17, o13) 54 (o20, o21) 71 (o25, o24)
4 (o3, o2) 21 (o12, o5) 38 (o14, o18) 55 (o21, o20) 72 (o25, o27)
5 (o3, o5) 22 (o6, o13) 39 (o18, o14) 56 (o21, o22) 73 (o27, o25)
6 (o5, o3) 23 (o13, o6) 40 (o15, o16) 57 (o22, o21) 74 (o27, o28)
7 (o4, o5) 24 (o9, o14) 41 (o16, o15) 58 (o22, o23) 75 (o28, o27)
8 (o5, o4) 25 (o14, o9) 42 (o17, o18) 59 (o23, o22) 76 (o28, o29)
9 (o5, o6) 26 (o10, o11) 43 (o18, o17) 60 (o19, o25) 77 (o29, o28)
10 (o6, o5) 27 (o11, o10) 44 (o15, o19) 61 (o25, o19) 78 (o29, o32)
11 (o6, o9) 28 (o11, o12) 45 (o19, o15) 62 (o20, o27) 79 (o32, o29)
12 (o9, o6) 29 (o12, o11) 46 (o16, o21) 63 (o27, o20) 80 (o32, o31)
13 (o7, o9) 30 (o13, o14) 47 (o21, o16) 64 (o21, o28) 81 (o31, o32)
14 (o9, o8) 31 (o14, o13) 48 (o17, o22) 65 (o28, o21) 82 (o27, o26)
15 (o8, o9) 32 (o10, o15) 49 (o22, o17) 66 (o22, o29) 83 (o26, o27)
16 (o2, o10) 33 (o15, o10) 50 (o18, o23) 67 (o29, o22) 84 (o32, o30)
17 (o10, o2) 34 (o12, o16) 51 (o13, o18) 68 (o23, o32) 85 (o30, o32)
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Figure 5: Vehicle demand for the origin links.

The single-class S model described by (1)–(12) and the multi-class S model described by (14)–
(32) were implemented in SciTraffic (Portilla et al., 2017), which is a macroscopic simulator
developed in Matlab®. For this purpose, it is necessary to code the explicit mathematical mod-
els in a particular SciTraffic module and build the urban traffic network using NETEDIT, a
package included in SUMO. After that, SciTraffic can automatically create the complete macro-
scopic model of the network. Moreover, to transfer real-time information between SUMO and
Matlab® TraCI4Matlab (Acosta et al., 2015) was used, which facilitates processes such as cali-
bration of the models (parameter estimation), monitoring, and control of the network. To avoid
getting stuck in a local minimum in the solution of the optimization problem (38), a sequential
and iterative procedure of multi-start sequential quadratic programming, simulated annealing,
and genetic algorithm were tested, where the initial conditions for one algorithm are given by re-
sults of the previous algorithm, e.g., the initial condition to run the simulated annealing method
is provided by the result of multi-start sequential quadratic programming. The stopping criterion
for the iterative process that uses the tree different algorithms is triggered when the change of
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the estimation objective function value is less than 0.01% respect to the previous iteration.
The performance of the multi-class model is evaluated taking into account the accuracy and
computation time. For the accuracy, the absolute error described by:

Ea =

√√√√ 1

Ns

Ns∑
j=1

(x(j)− x̂(j))
2

(40)

is used. Alternatively, the absolute error can be evaluated for each link separately where Ea
u,d,c

contains the information related to link (u, d) for vehicle class c. The absolute error of the
single-class S model and the multi-class S model with respect to the SUMO data for each link
is presented in Figures 6 and 7. Figure 6 shows the absolute error of the number of vehicles in
the traffic network for the multi-class case and the single-class case respectively, where the “x”
markers denote the mean value of the error while the lines indicate the maximum and minimum
error, i.e., the maximum and minimum deviation for each link. Since the multi-class S model
allows to differentiate between vehicle classes, it is possible to show in Figure 6a the absolute
error between this model and the SUMO data, while the single-class S model in Figure 6b shows
the aggregated error for all vehicle classes.

0 10 20 30 40 50 60 70 80
0

10

20

E
a ca

r(c
ar

s)

0 10 20 30 40 50 60 70 80
0

10

20

E
a bu

s (
bu

se
s)

0 10 20 30 40 50 60 70 80
0

10

20

E
a m

ot
o
 (

m
ot

o)

0 10 20 30 40 50 60 70 80

Link IDs

0

10

20

E
a va

n (
va

ns
)

(a) Absolute error of the number of cars, buses, motorcy-
cles, and vans for the multi-class case.
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Figure 6: Absolute error of the number of vehicles in the traffic network. (a) Multi-class case, (b) Single-class
case.

Likewise, Figure 7 shows the absolute error of the queue lengths for the multi-class case and
the single-class case. Moreover, two representative links were selected to assess in detail the
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Figure 7: Absolute error of the queue of vehicles in the traffic network. (a) Multi-class case, (b) Single-class case.

behavior of the states and the errors over time. Links 1 and 32 ((o1, o2) and (o10, o15)) were
chosen because they are an origin link and a congested link respectively. Results for link (o1, o2)
are presented in Figures 8 and 9. Figure 8a compares the number of cars, buses, motorcycles,
and vans separately on the link (o1, o2) for the SUMO data and the multi-class case. Figure 8b
compares the number of vehicles on the link (o1, o2) with the SUMO data for the single-class
case. The maximal deviation for the number of vehicles between the multi-class, the single class
and SUMO data are 7 cars and 13 vehicles respectively (see also Figure 6 for link 1).
In addition, Figure 9a compares the queue lengths of cars, buses, motorcycles, and vans for the
SUMO data and the multi-class case and Figure 9b compares the queue of vehicles for the SUMO
data and the single-class case. In the multi-class case the queue length of the multi-class case
follow those of SUMO with a deviation of up to 4 cars in the worst case while for the single-class
case the maximal deviation is equal to 7 vehicles, (see also Figure 7).
On the other hand, the link (o10, o15) is an internal link with a high occupancy; so the number of
vehicles entering this link is not measured directly but calculated by means of the single-class and
the multi-class S model that propagates the demand through the upstream links. The simulation
results for link (o10, o15) are shown in Figures 10 and 11. Figure 10b shows the comparison of
the number of vehicles in link (o10, o15) for the SUMO data and the single-class S model. From
this figure, it is evident that the single-class S model does not accurately describe the demand
peaks related to the increase in the number of buses (see Figure 5) because the single-class S
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Figure 8: Number of vehicles of link (o1, o2). (a) Multi-class case, (b) Single-class case.

model includes cars, buses, motorcycles, and vans as only one class of vehicles. From Figures
10b and 6b, it is evident that the maximum error for the number of vehicles in the links is 29.
Moreover, Figure 10a presents the number of cars, buses, motorcycles, and vans for the same
link using the multi-class S model. Here, all vehicles are represented in a better way, since the
classes are modeled separately. Also, cars, buses, motorcycles, and vans have a maximal mean
absolute error of 12 cars. Figure 11b compares the queue lengths for the single-class S model
and the SUMO data and supports the results presented in Figure 10b, since the peak demand
of buses generates queues that are not recognized by the model. A comparison between cars,
buses, motorcycles, and vans queues for the multi-class S model and the SUMO data is shown
in Figure 10a. So the link (o10, o15) is characterized by a high error for the single-class case but
a much lower error for the multi-class case.

Finally, the calculation time of SUMO, the multi-class case, and the single-class is used as a
performance index related to the computational burden. The calculation time of SUMO, the
multi-class case, and the single-class was obtained for different time instants as is shown in
Figure 12, where the computation time for each sampling time instant (with a sample interval of
90 s) is calculated. Figure 12 shows the mean time spent by the computer running the code for the
single-class S model and the multi-class S model 30 times for each sampling time instant. Each
simulation includes the required processes that generate the information shown in the figures of
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for the multi-class case.
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Figure 9: Queue lengths of link (o1, o2). (a) Multi-class case, (b) Single-class case.

this paper, i.e., the states must be saved and updated each sample time step. Simulations were
performed on a Dell Precision Rack 7910 with a Dual Intel Xeon Processor E5-2683 v4 @ 2.1GHz
(3.0GHz Turbo) and 16 cores. In Figure 12 is clear that for microscopic simulation in SUMO the
CPU time increases as the number of vehicles in the network increases. On the other hand, the
CPU time for the single-class and multi-class case does not depend on the number of vehicles
and remains close to a mean value of 0.24 s.
Although the number of states for both models is different, i.e., the number of states of the
multi-class model is C times the number of states of the single-class model, it is possible to
compare the models by calculating the mean of the absolute error (40) between the states and
the SUMO data for all states of each model, the results of which are shown in Table 2.

Table 2: Summary of the results

Model
Accuracy Computational burden (1 h)
Error (veh) Max (s) Improvement (%)

Single-class case 4.9412 0.25 86.1
Multi-class case 1.1186 0.24 86.6
SUMO Data – 1.79 –

The summarized results presented in Table 2 show that the accuracy of the multi-class case is
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Figure 10: Number of vehicles of link (o18, o14). (a) Multi-class case, (b) Single-class case.

much higher than the single class. For the absolute error, the multi-class case improves the
accuracy of the single-class case with 3.8 veh for each sampling time instant (with a sample
interval of 90 s). Regarding the computational burden, the difference of the maximum CPU time
between the multi-class case and the single-class case is marginal, with an improvement of at
least 86.1 % with respect to the calculation time spent by SUMO.

6. Conclusions and future research

In this paper, a new multi-class urban traffic model that considers different classes of vehicles
has been proposed. This model is derived from an existing single-class macroscopic model and
uses the Passenger Car Equivalent (PCE) concept. Since the single-class model does not differ-
entiate between vehicle classes, but rather assumes one generic vehicle class with average speed
and length, regardless of whether the traffic is heterogeneous or not, the multi-class model is
more accurate. Hence, when the vehicle composition is variable, the single-class model does not
provide a good representation of traffic. The performance of the multi-class and the single-class
model was compared using a case study with SUMO and it was found that the multi-class model
performs much better absolute error than the single-class model. Also, the calculation time for
the single-class and the multi-class model does not depend on the number of vehicles, however,
the calculation time of the microsimulation in SUMO increases as the number of vehicles in

16



0 500 1000 1500 2000 2500 3000 3500
0

20

40

V
eh

ic
le

s 
(c

ar
s) SUMO Data

Multi-class case

0 500 1000 1500 2000 2500 3000 3500
0

20

40

V
eh

ic
le

s 
(b

us
es

)

0 500 1000 1500 2000 2500 3000 3500
0

20

40

V
eh

ic
le

s 
(m

ot
o)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

0

20

40

V
eh

ic
le

s 
(v

an
s)

(a) Queue lengths of cars, buses, motorcycles, and vans
for the multi-class case.

0 500 1000 1500 2000 2500 3000 3500

Time (s)

0

10

20

30

40

50

60

70

V
eh

ic
le

s 
(v

eh
)

SUMO Data
Single-class case

(b) Queue lengths for the single-class case.

Figure 11: Queue lengths of link (o18, o14). (a) Multi-class case, (b) Single-class case.
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Figure 12: Comparison of the calculation time for microscopic simulation in SUMO, the single-class case, and the
multi-class case.

the network increases, which limits the implementation of real-time applications on large-scale
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scenarios. The main contribution of the multi-class model is that different classes of vehicles are
included, increasing the representation level of the network, which is useful for control applica-
tions where it is necessary to characterize the vehicle type, i.e., control schemes with priority for
certain classes of vehicles such as public transportation or monitoring of emissions discriminated
by transportation mode. Indeed, some applications such as emission monitoring require the dy-
namic discrimination of the different classes of vehicles in the network, since using only the PCE
values can cause underestimations of the emissions, i.e., the relation bus = 2.5 × PCE could be
valid to traffic flow models but not for emissions models.
As a future research, the multi-class S model could be used as a prediction model in a model-
based predictive controller (MPC), in order to prioritize transportation modes such as public
transportation and non-motorized transportation. In addition, we will consider using data from
real systems (using video analysis for vehicle classifications) for the model calibration.

7. Acknowledgments

This work was supported by COLCIENCIAS through the program “Doctorados Nacionales -
Convocatoria 647” and by SAPIECIA-ENLAZAMUNDOS 2016. A special acknowledgement to
COLCIENCIAS project: Reducción de emisiones vehiculares Mediante el modelado y gestión
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