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Abstract

This paper is concerned with the design and performance optimization of feedback controllers for state-based switch-
ing bilinear systems, where subsystems take the form of bilinear systems in different state space polyhedra. First,
by further dividing the subregions into smaller regions and designing region dependent feedback controllers in the
resulting regions, the switching bilinear systems can be transformed into corresponding switching linear systems.
Then, for these switching linear systems, by imposing contractility conditions on the Lyapunov functions, an upper
bound on the infinite horizon quadratic cost can be obtained. Optimizing this upper bound yields the controller design.
The optimization problem is formulated as an LMI optimization problem, which can be solved efficiently. Finally,
the stability of the close-loop system under the proposed controller is established step by step through a decreasing
overall Lyapunov function.
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1. INTRODUCTION

Most of the problems found in practice are normally nonlinear problems, which are usually complex. In order to
optimize or control these kind of realistic problems, the nonlinear complex systems are usually described by multiple
simple models, such as linear models, bilinear models, Markov models, statistic models, etc. Many research works
have been done to identify the individual simple models and their connections that build up the nonlinear systems
[16–18, 20–23, 26, 27].

A special kind of nonlinear system, i.e. the bilinear system, contains the sum of a linear term and a bilinear term.
Bilinear systems have been investigated a lot since the 1960s [4, 6–8, 12, 14]. It has been proved bilinear systems
have a better performance than linear systems in optimal control [15], since bilinear systems have a variable structure
due to the existence of the bilinear term. In practice, there are systems that naturally have a bilinear term with the
states multiplying the control inputs, such as in the field of sociology, biology, power systems, etc. [13, 14]. Usually,
the reason for the existence of the term is that the influence of the control input on the system depends on the current
system state.

In practice, some complex nonlinear systems can be approximated by dividing into multiple state-based bilinear
subsystems [5, 19]. In each state region, a bilinear subsystem is activated, and the bilinear subsystems switch between
each other according to the switching of the state regions. This results in a state-based switching bilinear system [3].
Developing the theory on stabilizing controllers for the state-based switching bilinear systems provides a methodology
to design controllers for systems with complex nonlinear features in practice. Inspired by this, a stabilizing controller
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design based on linear matrix inequalities (LMI) has been addressed in [11]. It should be pointed out that generally
many controllers can be designed to achieve the stabilizability of bilinear systems [24, 25], but maybe more work
needs to be done to improve the close-loop performance by utilizing the remaining degrees of freedom. For bilinear
systems, optimal control problems have attracted much attention [1, 2, 9, 14]. However, to the best knowledge of
the authors, for state-based switching bilinear systems few results exist focusing on the performance optimization of
the controller. Motivated by this, this paper is devoted to optimizing the performance of stabilizing controllers for
state-based switching bilinear systems.

To deal with the state-based switching bilinear systems, the subregions where subsystems are activated are fur-
ther divided into some multiple regions, then region-dependent controllers are designed for the resulting subregions,
which transforms the bilinear systems into linear ones. For the resulting state-based switching linear systems, the
infinite-horizon quadratic cost is difficult to calculate explicitly. To solve this problem, contractility conditions on the
Lyapunov function are used to derive an upper bound on the quadratic cost. Then instead of directly optimizing the
infinite-horizon quadratic cost, an LMI optimization problem is formulated to optimize this upper bound.

The remainder of the paper is organized as follows. In Section 2, the problem statement is given. The main results
including the transformation of the bilinear systems into linear ones and the derivation of an upper bound on the
quadratic cost are given in Section 3. In the end, a numerical example is given in Section 4 to illustrate the proposed
approach. Finally, some conclusions are drawn in Section 5.

2. PROBLEM STATEMENT

Consider a Switching Bilinear System (SBLS)

ẋ = Aix+
mi

∑
j=1

(Gi, jx+bi, j)ui, j, if x ∈ Ωi, i ∈ Λ, (1)

where Ai and Gi, j are [n×n] matrices, bi, j is an [n×1] vector, Ωi is the corresponding state space polyhedron with i∈Λ

the state space partition of Ω ⊂ Rn (∪i∈ΛΩi = Ω,Ωi ̸= /0,∀i ∈ Λ,Ωi ∪Ω j = /0,∀i, j ∈ Λ, i ̸= j), j ∈ Mi = {1, . . . ,mi},
and Ui = [ui,1 ui,2 · · ·ui,mi ]

T ∈ Rmi is an mi-dimensional control input.
In order to find the relationship between the bilinear term and the linear term, the bilinear system can be further

adapted. Since each control input ui, j is a scalar, then rank(Gi, j) = 1, so it can be expressed as the inner product of
two vectors. Then, we can write (1) as

ẋ = Aix+
mi

∑
j=1

bi, j(cT
i, jx+1)ui, j, if x ∈ Ωi, i ∈ Λ. (2)

Due to the similarity between switching bilinear systems and switching linear systems, we could define the control
inputs as

ui, j =
ki, jx

cT
i, jx+1

, if x ∈ Ωi, i ∈ Λ. (3)

so as to obtain a corresponding switching linear system (SLS) for the original switching bilinear system (SBLS), as

ẋ = Aix+
mi

∑
j=1

bi, jki, jx, if x ∈ Ωi, i ∈ Λ. (4)

Herein, the controller can be designed for the derived corresponding SLS.

3. OPTIMIZED STATE-FEEDBACK CONTROL DESIGN FOR SLSs

Instead of designing a controller for the SBLS directly, we consider designing a state-feedback controller for the
corresponding SLS of the original system. Based on the similarity between the two systems, the derived controller
can be extended to be used for the SBLS easily.
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3.1. Corresponding Switching Linear System

For switching bilinear systems, in order to design stabilizing switching division controllers for each bilinear sub-
system i ∈ Λ, we need to partition the state space polyhedron Ωi into more subregions. If for sub-bilinear system
i ∈ Λ, the control input is ui, j(i ∈ Λ, j ∈ Mi), then for each control input ui, j two state-feedback controllers should
be designed. The polyhedral partition of Ωi (i ∈ Λ) for bilinear subsystem i can be defined as {Ωi,l}i∈Λ,l∈Γi , where
∪l∈ΓiΩi,l = Ωi,Ωi,l ̸= /0,∀l ∈ Γi,Ωi,l1 ∩Ωi,l2 ̸= /0,∀l1 ̸= l2, l1, l2 ∈ Γi.

Based on the polyhedral partition of the state space and defining the equilibrium as the origin, the controller is
designed for each polyhedron Ωi,l as

Ui,l = [ui,l,1 ui,l,2 · · ·ui,l,mi ]
T, i ∈ Λ, (5)

where each control element is designed according to (3). If we substitute (3) into (2), then the bilinear terms are
eliminated, and the bilinear system in (2) becomes a switching linear system, which is the corresponding SLS of the
SBLS. In order to control the SBLS, we can first consider to design a stabilizing state-feedback controller for the
following corresponding SLS:

ẋ = (Ai +BiKi,l)x, if x ∈ Ωi,l , l ∈ Γi, i ∈ Λ, (6)

where

Bi = [bi,1 bi,2 · · ·bi,mi ],

Ki,l = [ki,l,1 ki,l,2 · · ·ki,l,mi ]
T. (7)

Therefore, by dividing the state space into more subregions, the SBLS can be adapted into the corresponding SLS.
The corresponding SLS and the SBLS are actually the same model working on different divisions of state space.

3.2. Lyapunov Functions and Boundary Constraints

Each polyhedral region Ωi,l can be described as a system of linear inequalities:

[Fi,l fi,l ]︸ ︷︷ ︸
F̄i,l

[
x
1

]
≥ 0, if x ∈ Ωi,l , (8)

and the boundary hyperplane for two neighboring regions Ωi,l and Ωi′,l′ is characterized by an equality and inequality
as

[Ψii′,ll′ ψii′,ll′ ]︸ ︷︷ ︸
Ψ̄

ii′,ll′

[
x
1

]
= 0, and [Φii′,ll′ φi′,ll′ ]︸ ︷︷ ︸

Φ̄
ii′,ll′

[
x
1

]
≥ 0,

∀ x ∈ Ωi,l ∩Ωi′,l′ . (9)

Lyapunov functions are defined for each polyhedral region Ωi,l (l ∈ Γi, i ∈ Λ) with the following format

Vi,l(x) =
[

x
1

]T [ Pi,l ⋆
sT

i,l ri,l

]
︸ ︷︷ ︸

P̄i,l

[
x
1

]
︸ ︷︷ ︸

x̄

, ∀ l ∈ Γi, i ∈ Λ,x ∈ Ωi,l , (10)

with x̄ = [x 1]T, Pi,l ∈ Rn×n a symmetric matrix, si,l an [n× 1] dimensional vector, and ri,l ∈ R. ⋆ stands for the
transpose of its symmetrical element.
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3.3. Optimized State-feedback Control for SLS
In this part, optimal switching state-feedback control laws will be designed for the SLS in (6), to asymptotically

steer any state in the feasible region to the origin, and to guarantee the minimization of a given objective function
along the system state trajectory at the same time. More related reference work could be found in [5, 10].

The following theorem gives a sufficient condition to design optimal switched state-feedback control laws for the
SLS in (6) that, to asymptotically bring the state to the origin (the equilibrium for at least one of the subsystems),
and to optimize the objective function along the system state trajectory. Since the switchings are unknown among the
subregions, and the objective function along the system state trajectory is not certain, it is not possible to explicitly
optimize the objective function along the state trajectory as

J(∞) =
∫

∞

0
[xTQJx+uTRJu]dt. (11)

Therefore, instead of optimizing the infinite objective function, we optimize the upper bound of the infinite objective
function in a minmax format, and prove the realization with LMIs in the following theorems.

In the description below, the augmented system matrices are used to describe the linear affine systems as follows:

Āi =

[
Ai 0
0 0

]
, B̄i =

[
Bi
0

]
. (12)

Theorem 1. For the optimization problem

min
u

max
x

J(∞) =
∫

∞

0
[xTQJx+uTRJu]dt

s.t. (16)− (19), (13)

if there exists a solution satisfying all the constraints, with positive definite matrices Q̄i,l , Qi,l , Ri,l , and Mi,l , then
taking the state-feedback control laws with gains as

K̄i,l = N̄i,lQ̄−1
i,l ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ̸∈ Ωi,l}, (14)

and
Ki,l = Ni,lQ−1

i,l ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ∈ Ωi,l}, (15)

asymptotically stabilizes the SLS system in (6), and guarantees the minimization of the objective function along the
state trajectory.

Proof : First, using the Schur complement for (16), and multiplying the result from the right and left side by
Q̄−1

i,l = P̄i,l , yields
P̄i,l − F̄T

i,lR
−1
i,l F̄i,l > 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ̸∈ Ωi,l}, (20)

which guarantees that the Lyapunov function on each state polyhedron is positive because of the positiveness of the
matrix Ri,l , i.e.

Vi,l > 0, if F̄i,l x̄i,l ≥ 0 and x̄i,l ̸= 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ̸∈ Ωi,l}. (21)

For the case for the subsystem containing the origin, i.e. for the polyhedron with 0 ∈ Ωi,l , the LMIs in (17) and
(18) are applied to make sure obtain a positive Lyapunov function and a negative derivative of Lyapunov function on
the region. The row and column corresponding to the augmented variable are removed here, to guarantee that the
derivative of the Lyapunov function V̇i,l would be zero only when the state x is zero.

Second, the Schur complement is applied on (18), and the obtained result is multiplied from left and the right side
by Q−1

i,l = Pi,l . With the feedback laws (14), we obtain

Pi,l(Ai +BiKi,l)+(Ai +BiKi,l)
TPi,l <−FT

i,lM
−1
i,l Fi,l −QJ −KT

i,lRJKi,l ,

∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ̸∈ Ωi,l}, (22)
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[
Q̄i,l ⋆
F̄i,lQ̄i,l Ri,l

]
> 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ̸∈ Ωi,l}, (16)

[
Qi,l ⋆
Fi,lQi,l Ri,l

]
> 0, Q̄i,l =

[
Qi,l ⋆
0 qi,l

]
> 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ∈ Ωi,l}, (17)


AiQi,l +Qi,lAT

i +BiNi,l +NT
i,lB

T
i ⋆ ⋆ ⋆

Fi,lQi,l −Mi,l 0 0
Qi,l 0 −Q−1

J 0
Ki,lQi,l 0 0 −R−1

J

< 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi}, (18)


Q̄i,l ⋆ ⋆ ⋆
Q̄i,l Q̄i′,l′ ⋆ ⋆
Ψ̄ii′,ll′Q̄i,l 0 −λii′,ll′ ⋆
Φ̄ii′,ll′Q̄i,l 0 0 −Θii′,ll′

> 0, if di, j > di′, j′ , and {Ωi,l ∩Ωi′,l′} ̸= /0, ∀i, i′ ∈ Λ, l ∈ Γi, l′ ∈ Γi′ (19)

since the parameter matrices in the objective functions (QJ and RJ) are positive definite, and Mi,l is also positive
definite; therefore it guarantees that the derivative of the Lyapunov function on each state polyhedron is negative, as

V̇i,l < 0, if Fi,lxi,l ≥ 0 and xi,l ̸= 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ̸∈ Ωi,l}. (23)

The LMI that makes sure the derivative of the Lyapunov function is negative is written in the format of (18), because
for the linear affine switching subsystems, the derivative of the affine offset is 0.

Then, we perform the Schur complement on (19) 3 times, each time with respect to the last row and column.
Similarly, we multiply the result from the right and left side by Q̄−1

i,l = P̄i,l ; and use (14), then we obtain the following
inequalities to guarantee the boundary condition:

P̄i,l − P̄i′,l′ +λ
−1
ii′,ll′Ψ̄

T
ii′,ll′Ψ̄ii′,ll′ + Φ̄

T
ii′,ll′Θ

−1
ii′,ll′Φ̄ii′,ll′ > 0,

if di, j > di′, j′ , and Ωi,l ∩Ωi′,l′ ̸= /0, ∀i, i′ ∈ Λ, l ∈ Γi, l′ ∈ Γi′ , (24)

which ensures that Vi,l ≥Vi′,l′ for all the states x̄ ∈Sii′,ll′ on the boundary of Ωi,l and Ωi′,l′ . di, j is the shortest distance
between the origin and the polyhedron Ωi, j.The augmented Q̄i,l is defined for the polyhedron Ωi,l containing the origin
in (17), to make it comparable on the boundary conditions with other polyhedron without the origin.

Because the Lyapunov functions reduce during the switchings of the regions in the state space, there is a sequence
of polyhedra in Ω, whose distances to the origin are reducing, which satisfy

dp ≥ dp−1 ≥ ·· · ≥ d1 ≥ 0, (25)

with p as the total number of polyhedron Ωi,l , ∀ i ∈ Λ, l ∈ Γi in Ω, which is corresponding to a sequence of decreasing
Lyapunov functions for all the polyhedra as

Vp(x∗p)≥Vp−1(x∗p−1)≥ ·· · ≥V1(x∗1)≥ 0, (26)

that can make the system state asymptotically converge to the origin, from an initial state x0 within any of the polyhedra
in Ω. At the same time, the upper bound of the cost function is minimized along the trajectory, to make sure the
objective function of the worst case is minimized under the uncertain switchings. Consequently, by solving the
optimization in Theorem 1, it is possible to design the optimal switched state-feedback control laws for the SLS in (6)
that, asymptotically bring the state to the origin (the equilibrium for at least one of the subsystems), and optimize the
objective function along the system state trajectory. □

In order to solve the minmax optimization problem, the upper bound of the objective function is derived to further
solve the optimization with LMIs.
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Since the objective function is

J(∞) =
∫

∞

0
[xTQJx+uTRJu]dt, (27)

and for the derived sequence of polyhedra in Ω, according to (22), we have

V̇p(x)<−xTFT
p M−1

p Fpx− xTQJx− xTKT
p RJKpx, (28)

for polyhedron Ωp. Integrating along the trajectory for Ωp on both sides of (28), yields∫ xp,e

xp,s
xTFT

p M−1
p Fpx dx+

∫ xp,e

xp,s
[xTQJx+ xTKT

p RJKpx]dx <
∫

Ωp

V̇p(x)dx, (29)

that is
Cp + Jp <Vp(xp,s)−Vp(xp,e), (30)

where xp,s and xp,e are the starting and ending states on polyhedron Ωp. For the sequence of polyhedra in Ω, we have

C1 + J1 <V1(x1,s)−V1(x1,e),

C2 + J2 <V1(x2,s)−V2(x2,e),

...
Cp + Jp <Vp(xp,s)−Vp(xp,e), (31)

where x1,s = x0. In addition, according to (19), we have

V1(x1,e)>V0(x0,s),

V0(x0,e)>V3(x3,s),

...
Vp−1(xp−1,e)>Vp(xp,s). (32)

If we sum up (31) along the switching sequence for all the polyhedra to the equilibrium, then we have

C+ J <V1(x0)−Vp(xp,e), (33)

where C is the integrating of xTFT
p M−1

p Fpx along the state trajectory, which is larger than 0 because the matrices Mp
are positive definite. Since limt→∞ Vp(xp,e) = 0, and C is positive, thus J < V1(x0), an upper bound of the objective
function is V1(x0) = xT

0 P1x0. Therefore the minmax problem can be solved by minimizing the upper bound of the
objective function with the following theorem satisfying the following constraint[

γ ⋆
x0 Q1

]
≥ 0, (34)

which guarantees xT
0 P1x0 ≤ γ .

Theorem 2. For the optimization problem

min γ

s.t. (16)− (19) and (34), (35)

if there exists a solution satisfying all the constraints (16)-(19) and (34), with positive definite matrices Q̄i,l , Qi,l , Ri,l ,
and Mi,l , then taking the state-feedback control laws with gains as

K̄i,l = N̄i,lQ̄−1
i,l ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ̸∈ Ωi,l}, (36)

and
Ki,l = Ni,lQ−1

i,l ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ∈ Ωi,l}, (37)

asymptotically stabilizes the SLS system in (6), and guarantees the minimization of the upper bound of the objective
function along the state trajectory with uncertain switchings.
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4. EXAMPLE

In this section, an example is presented to evaluate the performance of the optimal controller designed for a SBLS
based on Theorem 2.

In the example, we use the conditions presented in Theorem 2 to design state-feedback control laws optimizing
the upper bound of the infinite objective function. We directly use the SBLS model in (2) with the following vectors
and matrices:

A1 =

[
−3 1
−5 −8

]
, b1,1 =

[
1
0

]
, c1,1 =

[
1
0

]
A2 =

[
−1 −3
2 −5

]
, b2,1 =

[
0
−1

]
, c2,1 =

[
0
−1

]
QJ =

[
0.1 0
0 0.1

]
, RJ = 0.1.

There are 2 bilinear subsystems separated by x1 −x2 = 0. According to Sec. 3.1, the state space is partitioned into
4 regions with Λ = {1,2} and Γ1 = {1,2},Γ2 = {1,2}. Then, the parameters for the obtained corresponding SLS with
the format (6) are:

A1 =

[
−3 1
−5 −8

]
, B1 =

[
1
0

]
,

F1,1 =

[
1 0
−1 −1

]
, F̄1,2 =

[
−1 0 −1
−1 −1 0

]
,

Ψ̄11,12 =
[

1 0 1
]
, Φ̄11,12 =

[
0 −1 1

]
,

A2 =

[
−1 −3
2 −5

]
, B2 =

[
0
−1

]
,

F2,1 =

[
0 −1
1 1

]
, F̄2,2 =

[
0 1 −1
1 1 0

]
,

Ψ̄22,12 =
[

0 −1 1
]
, Φ̄22,12 =

[
1 0 1

]
Using the Yalmip toolbox (with the SeDuMi solver) to solve the optimization problem (i.e. the LMIs) (16)-(19) and
(34), an decreasing overall Lyapunov function is obtained as given in Fig. 1. As the overall Lyapunov function shows,
the Lyapunov function is smooth with each subregion, positive, and decreasing gradually to the origin of the state
space. In addition, the Lyapunov function is able to jump and decrease on the boundaries of the state space switchings
of the sequence of the switching state polyhedra. As a result, applying the derived Lyapunov function, the controllers
are obtained according to (3), (36) and (37), as

U1,1 =
K1,1x
x1 +1

, U1,2 =
K̄1,2x̄
x1 +1

, U1,12 = 0,

U2,1 =
K2,1x

−x2 +1
, U1,2 =

K̄2,2x̄
−x2 +1

, U2,12 = 0,

where

K1,1 = [−0.2048 0.0080], K̄1,2 = [−0.2980 0.0082 0],
K2,1 = [0.0967 −0.1556], K̄2,2 = [0.0967 −0.1556 0].

The simulation show that the designed controllers are able to steer state to the origin for different initial conditions, as
in Fig. 2 and 3.
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Figure 1: Illustration for the overall Lyapunov function
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Figure 2: The closed-loop trajectories with initial states [2 2]T and [−2 −2]T
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Figure 3: The closed-loop trajectories with initial states [2 0.5]T and [−0.5 −2]T

5. CONCLUSIONS

In practice, there are some complex nonlinear systems that can be approximated by switching bilinear systems.
Designing stabilizing controller for switching bilinear systems makes it possible to better control these kind of nonlin-
ear systems. To deal with the state-based switching bilinear systems, the subregions where subsystems are activated
are further divided into some regions utilizing the special features of bilinear systems. And then, region dependent
controllers are designed in resulting subregions, which transform the bilinear systems into linear ones. Based on the
linear property of the system, a state-feedback controller design method is proposed considering the infinite horizon
quadratic cost function to minimize the total cost along the state trajectory. By solving the series of derived LMIs,
optimized switching state-feedback control laws will be obtained for the SBLS, to asymptotically steer any state in the
feasible region to the equilibrium, and can guarantee the minimization of the upper bound of the objective function
along the system state trajectory at the same time. The numerical result shows that the designed controller is able to
stabilize the system. In the future, we will apply the proposed method in traffic flow control, and try to use it solving
real traffic problems.
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