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Abstract: We introduce a framework for studying controllability properties of discrete-event
systems modelled as switching max-plus linear systems. In this framework, we generalise the
notion of structural controllability to include the switching phenomenon. Such models provide
an additional discrete input to change the synchronisation and/or ordering constraints of the
system. In this paper, we solve the problem of assigning the throughput of the system by suitable
controller configurations. In particular, we formulate structural conditions for the existence of
controllers achieving stable stationary behaviour. We also classify the achievable throughput
under different controller configurations.
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1. INTRODUCTION

A Switching Max-Plus Linear (SMPL) system models a
discrete-event system that can switch between different
modes of operations modelled by max-plus linear state
space equations (van den Boom and De Schutter, 2006).
These equations describe the time evolution of event oc-
currences and the synchronisation between them (Baccelli
et al., 1992). An SMPL model extends the decision making
capabilities of max-plus linear systems to discrete-event
systems with event-varying synchronisation and ordering
structures. These models have applications in control and
scheduling of transportation networks and production sys-
tems with varying ordering and routing mechanisms (Kers-
bergen et al., 2016; van den Boom and De Schutter, 2012).
The modelling framework has also found applications in
performance analysis of networked conflicting timed-event
graphs (Boussahel et al., 2016).

We revisit the problem of controllability for SMPL systems
where the underlying timed-event graph has a varying
structure. The aim is to address the additional complexity
due to the switching phenomenon, especially when it
is controlled. This offers an interesting area of research
that serves as a building block for further analyses and
controller (or scheduler) design.

The concept of controllability in dynamical systems con-
cerns the possibility of driving a certain state to a desired
set of states. We consider the case when these desired
states are related to an optimal throughput of the discrete-
event system (Commault, 1998). The optimal through-
put information usually comes from a reference signal or
timetable. This problem of controllability that ensures

boundedness of the discrete-event system can be related
to the structural properties of the underlying timed-event
graph (Baccelli et al., 1992; Commault, 1998).

The problem of structural controllability, in discrete-event
system literature, has been studied for timed continuous
Petri nets (Vázquez and Ramı́rez-Treviño, 2012, and refer-
ences therein). Such models approximate the behaviour of
the discrete-event system by relaxing the integrality condi-
tion on markings in the underlying net. The approach leads
to sufficient conditions for certain quantitative properties,
like boundedness, and bounds on qualitative properties,
like throughput, of the underlying discrete model. The con-
trol actions are, however, restricted to reducing the firing
flow of transitions. The logical aspect of controllability of
Petri nets is usually studied separately in a supervisory
control framework (Giua and DiCesare, 1994).

In the above context, SMPL framework preserves the dis-
creteness of the discrete-event system and takes advantage
of max-plus algebra for explicit analysis of its timing prop-
erties. In addition, the logical control by disabling event
occurrences is also explicitly modelled as a discrete control
variable (van den Boom and De Schutter, 2012).

In this paper, we focus on the problem of stabilisability
of SMPL systems. More specifically, we first consider the
range of achievable growth rates of the states for a given
SMPL system. Then we formulate structural conditions
that allow synchronisation of these growth rates by using
control actions that are allowed by the system.

The contributions of this paper are threefold. We propose
a framework for studying the controllability problem for
SMPL systems. We generalise the notion of structural



controllability to include switching behaviour. We also
characterise the achievable throughput of the system under
different controller configurations.

The paper is organised as follows. In Section 2 we present
some background on the max-plus algebra and the asso-
ciated graph theory. In Section 3 we introduce the frame-
work for studying controllability of SMPL systems, and the
notion of stability associated to structural controllability.
In Section 4 we present results on structural controllability.
We end the paper with concluding remarks in Section 5.

2. PRELIMINARIES

The set of all positive integers up to n is denoted by
n = {l ∈ N | l ≤ n} where N = {1, 2, 3, . . . }.

The max-plus algebra, Rmax = (Rε,⊕,⊗), consists of the
set Rε = R ∪ {−∞} endowed with the maximisation and
the addition operations (Baccelli et al., 1992). These are
called max-plus addition (a ⊕ b = max(a, b)) and max-
plus multiplication (a ⊗ b = a + b) respectively. The zero
element is denoted as ε = −∞ and the unit element as
1 = 0. These elements are identities with respect to ⊕
and ⊗ respectively, and ε is absorbing for ⊗. The unit
element 1 will sometimes be used to represent a vector,
of appropriate dimension, with all entries 0. The max-plus
vector and matrix operations can be defined analogously to
the conventional algebra. The max-plus zero and identity
matrices are denoted as E and I respectively. The max-

plus powers of a matrix are defined recursively as A⊗
k+1

=

A⊗
k
⊗A for k ∈ N. For scalars γ, c ∈ R, we have γ⊗

c
= c·γ.

The partial order ≤ for vectors x, y ∈ R
n
ε is defined such

that x ≤ y ⇔ x⊕ y = y ⇔ xi ≤ yi, ∀i ∈ n.

Graph theory. (Heidergott et al., 2014) A directed graph
G(A) = (V (A), E(A)) can be associated to a matrix
A ∈ R

n×n
ε by defining the vertex set V (A) = n and letting

the pair (i, j) ∈ E(A), the edge set, whenever aji 6= ε. The
matrix A is called irreducible if G(A) is strongly connected
i.e., for each i, j ∈ V (A), there is a path that starts in i
and ends in j.

A reducible matrix can be transformed into the Frobenius
normal form by a suitable max-plus permutation matrix:

P ⊗A⊗ P⊗
−1

= Ã =









A11 ε . . . ε
A21 A22 . . . ε
...

...
. . .

...
Ar1 Ar2 . . . Arr









(1)

where A11, . . . , Arr are irreducible submatrices of Ã. The
corresponding partition of the subset of vertices (classes)
V (A) is denoted as V1, . . . , Vr. An arc from a vertex in Vi

to a vertex in Vj exists only if i ≤ j. The classes of A with
no incoming arc are called the initial classes and those
with no outgoing arcs are called the final classes.

Eigenvalue problem. The max-plus eigenvalue λ(A) ∈ Rε

of a matrix A ∈ R
n×n
ε is defined as the solution to the

following eigenproblem (Cuninghame-Green, 1979):

∃ z ∈ R
n
ε , z 6= ε s.t.

z⊤ ⊗A = λ(A)⊗ z⊤.
(2)

Then z is known as the left max-plus eigenvector of
A corresponding to the max-plus eigenvalue λ(A). This

eigenvalue is unique if the matrix A is irreducible. The
eigenvalue of a class j in (1) is denoted as λ(Ajj). We define

λ(A) as the largest eigenvalue of A. All eigenvectors of an
irreducible matrix are finite, z ∈ R

n. A reducible matrix A
in the Frobenius normal form (1) has a finite eigenvector if
i) λ(A11) = λ(A) 6= ε, and ii) there is an arc from a vertex
in V1 to a vertex in Vj for all j ∈ {2, . . . , r} (Cuninghame-
Green, 1979).

Matrix semigroup. A matrix A is regular if it has at least
one finite element in every row. A set of regular square
matrices in the max-plus algebra of dimension n, denoted
as A ⊆ Mn×n(Rε), forms a multiplicative semigroup 1 :

Ψ(A) :=
{

A(i1) ⊗ · · · ⊗A(ik) | A(ij) ∈ A, j ∈ k, k ∈ N

}

.

(3)

The max-plus convex hull of m ∈ N matrices in A is
defined as

conv⊗(A) =

{ m
⊕

j=1

αj ⊗A(j)

∣

∣

∣

∣

j ∈ m, A(j) ∈ A,

αj ∈ Rε,

m
⊕

j=1

αj = 1

}

.

(4)

The semigroup is said to be irreducible if there exists
an irreducible matrix in the max-plus convex hull of the
matrices (Guglielmi et al., 2018). Then there also exist
irreducible matrices S ∈ Ψ(A). Equivalently, we have

∃ c ∈ N,

S = A(ic) ⊗A(ic−1) ⊗ · · · ⊗A(i1), A(ij) ∈ A, j ∈ c,
(5)

such that S is irreducible.

The maximum of the matrix set is defined as

SA =
⊕

A∈A

A. (6)

The max-plus joint spectral radius of a given set of
matrices A is defined analogously to the largest max-plus
eigenvalue of a single matrix A (Guglielmi et al., 2018). It
represents the maximum growth rate of the system under
autonomous evolution. It can be calculated as the largest
max-plus eigenvalue of the matrix SA and is denoted as
ρ(A) (Gaubert, 1995; Guglielmi et al., 2018).

3. SMPL SYSTEMS

In this section we give a description of an SMPL system
along with a framework for studying its controllability
properties. Then we introduce the concepts of stability
pertaining to structural controllability of such systems.

3.1 System description

The dynamics of a non-autonomous SMPL system with p
modes is defined for event cycle k as (van den Boom and
De Schutter, 2006)

1 A semigroup consists of a set together with an associative binary
operation without requiring the existence of an identity element or
inverses.



x(k) = A(l(k)) ⊗ x(k − 1)⊕B(l(k)) ⊗ u(k),

y(k) = C(l(k)) ⊗ x(k)

l(k) = φ(l(k − 1), x(k − 1), v(k), u(k))

l(k) ∈ L , p, k ∈ N.

(7)

Here, the system matrices for the l-th mode are A(l) ∈

R
n×n
ε , B(l) ∈ R

n×m
ε and C(l) ∈ R

ny×n
ε . The function

φ(·) specifies the switching rule, which may depend on the
previous state x(k − 1), the previous mode l(k − 1), the
discrete input v(k), and the continuous input u(k).

We assume that all the system matrices A(l) for each mode
are regular. This is an acceptable assumption ensuring that
the states do not become ε for finite initial states. The set
of all such A(l) matrices is denoted as A ⊆ Mn×n(Rε).
Similarly, the set of all B(l) matrices is denoted as B.
The dynamics with B(l) = E for all l ∈ L is called an
autonomous SMPL system.

The components of the state xi(k), for i ∈ n, denote the
occurrence time of the i-th event of the system. The entries
of the matrix A(l(k)) denote the minimum time duration
offsets between event occurrences in consecutive event
cycles. The same holds via the matrix B(l) for the time
durations between the events and input delays. The state
(dater) trajectory x(k), for k ∈ N, is called realisable if it
is component-wise non-decreasing when the finite elements
of the system matrices are non-negative.

A control input u delays the occurrence times of certain
events in the discrete-event system with respect to the
autonomous evolution. The discrete input v specifies the
mode sequence via the function φ(·) and can be used for
scheduling. We restrict the scope of this paper to the cases
where the mode sequence from φ(·) is either generated
arbitrarily or is controlled via the discrete signal v.

Thus, an SMPL system offers an additional degree of free-
dom for control as compared to max-plus linear systems.
In this regard, we classify the controllability problem for
SMPL systems as follows:

• Discrete control : Controllability using a discrete con-
trol input v in absence of continuous input u.

• Continuous control : Controllability using a continu-
ous control input u under arbitrary switching.

• Hybrid control : Controllability using both discrete (v)
and continuous control inputs (u).

Some notations and definitions are noted before discussing
the problem of structural controllability.

We denote by σ : k → Lk, a mode sequence of length
|σ| = k with l(j) = σ(j) for j ∈ k.

The state equation in (7) can be written recursively for
k > k0 ≥ 0 and a mode sequence σ : k − k0 → Lk−k0 as

x(k) = Φ(k, k0;σ)⊗ x (k0)⊕

k
⊕

j=k0+1

Φ(k, j;σ)⊗B(l(j))u(j),

Φ(k, j;σ) = A(l(k)) ⊗ · · · ⊗A(l(j+1)), j < k.
(8)

It is convenient to assume that the input sequence has the
following dynamics (Baccelli et al., 1992, §7):

u(k + 1) = U(k)⊗ u(k) (9)

where U(·) ∈ R
m×m
ε . It is assumed that U(k) is a max-

plus diagonal matrix with bounded elements and average
values ρu. Then ρu defines the asymptotic growth rate of
the input u.

The maximum of the system matrices are denoted as

SA =
⊕

l∈L

A(l), SB =
⊕

l∈L

B(l). (10)

3.2 Problem formulation

For discrete-event systems in max-plus algebra, the cycle
time vector is defined as (Heidergott et al., 2014):

ξi = lim
k→∞

xi(k)

k
. (11)

If the limits exist, ξ ∈ R
n signifies the asymptotic average

delay between event occurrences. The values ξi’s represent
the eigenvalues λ(A) of an autonomous max-plus linear
system. The largest of these values represents bottleneck
in the system and serves as a measure of performance
(Commault, 1998).

The throughput of a discrete-event system is defined as the
inverse of the average occurrence times of the events over k
(Baccelli et al., 1992). It is therefore inversely proportional
to the maximum ξi value.

Definition 3.1. A discrete-event system is stabilisable if
there exist control input(s) such that the asymptotic
average growth rates of the state trajectories attain a
common value in (11):

∃ µ ∈ R s.t.

ξi = ξj = µ, ∀ i, j ∈ n.
(12)

We define such a system evolution as synchronised. �

The synchronisation of the growth rate of state traject-
ories is necessary for boundedness of a timed-event graph
(Commault, 1998).

The throughput of a max-plus linear system may only be
decreased from its autonomous value by the application of
the control input u (Baccelli et al., 1992, §6). However,
it is sometimes possible to increase the throughput of
an SMPL system by suitably switching between different
subsystems. Therefore, an interesting question is to study
how we can control such a system via signals u and/or
v to obtain a desired throughput of the system, usually
specified by a due-date signal or a timetable.

We refer to properties depending only on the structure
of the underlying timed-event graph of an SMPL system
as structural. We study the problem of synchronisation
(12) by assignment of the throughput (1/µ) of the SMPL
system as its structural controllability property. This value
µ depends on the mode sequence via v and the time delay
to the autonomous evolution from u.

Under the framework for studying controllability, this
problem can be classified as:

• Problem I : Formulate conditions for synchronised
evolution via discrete control.

• Problem II : Formulate conditions for synchronised
evolution via continuous control.



• Problem III : Formulate conditions for synchronised
evolution via hybrid control.

As will become clear later, the three different cases enforce
different operating conditions with respect to the achiev-
able throughput of the system.

3.3 Stability

We introduce a notion of stability related to the control-
lability problem under study. This notion concerns the
bounded growth rate of the state of a discrete-event system
modelled in max-plus algebra. The bounds then determine
the achievable throughput of the system. This notion of
stability, however, does not enforce the boundedness of
event separation times in the same event cycle k.

Definition 3.2. A discrete-event system is said to be
max-plus Lipschitz stable, in the given state space X , if
there exists an upper and lower bound on the first-order
difference of the state trajectories, i.e.

∃ α, β ∈ R with α ≤ β s.t.

α⊗ 1 ≤ ∆x(k) = x(k)− x(k − 1) ≤ β ⊗ 1, ∀k ∈ N.
(13)

�

The right inequality suggests maximal duration require-
ment between two consecutive events. The left inequality is
similarly a minimum duration requirement. This condition
holds naturally for max-plus linear systems over finite
state evolution if the state matrix A is regular (Menguy
et al., 2000).

For an autonomous evolution of the SMPL system (7),
the smallest β that satisfies (13), for all trajectories, is the
max-plus joint spectral radius, ρ(A). Let us assume that
there are rl classes (see (1)) for matrices A(l) in A. Then
the largest α for which (13) is satisfied for all trajectories
(Butkovič, 2016) is similarly defined as

ρ∗(A) = min
l∈L

min
j∈rl

{λ(A
(l)
jj ) | Vj is an initial class}. (14)

We now provide a restriction for the existence of the cycle
time vector (see (11)) for SMPL systems.

Definition 3.3. A discrete-event system is said to be
asymptotically max-plus Lipschitz stable, in the given
state space X , if the average growth rates of all the states
become constant, i.e.

∀i ∈ n, ∃ ci ∈ N s.t.

lim
k→∞

[

∆2
c x(k) = x(k + ci)− 2x(k) + x(k − ci)

]

i
= 0.

(15)
This asymptotic average delay between event occurrences
is the cycle time vector (11) of the system (Gunawardena,
2003):

lim
k→∞

1

ci
(xi(k + ci)− xi(k)) = ξi, ∀i ∈ n. (16)

The smallest c satisfying this property for all i ∈ n is
defined as the cyclicity of the underlying communication
graph. �

For a regular max-plus linear system, the cycle time vector
exists and is finite in practice (Gunawardena, 2003). This
in turn means that a max-plus linear system is always
asymptotically max-plus Lipschitz stable. This, however,

is not the case for SMPL systems if the mode sequence is
arbitrary and not known a priori.

Remark 3.1. We note that an SMPL systems with peri-
odic mode sequences can be reduced to a max-plus linear
system by appropriate change in event counter de-
scription. Such system trajectories achieve asymptotic
max-plus Lipschitz stability.

Remark 3.2. It is worthwhile to note that the constraint of
non-decreasing dater trajectories is also a structural prop-
erty of the underlying timed-event graphs. This feasibility
can be ensured by adding self-loops of unit 1 weight. This
is equivalent to replacing indefinite ε diagonal elements of
matrices in A by unity 1 without altering the system de-
scription while enforcing realisable evolution of the states.

4. STRUCTURAL CONTROLLABILITY

An input sequence u : k → R
m×k is said to be realisable

if it is non-decreasing over the event counter k (or, u(j +
1) ≥ u(j) for all j ∈ k). The asymptotic growth rate of
this signal is denoted as ρu .

This section looks at the structural requirements on the
system description such that all state trajectories are
synchronised (12) in a, possibly infinite, number of events
by an appropriate choice of control inputs u and v.

We also recall that the notion of max-plus Lipschitz
stability for SMPL systems ensures the existence of bounds
on the first-order difference of state trajectories, ∆x(k) ∈
[α, β]. For an autonomous evolution, this can be reduced
to ∆x(k) ∈ [ρ∗(A), ρ(A)].

The cases differentiating synchronisation properties via u
and via v in Section 3.2 are formalised, and sufficient struc-
tural conditions are provided in the following subsections.

4.1 Problem I: Discrete control

We first formulate structural conditions for the existence of
synchronised trajectories for autonomous SMPL systems.

SMPL
φ

Controller

✲ ✲

✛

x
v ℓ

Figure 1. Problem I : Controllability via discrete control v.

Definition 4.1. A max-plus Lipschitz stable discrete-event
system is said to be synchronised via discrete control v if
there exists some µ ∈ R, k ∈ N, and a mode sequence
σ : k → Lk such that (12) is satisfied for µ ∈ [ρ∗(A), ρ(A)].

�

The following theorem provides sufficient conditions for
weak synchronisation via control input v.

Theorem 4.1. A max-plus Lipschitz stable autonomous
SMPL system can be synchronised by discrete control
input v for some µ ∈ [ρ∗(A), ρ(A)] if the semigroup
generated by matrices in A is irreducible.



Proof: For an irreducible semigroup, there exists an ir-
reducible matrix S ∈ Ψ(A) for a finite mode sequence
σ : c → Lc, with lj = σ(j) for j ∈ c (see Section 2):

S = A(lc) ⊗A(lc−1) ⊗ · · · ⊗A(l1). (17)

The periodic mode sequence σ achieves asymptotic max-
plus Lipschitz stability in (15) due to remark 3.1.

Moreover, the irreducibility implies existence of a finite
max-plus eigenvector (see Section 2) such that

∃z ∈ R
n, z⊤S = µ⊗

c
⊗ z⊤. (18)

This ensures weak synchronisation via v in (12). The
value(s) µ then belongs to the interval [ρ∗(A), ρ(A)]. �

The theorem presented here for synchronisation via v only
provides a sufficient condition. The irreducibility of the
matrix S is only a sufficient condition for the existence of
a finite eigenvector in (18) (see Section 2). If the semigroup
is reducible, it is still possible to apply Theorem 4.1. The
approach is to first break down the matrix SA in (10)
into irreducible submatrices (1) and then to study their
connections (Mairesse, 1997).

It is, however, difficult to characterise the set of achievable
growth rates µ for autonomous SMPL systems. This
is because there can exist multiple matrices S in the
semigroup Ψ(A) that are irreducible. This also allows for
an event-varying growth rate µ for which synchronisation
is achieved via v for finite durations of event counter k. The
system, however, is not guaranteed to be asymptotically
max-plus Lipschitz stable.

4.2 Problem II: Continuous control

The problem of structural controllability via u can be
studied as an extension of the findings in (van den Boom
and De Schutter, 2012).

SMPL
φ

Controller

✲

✲ ✲

✛

x
v ℓ

u

Figure 2. Problem II : Controllability via continuous con-
trol u with arbitrary v.

Definition 4.2. A max-plus Lipschitz stable discrete-event
system is said to be synchronised via continuous control u
if there exists a realisable input sequence u : k → R

m×k,
k ∈ N, with an asymptotic growth rate ρu ≥ ρ(A) such
that (12) is satisfied for all σ : k → Lk for µ = ρu. �

The following result is first recalled from literature to find
conditions for synchronisation via u.

Definition 4.3. (van den Boom and De Schutter (2012)).

The SMPL system (7) is said to be structurally controllable
if there exists a finite integer N for all mode sequences
generated by w, σ : N → LN , with lj = σ(j) for all j ∈ N ,
such that the reachability matrices

ΓN (σ) = [Φ(N, 1;σ)⊗B(l1) · · · Φ(N,N − 2;σ)⊗B(lN−2)

· · · Φ(N,N − 1;σ)⊗B(lN−1) B(lN )]
(19)

have a finite element in every row. �

Remark 4.1. The structural controllability of all constitu-
ent subsystems is a necessary condition for structural con-
trollability of the SMPL system under arbitrary switching.

The following theorem gives a necessary and sufficient
condition for synchronisation of an SMPL system by
control input u alone under arbitrary switching.

Theorem 4.2. Amax-plus Lipschitz stable non-autonomous
SMPL system (7) can be synchronised by a continuous
control input u for all mode sequences σ, and for all
µ = ρu ≥ ρ(A) if and only if the system is structurally
controllable.

Proof: Sufficiency: (van den Boom and De Schutter, 2012).

Necessity: We first note that the requirement of synchron-
isation via u has to hold for all switching sequences. This
restricts the achievable growth rate µ to be larger than or
equal to ρ(A) (see Section 3.3).

Now assume that the system is not structurally control-
lable as in Definition 4.3. This implies that there exists a
subset of states J ⊆ n that may never be delayed by input
u. The growth rate of these states can not be increased
from its largest possible autonomous value ρ(A). So the
system can not synchronised by u for all µ ≥ ρ(A). �

The preceding theorem suggests that in presence of uncon-
trollable switching, synchronised system evolution can be
ensured only for growth rates larger than or equal to the
spectral radius of the matrices in A. The stated structural
condition then guarantees the existence of continuous con-
trol input to achieve this synchronisation.

4.3 Problem III: Hybrid control

We finally deal with the problem of controllability via both
u and v. In essence, we prove the existence of a lower
bound such that any arbitrary growth rate above it can
be achieved by an appropriate combination of u and v.

SMPL
φ

Controller

✲

✲ ✲

✛

x
v ℓ

u

Figure 3. Problem III : Controllability via hybrid control
u and v.

Definition 4.4. A max-plus Lipschitz stable discrete-event
system is said to be synchronised via hybrid control u and
v if there exists a real α∗ ∈ [ρ∗(A), ρ(A)], a mode sequence
σ : k → Lk, k ∈ N, and a realisable input sequence
u : k → Uk ⊂ R

k with ρu ≤ ρ(A) such that (12) is satisfied
for an arbitrary µ ∈ [α∗, ρ(A)] . �

The following definition is necessary for presenting the
next set of results.



Definition 4.5. A given SMPL system (7) is said to be
weakly structurally controllable if for a finite positive
integer k ≤ n there exists a mode sequence σ : k → Lk,
with lj = σ(j) for all j ∈ k, such that the reachability
matrix

Γk(σ) = [Φ(k, 1;σ)⊗B(l1) · · · Φ(k, k − 2;σ)⊗B(lk−2)

· · · Φ(k, k − 1;σ)⊗B(lk−1) B(lk)]
(20)

has a finite element in every row. �

Remark 4.2. Structural controllability of a subsystem in
(A,B) implies weak structural controllability of the entire
system but the converse is not true.

Theorem 4.3. Amax-plus Lipschitz stable non-autonomous
SMPL system (7) can be synchronised by a suitable com-
bination of control inputs u and v as presented in Defini-
tion 4.4 if one of the following equivalent conditions hold:

(i) The system is weakly structurally controllable;
(ii) The max-plus linear system (SA,SB) in (10) is struc-

turally controllable. The matrix

Γn = [SA
⊗
n−1

⊗ SB · · · SA ⊗ SB SB ] (21)

has a finite element in every row.

Proof: Without a loss of generality, we assume the system
is driven by a single input (u ∈ Rε).

(i)⇒(ii) Weak structural controllability implies that for
every i ∈ n there exists a mode sequence σ : k → Lk, with
lj = σ(j) for all j ∈ k, such that we have

(

Φ(k, 1;σ)⊗B(l1)
)

i
6= ε. (22)

Now, the maximum of the first column of Γk(σ) in (20)
over all mode sequences σ of length k is equal to the first
column of the reachability matrix Γk in (21) such that we
have

(

SA
⊗
k−1

⊗ SB

)

i
6= ε. (23)

Here, the mode sequence for every i ∈ n can be of varying
length k ∈ n. This ensures that the reachability matrix in
(21) has at least one finite element in every row. Thus, the
system (SA,SB) is structurally controllable.

(ii)⇒(i) Conversely, condition (ii) implies that for every
i ∈ n, we have

∃k ∈ n, s.t.
(

SA
⊗
k−1

⊗ SB

)

i
6= ε. (24)

Therefore, there exits a mode sequence σ : k → Lk, with
lj = σ(j) for all j ∈ k, such that

(

Φ(k, 1;σ)⊗B(l1)
)

i
6= ε. (25)

Again, stacking the columns for k ∈ n, we obtain weak
structural controllability of the SMPL system. The re-
quirement k ≤ n comes from the assumption on regularity
of matrices in (A,B) and hence matrices (SA,SB).

Consider the set of all mode sequences σ of length k ≤ n
that satisfy the property of weak structural controllability.
Define the smallest average max-plus eigenvalue over this
set as α∗,

α∗ = λ (Φ(k, 1;σ))
⊗
1/k

. (26)

This value α∗ ∈ [ρ∗(A), ρ(A)] serves as the guaranteed
lower bound for the growth rate µ in Definition 4.4.

Invoking the result of Theorem 4.2, the synchronisation
can be achieved with a suitable control input u for all µ
greater than and equal to α∗. �

The conditions for synchronisation via u and v can thus
be deduced from that of the system (SA,SB) in (10).

The results of the preceding theorem are conservative in
the sense that a smaller α∗ can be achieved by mode
sequences of length k greater than n. However, such a
sequence can not be guaranteed to satisfy the condition of
structural controllability (Definition 4.5) required to place
the growth rate arbitrarily in a set. It is also important
to note that it is computationally difficult to evaluate
the lowest achievable growth rate for a set of max-plus
matrices (Blondel et al., 2000).

The preceding theorem also suggest that a higher through-
put can be achieved from the system via a hybrid control
strategy as compared to its continuous control counter-
part. Moreover, the operating region in terms of achievable
throughput take arbitrary values in a set as opposed to the
discrete control case.

4.4 Illustrations

In this subsection, we present a examples to illustrate the
notions of structural controllability of SMPL systems.

Example 4.1. Consider a bimodal SMPL system with sys-
tem matrices:

A(1) =

(

2 ε
ε 2

)

, B(1) =

(

0
ε

)

A(3) =

(

1 ε
1 ε

)

, B(3) =

(

ε
0

)

.

The max-plus joint spectral radius and the upper bound
on the lower spectral radius are found to be ρ(A) = 2 and
ρ∗(A) = 1 respectively.

We first note that A(1) possesses a finite eigenvector

z1 = (0 0)
⊤
. The semigroup generated by A(1) and A(2)

is reducible (as in (27)). Therefore, structural guarantee
for synchronised evolution of the system via discrete con-
trol can not be provided. However, we can still achieve
synchronised evolution for µ = 2 by operating in mode
1. This hows that the structural condition presented in
Theorem 4.1 is not necessary for synchronised evolution
via discrete control.

It can be checked that the constituent subsystems are
not structurally controllable and so is the SMPL system
(Definition 4.3). Therefore, continuous control is ineffec-
tual for synchronised evolution. Nevertheless, the max-plus
linear system (SA,SB) is structurally controllable:

SA =

(

2 ε
1 2

)

, SB =

(

0
0

)

, (27)

Γn =

(

2 0
2 0

)

.

Therefore, weak structurally controllability implies the
existence of a lower bound α∗ ∈ [1, 2] and a hybrid
control allowing synchronised evolution of the system with



arbitrary growth rates in [α∗,+∞). For instance, switch-
ing sequences σ ∈ {(1, 2), (2, 1)} satisfy weak structural
controllability condition and provide α∗ = 1.5. Then a
continuous control input with ρu ∈ [1.5, 2] can be used to
achieve synchronised growth rates arbitrarily from the set
µ ∈ [1.5, 2].

Example 4.2. Consider another bimodal SMPL system
with system matrices:

A(1) =

(

2 ε
ε 2

)

, B(1) =

(

0
0

)

A(2) =

(

ε 1
1 ε

)

, B(2) =

(

0
ε

)

.

The main difference with the preceding example is that
now the subsystems are structurally controllable. It can be
verified by enumeration that the system is also structurally
controllable for N = 2 in Definition 4.3. Therefore,
continuous control, with ρu ≥ 2, can be used for arbitrary
switching to achieve synchronised growth rate of µ ≥ 2.

Moreover, the semigroup generated by A(1) and A(2) is
irreducible:

SA =

(

2 1
1 2

)

, SB =

(

0
0

)

.

This implies that there exist discrete control signals that
allow synchronised growth rates for multiple µ ∈ [1, 2]. For
example, a sequence σ = (2, 1, 2) achieves µσ = 1.33. This
supplemented by weak structural controllability property
implies that a hybrid control will allow arbitrary growth
rate µ ≥ 1.33.

5. CONCLUDING REMARKS

In this paper, we have proposed a framework for study-
ing controllability problems for switching max-plus linear
systems. The control inputs in such systems appear as
continuous event delays to autonomous evolutions and as
discrete mode changes in the system. We have extended
the property of structural controllability to such systems
to guarantee throughputs that achieve bounded traject-
ories of the system. Unlike max-plus linear systems, the
presence of a discrete control provides a greater flexibility
in assigning the throughput of the system. We found that
the suggested controller configurations offer advantages
in different operating regions with respect to achievable
throughput of the system. Finally, we have presented
structural conditions that guarantee the existence of con-
trol inputs to achieve a desired throughput. The optimality
of a certain control action then depends on other factors
of the specific control problem like the due-date reference,
and constraints.

In future, we will extend the framework to study struc-
tural controllability and the dual notion of structural
observability for such discrete-event systems in presence
of continuous and discrete state restrictions. We intend
to study graph-based algorithms to verify the structural
controllability properties. It will also be interesting to
derive finite-path dependent controllers that achieve the
desired synchronised growth rates for different control
configurations.
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