
Delft University of Technology
Delft Center for Systems and Control

Technical report 20-017

Linear positive systems may have a
reachable subset from the origin that is

either polyhedral or nonpolyhedral∗

Y. Zeinaly, J.H. van Schuppen, and B. De Schutter

If you want to cite this report, please use the following reference instead:
Y. Zeinaly, J.H. van Schuppen, and B. De Schutter, “Linear positive systems may
have a reachable subset from the origin that is either polyhedral or nonpolyhedral,”
SIAM Journal on Matrix Analysis and Applications, vol. 41, no. 1, pp. 297–307, 2020.
doi:10.1137/19M1268161

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/20_017.html

https://doi.org/10.1137/19M1268161
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/20_017.html


LINEAR POSITIVE SYSTEMS
MAY HAVE A REACHABLE SUBSET FROM THE ORIGIN
THAT IS EITHER POLYHEDRAL OR NONPOLYHEDRAL∗

YASHAR ZEINALY† , JAN H. VAN SCHUPPEN‡ , AND BART DE SCHUTTER§

Abstract. Positive systems with positive inputs and positive outputs are used in several
branches of engineering, biochemistry, and economics. Both control theory and system theory re-
quire the concept of reachability of a time-invariant discrete-time linear positive system. The subset
of the state set that is reachable from the origin is therefore of interest. The reachable subset is in
general a cone in the positive vector space of the positive real numbers. It is established in this paper
that the reachable subset can be either a polyhedral or a nonpolyhedral cone. For a single-input
case, a characterization is provided of when the infinite-time and the finite-time reachable subset are
polyhedral. An example is provided for which the reachable subset is nonpolyhedral. Finally, for the
case of polyhedral reachable subset(s), a method is provided to verify if a target set can be reached
from the origin using positive inputs.

Key words. Linear positive system, reachable subset, polyhedral cone, positive recursion.

AMS subject classifications. 93C15, 93B05

1. Introduction.

Motivation and Scope. In this paper, the focus is on the reachable subset from
the origin of a single-input time-invariant discrete-time linear positive system. It will
be proven that such a reachable subset can be either a polyhedral or a nonpolyhedral
cone. A characterization is provided of when this reachable subset is polyhedral.

A positive system may arise in many areas of science and of engineering, such
as econometrics [42], bio-chemical reactors [31], compartmental systems [26, 32], and
transportation system [47, 53],to name a few. The variables in such systems represent
growth rates, concentration levels, mass accumulation, flows, etc. Obviously, variables
of this nature can only assume values that are zero or strictly positive.

For problems of control and system theory with positive systems, a solid body of
concepts, theorems, and algorithms has been developed. Of particular interest is the
theory of linear positive systems [5], which is based on the theory of positive matrices
and their geometric equivalent, polyhedral cones, [6, 14, 21, 33].

While the theory of linear positive systems overlaps with the theory of linear
systems, there are distinct differences between the two. Therefore, several concepts
of linear systems cannot be directly generalized to linear positive systems without
reformulation. One such property is the notion of reachability and controllability of
a linear positive system.

The motivation of the investigation of reachability and controllability of a linear
positive system is in 1) their use in control theory as an equivalent condition for
the existence of a control law for particular control objectives; and 2) in the theory
of realization and of system identification. In a positive system, as it arises in the
research areas mentioned above, one may want to know whether from a specified
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initial state a particular terminal state can be reached by application of a positive
input to the system. The state to be reached can be a set of concentrations of
chemical substances in bio-reactor or a concentration in a compartment which e.g. a
model of tissue in a human being. More generally, one may want to characterize all
states of a linear positive system that can be reached from the zero initial state using
positive inputs, which is also the object of interest for realization theory of linear
positive systems. The choice for the reachable subset from the origin is essential for
realization theory. Observability of a linear positive system is then of interest only
for states in the reachable set. A characterization of that view of observability does
currently not exist in the literature. The condition formulated in the paper [27] is too
strong because it is based on the assumption that the reachable set from the origin
is the entire positive vector space Rn

+. Therefore, characterizing all states of a linear
positive system that can be reached from the zero initial state using positive inputs is
the problem to be investigated in this paper. More details on the problem formulation
may be found in Section 3.

Previous Work. Below the vector space of tuples of the positive real numbers
will be referred to as the positive vector space; it is formally defined in Section 2.

Controllability and reachability of a discrete-time linear positive system has been
widely studied and there is a considerable literature. This literature is briefly sur-
veyed below. In most of the literature it is emphasized that the characterization of
controllability of a discrete-time linear positive system takes a very different form
than that of its counterpart for discrete-time linear systems [8, 12, 20]. In addition,
while reachability of a linear system may be achieved in a number of steps equal to
the state-space dimension, [43], for discrete-time linear positive systems this does not
hold. For a linear positive system the number of steps required to reach a certain
point in the positive orthant can be larger than the dimension of the system, as noted
in [12], where this is illustrated using the model of a pharmacokinetic system.

The concept of reachability used in the literature of discrete-time linear positive
systems is whether every state of the positive vector space can be reached from the
origin either in finite time or in infinite time. The result is then a characterization of
this considered concept of reachability. Publications that are based on that approach
include [3, 8, 19, 24, 50].

Reachability of a discrete-time linear positive system is characterized using a
graph-theoretic approach, and canonical reachable or canonical controllable forms are
derived as well in [8, 50]. The authors of [24] have established a link between positive
state controllability and positive input controllability of a related system, which is
then used to obtain a controllability criterion. A survey of results on controllability
and reachability of positive systems is provided in [10, 35]. Controllability results for
special classes of 1D and 2D positive systems are provided in [34].

It is worth mentioning that the constrained reachability problem for a discrete-
time linear system in the presence of disturbance with respect to a target tube or a
target set has been widely discussed in the literature [7, 22, 25, 39]. Among others [22]
investigates this problem by constructing a sequence of target sets. The reachability
problem is then transformed into a certain inclusion check on the last target set of
this sequence. The authors of [22] also provide an approximate bounding ellipsoid
algorithm to calculate the sequence of target sets and the associated input sequence.
In [7], constrained reachability with respect to a target set is studied as a special case
of reachability with respect to a target tube, and the authors provide an algorithm
to construct the sequence of modified target sets when these sets are known to be
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polyhedral. In the above-mentioned literature, checking reachability or controllability
of a target set requires one to directly or indirectly construct certain modified target
sets in an iterative manner. In addition, it is not known in advance whether a target
set can be reached in finite time.

Contribution of This Work. The contribution of this paper to control and
system theory is described next. Attention is restricted to a time-invariant discrete-
time linear positive system. The problem for a continuous-time linear positive system
is different. The results are mostly for a single-input system. The object of interest is
the reachable subset from the origin state in either finite time or in infinite time. The
problem is to characterize this reachable subset, in particular to determine whether
the reachable subset is either a polyhedral cone or a nonpolyhedral cone. This problem
is of interest to both control theory and to realization theory.

The problem considered in this paper differs from the reachability or controlla-
bility problems treated in the literature. In the literature, the problem whether any
state of the positive vector space can be reached by use of a positive input from the
zero initial state has been investigated and a corresponding characterization of this
concept has been provided. In this paper the focus is on the characterization of the
reachability subset which will often be a strict subset of the positive vector space.
Moreover, it will be investigated whether the reachable subset is a polyhedral cone or
a nonpolyhedral cone. In the existing literature the reachable subset has to equal the
positive vector space which is a polyhedral cone. Surprisingly, as presented in this pa-
per, there exists an example of a linear positive system of which the reachable subset
from the origin is a nonpolyhedral cone in the positive vector space. A consequence
of this is that the reachable subset has to be investigated for the following cases: for a
prespecified finite time, for an arbitrary finite time, and for infinite time. It will also
be shown that the reachable subset can in general not be determined in a number of
steps that equals the dimension of the state set but that the number of steps can be
strictly larger than the dimension of the state set.

The specific contributions of the paper are then as follows. A characterization of
when the infinite-time reachable subset is a polyhedral cone, is provided in Theorem
4.5. A characterization of when the finite-time reachable subset from the origin is a
polyhedral cone, is provided in Theorem 5.2. An example of linear positive system for
which the reachable subset is nonpolyhedral is provided in Example 4.8. Results for
the problem of when the reachable set contains a particular cone of terminal states
are summarized in Proposition 6.2 and in Proposition 6.4.

The structure of the paper is described next. Section 2 presents necessary back-
ground knowledge on positive matrices and positive systems. It also reports key ter-
minology of controllability and reachability and links this to linear positive systems
while highlighting existing view of the characterization of controllability and reach-
ability of linear positive systems in the literature. Section 3 presents the approach
of this paper and the problem formulation. The characterization of the infinite-time
reachable set as a polyhedral cone is provided in Section 4. The characterization of
the finite-time reachable set as a polyhedral cone is provided in Section 5. Numerical
verifiable conditions for the polyhedrality of the reachset in terms of the spectrum of
the system matrix are provided also in those sections. Section 6 provides results on
how to determine reachability for a specified control objective in the form of a subset
of the positive vector space of a linear positive system.
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2. Preliminaries.

Positive Real Numbers, Positive Matrices, and Cones. The reader is
assumed to be familiar with the integers, the real numbers, and vector spaces. Denote
the set of the integers by Z, the set of strictly-positive integers by Z+ = {1, 2, . . . },
and the set of the natural numbers by N = {0, 1, 2, . . . }. For n ∈ Z+ denote Zn =
{1, 2, . . . , n}.

The real numbers are denoted by R, the set of the positive real numbers or the
positive numbers by R+ = [0,∞), and the set of the strictly-positive real numbers by
Rs+ = (0,∞) ∈ R+. The term positive real numbers is preferred by the authors over
the term nonnegative real numbers which occurs in the literature. The term positive
real numbers is used in the book [15, p. 19].

Define the positive vector space of tuples of the positive real numbers as the
tuple (R+,Rn

+) with the algebraic operations described next. The set of the positive
real numbers is closed with respect to addition and to multiplication. There does not
exist an additive inverse while in the subset (0,∞) there always exists a multiplicative
inverse. The set of positive vectors Rn

+ is closed with respect to addition but there
does not exist an additive inverse in this set. The vector of all-ones in Rn is denoted
by 1n. When used without a subscript 1 is a vector of appropriate dimension of which
all elements are equal one.

For an integer m ∈ Z+ and a set of positive vectors a1, a2, . . . , am, ai ∈ Rn
+

define in the positive vector space the set

(1) conv([a1 . . . am]) = {x ∈ Rn
+ | x =

m
∑

i=1

λiai, λi ≥ 0, i = 1, . . . ,m,

m
∑

i=1

λi = 1}

as the convex polytope generated by ai, i = 1, . . . ,m.
Define in the vector space of the real numbers Rn the open ball with center x ∈ Rn

and with radius r ∈ (0,∞) as the set

B(x, r) = {y ∈ Rn| ‖y − x‖2 < r}.(2)

The norm on Rn is the Euclidean norm, ‖x‖2 = (
∑n

i=1 x2
i )

1/2. This norm is also used
on Rn

+. An open ball in the positive vector space Rn
+ is defined in a similar manner

with y ∈ R replaced by y ∈ Rn
+ in (2).

A positive matrix A of size n × m for n, m ∈ Z+ is a matrix of which each
element Ai,j = Aij belongs to the positive real numbers R+. The set of such matrices
is denoted by Rn×m

+ .
The geometric view point of positive vectors is formulated in terms of rays and

of cones as defined next. A ray is a half line Y ⊂ Rn
+ for n ∈ Z+ described by a

direction vector x ∈ Rn
+\{0} such that for all c ∈ R+, Y contains all elements of the

form c · x ∈ Y . Equivalently,

∃ n ∈ Z+, ∃ x ∈ Rn
+\{0}, C(x) = {c · x ∈ Rn

+| ∀ c ∈ R+}.

Below c · x will be denoted by c x.
A cone is a nonempty subset C ⊆ Rn

+ such that (1) if x ∈ C and c ∈ R+ then
c x ∈ C; and (2) if x, y ∈ C then x+ y ∈ C. It follows that 0 ∈ C for any cone C.
By definition, a cone always includes the zero element of the positive vector space.
That zero element is called the apex of the cone. Cones with an apex not at zero of
the positive vector space are not used in this paper.
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A cone C is called a polyhedral cone if there exists an integer m ∈ Z+ and a set
of positive vectors a1, a2, . . . , am ∈ C ⊆ Rn

+ such that, for any x ∈ C there exists
positive real numbers yi ∈ R+ for i = 1, . . . ,m, x =

∑m
i=1 yi ai. Equivalently, C is a

polyhedral cone if

∃ m ∈ Z+, ∃ a1, . . . ,am ∈ C, such that,

C =
{

x ∈ Rn
+| ∃ y ∈ Rm

+ such that x = Ay
}

, where,

A =
[

a1 a2 . . . am

]

∈ Rn×m
+ , y =











y1
y2
...
ym











.

In the representation used above, the cone will also be denoted by

C = cone([a1 . . . am]) = cone(A)(3)

for the positive matrix A ∈ Rn×m
+ with the understanding that the cone is generated

by the columns of the matrix A. Moreover, with little abuse of the notation for
A ∈ Rn×m

+ and X ∈ Rn×p
+ , the cone generated by stacking up the m+ p columns of

the matrices A and X will be denoted by C = cone([A X]).
A cone is called a nonpolyhedral cone if it is not polyhedral. This implies that

there does not exist a finite number m ∈ Z+ as in the above definition. The term
round cone could also be used in this case. An example of a round cone is the well
known ice cream cone which may be found in [6, Ex. 1.2.2].

An example of a polyhedral cone is given by

C = {x ∈ R4
+| ∃ y ∈ R4

+ such that x = Ay},

with A =









1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1









.

A boundary ray of a cone C is a ray of the cone that lies on the boundary of the
cone. A ray lies on the boundary of a cone if for every ǫ ∈ (0, 1) sufficiently small and
for every element x of the ray, the ball B(x, ǫ) includes an element outside the cone.

It is called an extreme (boundary) ray of the cone if it cannot be written as the
strict convex combination of two different rays. Thus x ∈ C is an extreme ray if there
do not exist vectors y, z ∈ C that are boundary rays and a scalar c ∈ (0, 1) such that
x = c y+ (1− c) z. In the above example, each of the columns of the matrix A is an
extremal ray of cone cone(A).

More technical concepts and results regarding positive matrices may be found in
Appendix A because these are well known and not a contribution of this paper.

The reader may find additional information on positive real numbers, positive
matrices, and cones in the books [6, 9, 44].

Linear Positive Systems.

Definition 2.1. Define a discrete-time linear positive system with system matrix
A and input matrix B by the representation

x(t+ 1) = Ax(t) +Bu(t), t0 ∈ N, x(t0) = x0,(4)

A ∈ Rn×n
+ , B ∈ Rn×m

+ , t ∈ T = {t0, t0 + 1, t0 + 2, . . .},

x0 ∈ Rn
+, u : T → Rm

+ , x : T → Rn
+.
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An explicit expression for the state function of a discrete-time linear positive system
is well known and provided by the formula

x(t) = At−t0x0 +

t−t0−1
∑

s=t0

As Bu(t− 1− s), ∀ t ∈ T,(5)

(t0,x0)
u(t0:t−1)

7→ (t,x(t)), where(6)

u(t0 : t− 1) = (u(t0), u(t0 + 1), . . . ,u(t− 1)).

For a time-invariant discrete-time linear positive system we may assume t0 = 0
in Definition 2.1 and in the explicit solution (5) as the time axis can be shifted to the
zero time without affecting the trajectories.

Definition 2.1 requires that the mathematical objects of the definition exist. An
alternative definition, which may be found in the literature, defines a linear positive
system as a linear system with as state space X = Rn and requires that for any
initial state x0 ∈ Rn

+ and any positive input function u : T → Rm
+ , the resulting state

function x is such that for all t ∈ T , x(t) ∈ Rn
+. It can then be proven that this

alternative definition leads to the condition that the matrices A and B are positive
matrices. Thus the alternative definition leads back to the form of Definition 2.1.

Books on positive systems or books with chapters on positive systems include
[5, 20, 34].

Terminology of Controllability and Reachability. The literature of control
and system theory is not standardized in regard to the terms controllability and
reachability. The authors have chosen to use in this paper the terms as introduced
by R.E. Kalman in Chapter 2 of the book [38, Def. 2.13, Def. 2.14, p. 32]. Almost
the same definitions may be found in [49, Def. 3.1.1]. Related papers of Kalman on
controllability are [36, 37].

Consider the discrete-time linear system with the representation (4) and the cor-
responding solution (5). Associate with this system the initial tuple (t0,x0) ∈ T ×Rn

+

consisting of the initial time t0 and the initial state x0 where t0 will often be taken to
be zero, t0 = 0, and the terminal tuple (t1,x1) consisting of the terminal time t1 and
the terminal state x1 where t1 ∈ T and x1 = x(t1). The solution displayed above is
then denoted as the transition

(t0,x0)
u(t0:t1−1)

7→ (t1,x(t1)).

In system theory one distinguishes between reachability and controllability: for
reachability one considers an initial tuple consisting of an initial time and an initial
state as fixed and one has to determine which tuples of a terminal time and a terminal
state can be reached by the use of a positive input; for controllability one considers a
terminal time and terminal state as fixed and one has to determine from which tuples
of an initial time and an initial state one can reach the selected terminal state at the
terminal time by the use of a positive input.

In case of a time-invariant system the concepts of reachability and of controlla-
bility do not depend on the initial time because the time axis can be shifted to the
zero time without affecting the trajectories.

Definition 2.2. Consider a linear positive system as defined in Def. 2.1.
(a) Fix an initial tuple (t0,x0) ∈ T × Rn

+. The terminal tuple (t1,x1) ∈ T × Rn
+

is called reachable from the initial tuple (i.e., can be reached from the initial
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tuple), if there exists a positive input u : {t0, t0+1, . . . , t1−1} → Rm
+ such that

the transition (t0,x0)
u(t0:t1−1)

7→ (t1,x(t1)) = (t1,x1) exists for this system.
(R.E. Kalman states this for x0 = 0.) The terminal tuple is called reachable
from the origin if it is reachable from the initial tuple (t0, 0) ∈ T × Rn

+.
Define the reachable set from (t0,x0) ∈ T × Rn

+ as

Reachset(t0,x0) =

{

x1 ∈ Rn
+| ∃ t1 ∈ T, ∃ u : {t0, . . . , t1 − 1} → Rm

+ ,

such that (t0,x0)
u(t0:t1−1)

7→ (t1, x1)

}

.

(b) Fix a terminal tuple (t1,x1) ∈ T ×Rn
+. The initial tuple (t0,x0) ∈ T ×Rn

+ is
called controllable to the terminal tuple (i.e., can be controlled to the terminal
tuple) if there exists an input u : {t0, t0 + 1, . . . , t1 − 1} → Rm

+ such that the

transition (t0,x0)
u(t0:t1−1)

7→ (t1,x1) exists for this system. (R.E. Kalman
requires that the terminal state x1 = 0.) The initial tuple is called controllable
to the origin if it is controllable to the terminal tuple (t1, 0) ∈ T × Rn

+.
Define the controllable set to the terminal tuple (t1,x1) ∈ T × Rn

+ as

Conset(t1,x1) =

{

x0 ∈ Rn
+| ∃ t0 ∈ T, ∃ u : {t0, . . . , t1 − 1} → Rm

+ ,

such that (t0,x0)
u(t0:t1−1)

7→ (t1, x1)

}

.

For linear systems, not necessarily a linear positive system, the following result holds.

Lemma 2.3. [49, Lemma 3.1.5] Consider a time-invariant discrete-time linear
system (not necessarily a linear positive system). The system is a reachable system
on the interval {t0, . . . , t1}, if and only if it is reachable from the origin on the same
interval.

The above result does not hold for linear positive systems as the following example
shows.

Example 2.4. Consider the time-invariant linear positive system

x(t+ 1) =

(

1/2 0
0 1

)

x(t) +

(

2 0
0 1

)

u(t), x(0) = x0.

Then the reachable set from the origin is the full positive vector space R2
+. If x0 =

(1, 1)T then the reachable set from that initial state equals

X(x0) = {x ∈ R2
+| x1 ≥ 0.5x0,1 = 0.5, x2 ≥ x0,2 = 1}.

Hence the state x1 = (0.4, 0.4)T can never be reached from x0 using positive inputs.
Thus reachability from the origin and from an arbitary initial state of the positive
vector space are different concepts for linear positive systems.

From the above example it is clear that the reachable set from the origin and the
reachable set from an arbitrary initial state are different objects. In this paper atten-
tion is restricted to the reachable set from the origin.

Existing Results on Reachability and Controllability of Linear Positive
Systems. The existing view of the characterization of controllability and reachability
as known in the literature, is discussed below. In most papers of the literature, the
characterization of controllability or of reachability of a linear positive system is based
on the following definition.
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Definition 2.5. [20, p. 74, Def. 7]. A linear positive system is said to be
completely reachable if all states x ≥ 0 are reachable in finite time from the origin,
that is, if Xr = Rn

+, where Xr denotes the cone of all reachable states in finite time
using a positive input.

The underlying idea behind Definition 2.5 probably originates from making an analogy
to reachability of linear systems. This definition is based on the assumption that the
state space equals X = Rn. Note that in Def. 2.5 Xr ⊆ Rn

+ by definition, hence
the equality Xr = Rn

+ holds if in addition Rn
+ ⊆ Xr. The following theorem states a

necessary and sufficient condition for reachability with respect to Definition 2.5 for
the single-input case.

Theorem 2.6. [20, Th. 27]. A discrete-time linear positive system with a single-
input is completely reachable if it is possible to reorder its state variablesi in such a
way that the input u directly influences only x1, and xi directly influences xi+1 for
i = 1, 2, . . . , n− 1.

Additional results may be found in [20, Ch. 8].
The criterion for complete reachability of a linear positive system with multiple

inputs based on Definition 2.5 is more involved, but it is required that the controllabil-
ity matrix of the corresponding linear system, [B AB . . . AkB], includes a monomial
submatrix of dimension n, for some k ∈ N+ [8, 10, 12, 19, 50]. Such conditions are
often too strong to be satisfied by most practical linear positive systems.

For several examples of linear positive systems, complete reachability as of Defi-
nition Definition 2.5 is not required. For example in economic systems, one would be
interested to know whether a certain growth rate can be achieved, which corresponds
to checking whether a certain extremal ray of a cone inside the positive vector space
is reachable. In bio-chemical reactors, it may be of interest to know whether a set
of desired mass concentrations can be reached by applying a particular input (for
example, a flow of materials).

An example follows that illustrates the concept of reachability stated above.

Example 2.7. Consider the discrete-time time-invariant linear positive system

x(t+ 1) = Ax(t) + bu(t), x(0) = x0,

with

A =

[

4 4
11 2

]

, b =

[

2
1

]

, x0 = 0.

It is of interest to determine whether the states in the cone K ⊂ R2
+, defined by (7)

and illustrated by Figure 1, can be reached in finite time:

(7) K :











3x1 − 2x2 ≥ 0,

3x2 − 2x1 ≥ 0,

x1 ≥ 0, x2 ≥ 0.

Since K ⊂ R2
+, in order to answer this question using the classical approach, one

needs to check the reachability of R2
+, which is very conservative considering the fact

that K occupies only a small portion of R2
+. It can be verified that

[

b Ab . . . Akb
]

=

[

2 12 · · ·
1 24 · · ·

]
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x1
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x
2

0
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Fig. 1: Example 2.7. The shaded area, associated with K, represents the region of
interest for which controllability needs to be checked.

does not include a monomial submatrix of dimension 2 for any k ∈ N+. Therefore,
the conditions of Theorem 2.6 do not hold and we cannot deduce anything about
the reachability of K. Nevertheless, invoking Theorem 5.2 and using the results of
Section 6, it turns out that K is reachable from the origin in a finite number of steps.

3. Approach of this Paper. The paper changes the focus of reachability of
a linear positive system. In the classical literature the system is reachable from the
origin if the reach set from the origin equals the entire positive vector space Rn

+.
In this paper, the approach is to determine the reachable set from the origin, in

either finite time or in infinite time, as defined below. The reachable set is then the
main object of study. In this paper, there is no requirement that the reachable set
from the origin equals the positive vector space Rn

+.
In the late 1960s and the 1970s the geometric view point gained momentum in

control and system theory. This viewpoint was developed by W.M. Wonham, [52],
for time-invariant linear control systems using the concept of a linear subspace of a
vector space. The geometric approach to control of nonlinear control systems was
described in the book [41]. Later this led to the development of control theory in
differential-geometric structures, [29, 30], and in algebraic-geometric structures such
as rings [48].

In the geometric approach to control systems the main concept is the reachable
set from the origin. In the context of observability, it is the kernel of the output
map, but that will not be treated in this paper. For linear positive systems, the main
geometric concept is a cone in the positive vector space Rn

+. This geometric object
allows the use of abstract algebra for theory and algorithms. Therefore, in this paper
the geometric approach to linear positive systems is used.

Based on this new view point, the system theoretic problem under study is: Char-
acterize the reachable set from the origin of a linear positive system. The reachable
set from the origin is by definition a cone in the positive vector space. A question is
then: Is the reachable set from the origin a polyhedral cone or a nonpolyhedral cone?

Remark 3.1. The above formulation has been for decades the approach to reach-
ability in system theory. The reachable set from the origin is defined as stated above.
The reachable set in general may be a strict subset of the ambient space in which it is
situated. The reader may want to look at the definitions of the reachable subset for
discrete-time polynomial systems, [48], for continuous-time polynomial systems, [2],
rational systems, [45], and infinite-dimensional linear systems, [13].

Concepts. The reachable set and its role in the problem of reachability and of
controllability of linear positive systems have been already discussed in the literature
[8, 10, 12, 19, 50]. Below the concept inspired by [12] is used. Recall that only
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reachability from the origin, the zero initial state, is considered and that the system
is restricted to have an input with only one component. Recall the formula of the
state transition of a time-invariant discrete-time linear positive system as

x(t) =

t−1
∑

s=0

As b u(t− 1− s)(8)

=
[

b Ab . . . At−1b
]











u(t− 1)
u(t− 2)

...
u(0)











with conmatk(A, b) =
[

b Ab . . . Ak−1b
]

being the controllability matrix of
index k.

It is useful to have notation for the infinite reachable set and to contrast that
with the finite reachable set, which is the purpose of the following definition.

Definition 3.2. Consider a single-input time-invariant discrete-time linear pos-
itive system with representation

x(t+ 1) = Ax(t) + bu(t), x(0) = 0.(9)

Define the following subsets of the state space: the k-step reachable subset from the
origin, the finite-time reachable subset from the origin, and the infinite-time reachable
subset from the origin, respectively as the sets,

Reachsetk(A, b) =
{

x ∈ Rn
+| ∃u : Nk−1 → R+, (0, 0)

u
7→ (k,x)

}

, ∀ k ∈ Z+,(10)

Reachsetf(A, b) = ∪∞
k=0Reachsetk(A, b),(11)

Reachset∞(A, b) = Reachsetf(A, b).(12)

Here, the notation S denotes the closure of the set S with respect to the Euclidean
topology.

The reachable subsets defined above are subsets of the state set. To simplify the
terminology, in the remainder of the paper these sets are referred to as the reachable
set from the origin or as the reachable set, without the use of the term subset.

Once a reachable set has been defined, there is no need for the concept of complete
reachability.

Proposition 3.3. The k-step reachable subset, the finite-time reachable subset,
and the infinite-time reachable subset of Definition 3.2, each from the zero initial
state, equal respectively the expressions

Reachsetk(A, b) = cone
(

conmatk(A, b)
)

,(13)

Reachsetf(A, b) = cone
(

[b Ab A2b . . . ]
)

,(14)

Reachset∞(A, b) = Reachsetf(A, b), where(15)

conmatk(A, b) = [b Ab A2b . . . Ak−1b](16)

Proof. The proof is skipped as it can be derived in a straightforward manner.
The reader is referred to [10, 11] for similar proofs. The proof could also be deduced
from the corresponding definition in [12].

10



Problem Formulation. Having characterized the infinite-time and the finite-
time reachable sets from the origin, the main questions of this paper are discussed
next.

Problem 3.4. For a single-input time-invariant linear positive system, the prob-
lems to be addressed in this paper are:

(a) Is the finite-time reachable set from the origin Reachsetf(A, b) a polyhedral
cone or a nonpolyhedral cone?

(b) Is the infinite-time reachable set from the origin Reachset∞(A, b) a polyhedral
cone or a nonpolyhedral cone?

(c) If the control objective is specified as a cone in the positive vector space or as
a subset of that space, is that control objective subset then contained in the
reachable set from the origin?

Note that the k-time reachable set is by definition always a polyhedral set.

4. When is the Infinite-Time Reachable Set a Polyhedral Set?. In this
section, we investigate the polyhedrality of Reachset∞(A, b), and characterize this in
terms of a necessary and sufficient conditions on the system matrix A.

The reader is expected to have knowledge of concepts and of results of positive
linear algebra as summarized in Appendix A. The notations used below may be found
in Appendix A.

As summarized in Appendix A, a positive matrix which is nonzero and of dimen-
sion n ≥ 2 is either irreducible or can be fully reduced. The analysis of the matrix Ak

for k ∈ Z+ or for its limit, limk→∞ Ak, can then be carried out (1) for irreducible
positive matrices and, (2) for fully reduced matrices. Below the case of an irreducible
system matrix A is carried out. The case of a fully reduced positive matrix is then
relatively simple based on the results for the irreducible case [6].

For the remainder of this section, the reader should keep in mind the restriction
to an irreducible positive matrix A ∈ Rn×n

+ .

Proposition 4.1. Consider the linear positive system given in (4). Assume that
A ∈ Rn×n

+ is irreducible with cyclicity index 1 ≤ h ≤ n and b ∈ Rn
+. Then, the

infinite-time reachable set from the origin, Reachset∞(A, b), is polyhedral if and only
if there exists a k∗ ∈ Z+ such that

(17) Ak∗

b ∈ cone
(

[b Ab . . . Ak∗−1b Af,0b . . . Af,h−1b]
)

,

where matrices Af,i are introduced in Definition A.4.

Proof. The result is almost obvious by geometric considerations except for the
presence of the set of vectors {Af,0b, . . . ,Af,h−1b}.

Sufficiency: We will show that

C = cone
(

[b Ab . . . Ak∗−1b Af,0b . . . Af,h−1b]
)

is A-invariant. Let x =
∑k∗−1

i=0 ciA
ib +

∑h−1
i=0 cf,iAf,ib for arbitrary positive coeffi-

cients c ∈ Rk∗

+ and cf ∈ Rh
+. We then have

(18) Ax =

k∗−1
∑

i=0

ciA
i+1b+

h−1
∑

i=0

cf,iAAf,ib.

11



Using (17), and noting that (see Definition A.4)

AAf,i = Af,i+1, i = 0, . . . , h− 2(19)

AAf,h−1 =
(

ρ(A)
)h
Af,0,

(18) can be expressed as Ax =
∑k∗−1

i=0 c′iA
ib +

∑h−1
i=0 c′f,iAf,ib for some c′ ∈ Rk∗

+

and some c′f,i ∈ Rh
+. This proves that Ax ∈ C for any x ∈ C. Hence, the system

trajectory (8) remains in C and Reachset∞(A, b) = C is polyhedral.

Necessity: Let x∞ = limk→∞

Akb
(

ρ(A)
)k

. Note that x∞ is characterized by the

set of h vectors Af,0b, . . . ,Af,h−1b [12, Th. 2](also see proof of Lemma A.2.) In
fact, Lemma A.2 states that x∞ ∈ cone([Af,0b . . . Af,h−1b]). By the definition of
Reachset∞(A, b) as the closure of Reachsetf(A, b), and by the above explanation of
x∞, the extremal rays of the polyhedral
Reachset∞(A, b) belong to the sequence {Akb ∈ Rn

+, k ∈ N} or are extremal rays of
the cone, cone([Af,0b . . . Af,h−1b]). Again, by the assumption that Reachset∞(A, b)
is polyhedral, there exists a finite k∗ ∈ Z+ such that
Ak∗

b ∈ cone([b . . . Ak∗−1b Af,0b . . . Af,h−1b]).

It is clear that if (17) is established for an integer k∗ ∈ Z+, it will hold for any k ≥ k∗.
The smallest integer k∗ ∈ Z+ satisfying (17) is called the vertex number and denoted
by k∞vert of the reachable set Reachset∞(A, b). Following the steps of the proof of
Proposition 4.1, we can put forward the following corollary.

Corollary 4.2. Given A ∈ Rn×n
+ irreducible with cyclicity index h ∈ {1, . . . , n}

and b ∈ Rn
+, the following statements are equivalent:

(a) Reachset∞(A, b) is polyhedral.
(b) There exists an integer k∞vert ∈ Z+ such that

cone
(

[b Ab . . . Ak−1b Af,0b . . . Af,h−1b]
)

is A-invariant for k ≥ k∞vert.
(c) There exists an integer k∞vert ∈ Z+ such that for all k ≥ k∞vert, the matrix equation

AM = MX,

has a solution X ∈ R(k+h)×(k+h)
+ , where,

M =
[

b Ab . . . Ak−1b Af,0b . . . Af,h−1b
]

.

Definition 4.3. A square positive matrix A ∈ Rn×n
+ is said to have a positive

recursion if the following holds:

∃m ∈ N, ∃ci ∈ R+ for i = 0, . . . ,m− 1 such that(20)

Am =

m−1
∑

i=0

ciA
i,

or, equivalently, if

g(λ) = λm −
m−1
∑

i=0

ciλ
i = 0, ∀λ ∈ spec(A).

In terms of the characteristic polynomial ofA, pA, the existence of a positive recursion
implies that g = pA Q, where Q is a polynomial of degree q with 0 ≤ q ≤ m. It is
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then immediate that

(21) m = n+ q ≥ n.

Before presenting our main results on polyhedrality of reachable subsets, we report
a key theorem ([46, Th. 5]). In the following Q denotes the set of all real polynomials

of the form cnx
n −

∑n−1
i=0 cix

i, where n ≥ 1, cn > 0, and ci ≥ 0 for all i.

Theorem 4.4. [46, Th. 5] Let {a1, . . . , ak} be given complex numbers, and let
P (x) be the polynomial xk − a1x

k−l − · · · − ak. Then conditions (A), (B) and (C)
below are equivalent:
(A) Any infinite sequence (un)n≥0 of complex numbers which satisfies the recursion

un+k = a1un+k−1 + a2un+k−2 + · · · + akun for n ≥ 0, also satisfies a recursion
with positive coefficients.

(B) The polynomial P (x) divides a polynomial in Q.
(C) In case the polynomial P (x) has a positive root r, then all conditions (1)-(4)

below are satisfied:
(C1) r ≥ |α| for any root α of P (x).
(C2) if α = r for some root α of P (x), then α/r is a root of unity.
(C3) all roots P (x) with absolute value r are simple.
(C4) if P (r) = P (rǫ) = 0, where ǫk = 1 with k ≥ 1 minimal, then P (x) has no

roots of the form sω where 0 < s < r and ωk = 1.

We are now in the position to state a characterization of Proposition 4.1 in terms of
spec(A), hence, providing numerically verifiable conditions as to when (17) holds.

Theorem 4.5 (Polyhedrality of Reachset∞(A, b)). Given an irreducible matrix
A ∈ Rn×n

+ and b ∈ Rn
+, the following statements are equivalent:

(a) The infinite-time reachable subset is polyhedral, hence there exists an integer k∗ ∈
Z+ such that

Reachset∞(A, b)

= cone
(

[conmatk∗(A, b) Af,0b . . . Af,h−1b]
)

.

Denote the lowest integer for which the above equality holds by k∞vert ∈ Z+.
(b) The matrix A2 defined in Definition A.3, satisfies a positive recursion.
(c) If there exists a positive λr ∈ spec(A2), then the following conditions all hold:

(c1) λr = ρ(A2).
(c2) For any λ ∈ σρ(A2), λ = ρ(A2)exp

(

φλ2πi
)

, where φλ ∈ Q is a rational
number.

(c3) σρ(A2), defined in Definition A.3, includes only simple eigenvalues.
(c4) Given M ∈ Z+ by Lemma A.1, no λ− ∈ σ−(A2) has a polar angle which is

an integer multiple of 2π/Mh.

Note that the condition of Theorem 4.5.(a) involves the determination of the
integer k∗, which is in principle a test with an infinite number of steps. Similarly,
condition (b) of Theorem 4.5 is a test with an infinite number of steps. However,
condition (c) of the theorem is a finite test though it requires the exact eigenvalues.

Proof. (a)⇒(b)⇒(c): Since Reachset∞(A, b) is polyhedral, according to Corol-
lary 4.2, there is a sufficiently large k ≥ n− h such that the equation
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A[b Ab . . . Ak−1b Af,0 . . . Af,h−1] = [b Ab . . . Ak−1b Af,0b . . . Af,h−1b]X

has a solution X ≥ 0. It can be easily verified using (17)-(19) that

(22) X =

[

X1 0
X3 X2

]

, X1 =















0 0 · · · 0 α0

1 0 · · · 0 α1

0 1 0 α2

...
. . .

...
0 · · · 0 1 αk−1















,

(23) X2 =















0 0 · · · 0 ρh(A)
1 0 · · · 0 0
0 1 0 0
...

. . .
...

0 · · · 0 1 0















, X3 =















0 0 · · · 0 β0

0 0 · · · 0 β1

0 0 0 β2

...
. . .

...
0 · · · 0 0 βh−1















.

constitutes a solution, where X1 ∈ Rk×k
+ , X2 ∈ Rh×h

+ , and X3 ∈ Rh×k
+ . Let

pX1
(λ) = det(λI −X1) and pX2

(λ) = det(λI −X2). Since by assumption, k ≥ n−h
and rank

(

conmatn(A, b)
)

= n, due to [4, Lemma 3.10], pA(λ) divides pX(λ) =
pX1

(λ)pX2
(λ) = (λh − ρh(A))(λk − αk−1λ

k−1 − · · · − α0). Since A is irreducible
with cyclicity index h, pA(λ) can be expressed as pA(λ) = pA1

(λ)pA2
(λ) = (λh −

ρh(A))pA2
(λ). Therefore, pA2

(λ) divides pX2
(λ), which, due to statements (A) and

(B) of Theorem 4.4, proves that A2 has a positive recursion of the form Ak∗

2 −

γk∗−1A
k∗−1
2 − · · · − γ0I = 0 for some n− h ≤ k∗ ≤ k and for some γ ∈ Rk∗

+ . Assume
A2 has a positive eigenvalue. Since A2 satisfies a positive recursion, the statements
(C1-C4) in (C) of Theorem 4.4 hold for pA2

(λ). It is straightforward to check that
this implies that (c1)-(c4) holds1.

(c)⇒(b)⇒(a): Assume A2 has a positive eigenvalue. We need to prove that state-

ments (c1)-(c4) imply a positive recursion for A2 of the form Ak∗

2 − αk∗−1A
k∗−1
2 −

· · · − α0I = 0, for k∗ ≥ n − h and α ∈ Rk∗

+ , and that, in turn, implies polyhedrality
of the infinite-time reachable subset.
First we show that the statements (c1)-(c4) imply the statements (C1)-(C4) of Theo-
rem 4.4. The statement λr ∈ σρ(A2) implies (C1) of Theorem 4.4. The requirement
of all λ ∈ σρ(A2) having a rational polar phase implies (C2). The requirement of all
λ ∈ σρ(A2) being simple implies (C3), and (C4) is implied from σ−(A2) including
no eigenvalue with polar phase 2πm/Mh for any m ∈ Z [6, Theorem 2.2.20]. Next,
invoking the equivalence between (C) and (B) of Theorem 4.4 for pA2

(λ), one can
observe that there is a polynomial Q(λ) of positive degree such that

(24) g(λ) = pA2
(λ)Q(λ) = λk∗

− αk∗−1λ
k∗−1 − · · · − α0 = 0,

for k∗ ≥ n − h and α ∈ Rk∗

+ . It follows from (20) that A2 has a positive recursion,
which results in (b).
Given (b), there exists a polynomial g(λ) of degree k∗ ≥ n − h satisfying (24), from
which one concludes that pA(λ) = pA1

(λ)pA2
(λ) divides h(λ) = pA1

(λ)g(λ) = (λh −
ρh(A))(λk∗

− αk∗−1λ
k∗−1 − · · · − α0). Now consider the equation AM = MX

with M = [b Ab . . . Ak∗−1b Af,0b . . . Af,h−1b], where X ∈ R(n+k∗)×(n+k∗) is an

1Condition λr ∈ σρ(A2) follows from (C1) of Theorem 4.4, and conditions (c2) and (c3) are,
respectively, a direct result of (C2) and (C3). Finally, (c4) is implied from (C4) using Lemma A.1.

14



unknown matrix. Since conmatk∗(A, b) is full rank by assumption and k∗ ≥ n−h, M
is of full rank as well. Then, it is known from [4, Lemma 10] that pA(λ) divides pX(λ).
Hence, we can choose X such that pX(λ) = h(λ). A possible choice of X, having
substituted k∗ for k, is then given by (22)-(23). It is clear from (22)-(23) that X

admits a positive solution. Based on Corollary 4.2, this implies that Reachset∞(A, b)
is polyhedral.

Remark 4.6. For a polyhedral Reachset∞(A, b) the following can be observed:
(a) Due to (21) and from the second part of the proof of Theorem 4.5 the vertex num-

ber of Reachset∞(A, b), k∞vert, is at least n−h, which implies that Reachset∞(A, b)
has at least n generators. It has exactly n generators (i.e., it is simplicial) if and
only if the characteristic polynomial pA2

of A2 has non-positive coefficients.
(b) In the view of Lemma A.2, Reachset∞(A, b) can be expressed as

Reachset∞(A, b) = cone
(

[b Ab . . . Ak−1b vf,0 . . . vf,h−1]
)

, where
vf,0, . . . ,vf,h−1 are the h distinct positive eigenvectors of Ah associated with the
eigenvalue ρh(A).

Example 4.7 (polyhedral Reachset∞(A, b)). Consider the discrete-time linear
time-invariant positive system of Definition 2.1 with system matrices

A =





0.9727 0 0.0263
0.0388 0.1273 0.2156

0 3.4497 0



 , b =





0
1
1





whereA is primitive, i.e., is irreducible with cyclicity index h = 1. We have spec(A) =
{1, 0.9,−0.8}. We can assume A1 = 1, and A2 = diag(0.9,−0.8). Using Theorem 4.5,
it is immediate that conditions (c1) and (c2) hold as λ = 0.9 is a simple eigenvalue of
A2, which equals the spectral radius ofA2. Condition (c1) holds as well since the polar
angle of λ = −0.8 is not an integer multiple of the polar angle of λ = 0.9. Hence, it can
be concluded that the infinite-time reachable subset Reachset∞(A, b) is polyhedral.
We can also conclude that A2 has a positive recursion, which is readily verified as
pA2

(λ) = λ2 − 0.1λ− 0.72. Figure 2 illustrates the growth of Reachsetk(A, b). It can
be observed that Reachsetf(A, b) is not polyhedral since the cone keeps growing for
increasing values of k. Its closure is, however, polyhedral as shown in Figure 2d.

Example 4.8 (non-polyhedral Reachset∞(A, b)). Consider the time-invariant
discrete-time linear positive system of Definition 2.1 with system matrices

A =





0 1 0
1 0 0.5
0 0.4 1



 , b =





0
1
0



 ,

where A has cyclicity index h = 1 with spec(A) = {−1.05, 0.7116, 1.3383}. One can
assume A1 = 1.3383 and A2 = diag(−1.05, 0.7116). It is immediate that condition
(c1) of Theorem 4.5 is not satisfied as 0.7116 6= ρ(A2). Therefore, based on this
theorem, Reachset∞(A, b) is not polyhedral. This is illustrated by Figure 3.d, from
which it is clear that Reachset∞(A, b) is approaching a round cone as introduced in
Section 2.
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(a) Reachsetk(A, b), k = 3 (b) Reachsetk(A, b), k = 8

(c) Reachsetk(A, b), k = 19

(d) Reachsetk(A, b), k=3 (red), 8
(blue and red), 19 (green, blue and
red) and Reachset∞(A, b)(the triangle
with the red vertex)

Fig. 2: a,b,c: The growth of the reachability cone Reachsetk(A, b) of Example 4.7 for
different values of k, where generators of the cone are marked by asterisks, and the
Frobenius eigenvector is marked by a red dot. d: The growth of the reachable cone
mapped on the 3-dimensional simplex S = {x ∈ R3

+|1
Tx = 1}.

5. When is the Finite-Time Reachable Subsets a Polyhedral Set?. The
polyhedrality of the finite-time reachability set from the origin, Reachsetf(A, b), will
be proven to be a special case of polyhedrality of Reachset∞(A, b) but with stricter
requirements.

In this section we investigate the polyhedrality of the finite-time reachable set
from the origin, Reachsetf(A, b). Consider a linear positive system with an irreducible
system matrix A ∈ Rn×n

+ . with the cyclicity index h ∈ {1, . . . , n}. It follows from
Proposition 4.1 that the finite-time reachable set from the origin Reachsetf(A, b) is
polyhedral if and only if there exists a positive integer k∗ ∈ Z+ such that

Reachsetk∗+1(A, b) ⊆ Reachsetk∗(A, b),(25)

⇔ Ak∗

b ∈ Reachsetk∗(A, b).(26)

The smallest k∗ for which (26) holds is referred to as the vertex number, kvert, of
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(a) Reachsetk(A, b), k = 3 (b) Reachsetk(A, b), k = 6

(c) Reachsetk(A, b), k = 10

(d) Reachsetk(A, b), k = 3 (red re-
gion), k = 6 (red and blue regions),
k = 10 (red, blue and green regions).
Reachset∞(A, b) approaches a “round
cone”.

Fig. 3: a,b,c: The growth of the reachability cone Reachsetk(A, b) of Example 4.8 for
different values of k, where generators of the cone are marked by asterisks, and the
Frobenius eigenvector is marked by a red dot. d: The growth of the reachable cone
mapped on the 3-dimensional simplex S = {x ∈ R3

+|1
Tx = 1}.

Reachsetf(A, b). Note that (26) also implies that

(27) cone
(

[Af,0b . . . Af,h−1b]
)

⊆ Reachsetkvert
(A, b),

which is clearly a restriction on (17).

Corollary 5.1. For an irreducible A ∈ Rn×n
+ with cyclicity index 1 ≤ h ≤ n

and for b ∈ R+, equivalence of the following statements follows directly from the above
argument:

(a) Reachsetf(A, b) is polyhedral.
(b) There exists an integer kvert ∈ Z+ such that cone

(

[b Ab . . . Akb]
)

is A-
invariant for any k ≥ kvert.
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(c) There exists an integer kvert ∈ Z+ such that for the matrix equation

A[b Ab . . . Ak−1b] = [b Ab . . . Ak−1b]X,

there exists a solution X ∈ R(k)×(k)
+ , with k ≥ kvert.

(d) Based on (27) and Lemma A.2, there exists an integer kvert ∈ Z+ such that
for any k ≥ kvert, cone

(

[vf,0 . . . vf,h−1]
)

⊆ Reachsetk(A, b).

The following theorem provides necessary and sufficient conditions on spec(A) for
polyhedrality of Reachsetf(A, b). These conditions turn out to be a conservative
version of those of Theorem 4.5.

Theorem 5.2 (Polyhedrality of Reachsetf(A, b)). Let A ∈ Rn×n
+ be irreducible

with index of cyclicity h ∈ {1, . . . , n} and b ∈ Rn
+. Then the following statements are

equivalent:
(a) The finite-time controllable subset is polyhedral and hence there exists an integer

k∗ ∈ Z+, k
∗ ≥ kvert, such that Reachsetf(A, b) = Reachsetk∗(A, b).

(b) A has a positive recursion.
(c) The matrix A2, defined in Definition A.3, does not have any positive eigenvalue.

Proof. (a) ⇒ (b) ⇒ (c): Based on 4.2 with k ≥ n we obtain

A
(

conmatk(A, b)
)

=
(

conmatk(A, b)
)

X,

where X ∈ Rk×k
+ is given by

X =















0 0 · · · 0 α0

1 0 · · · 0 α1

0 1 0 α2

...
. . .

...
0 · · · 0 1 αk−1















.

Since, by assumption, conmatn(A, b) is of full rank and k ≥ n, there exists
[4, Lemma 3.10] a polynomial Q(λ) of positive degree such that pA(λ)Q(λ) = pX(λ) =
λk−αk−1λ

k−1−· · ·−α1λ−α0, which, in the view of Definition 4.3, proves that A has
a positive recursion. Noting that (b) is equivalent to condition (B) of Theorem 4.4
([46, Th. 5]), all conditions (C1)-(C4) are then fulfilled. In particular, (C4) holds
as conditions (C1)-(C3) are already satisfied for a positive irreducible matrix due to
the Perron-Frobenius theorem [6, Th. 2.1.4, 2.2.20]. Condition (C4) requires that no
eigenvalue λ− ∈ σ−(A) has a polar angle of 2πk/h for k = 0, . . . , h−1. Since spec(A)
is invariant under a polar rotation of 2πm/h for any m ∈ Z, no λ− ∈ σ−(A) is then
positive. Noting that for an irreducible matrix,

(

σρ(A) \ {ρ(A)}
)

∩ Rs+ = ∅ and
that spec(A2) = (σ−(A) ∪ σρ(A) \ {ρ(A)}), one concludes that A2 has no positive
eigenvalue.

(c)⇒ (b)⇒ (a): Given (c), we have spec(A2)∩Rs+ = ∅. For an irreducible matrix
it holds that

(

σρ(A)\{ρ(A)}
)

∩Rs+ = ∅. Since spec(A2) = σ−(A)∪(σρ(A)\{ρ(A)}),
it follows that σ−(A) ∩ Rs+ = ∅, from which it can be immediately concluded that
∄λ ∈ σ−(A), λ = |λ|exp(i2πm/h) for any m ∈ Z. Hence, we establised that (C4) of
Theorem 4.4 ([46, Th. 5]) holds for pA(λ). Moreover, statements (C1)-(C3) hold as
well for pA as A is irreducible. Therefore, due to (B) of Theorem 4.4, there exists a
polynomial Q of positive degree, such that pA(λ)Q(λ) = λk∗

− αk∗−1λ
k∗−1 − · · · −

α1λ − α0, where k∗ ≥ n and αi ≥ 0, i = 0, 1, . . . , k∗ − 1. This proves that A
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a: Reachsetk(A, b), k = 3 b: Reachsetk(A, b), k = 4 c: Reachsetk(A, b), k = 6

Fig. 4: Example 5.4: growth of the reachability cone mapped on the 3-dimensional
simplex S = {x ∈ R3

+|1
Tx = 1}; the generators of the cone and the Frobenius

eigenvector are, respectively, marked by asterisks and a dot.

has a positive recursion based on Definition 4.3. Then, (a) immediately follows as

Ak∗

b =
∑k∗−1

i=0 αiA
ib.

Remark 5.3. Note that since deg
(

Q(λ)
)

≥ 0, kvert of Reachsetf(A, b) is at least
n, and it equals n if and only if pA(λ) = λn−αn−1λ

n−1−· · ·−α1λ−α0 with αi ≥ 0,
i = 0, . . . , n− 1. Hence Reachsetf(A, b) is a simplicial cone (i.e., has n generators) if
and only if the characteristic polynomial of A has non-positive coefficients. One such
matrix is a cyclic matrix with cyclicity index h = n as pA(λ) = λn − ρn(A).

Comparing Theorem 4.5 to Theorem 5.2 reveals that the latter is a restricted version
of the former. For example, Theorem 4.5(b) requires a part of A (i.e., A2) to have
a positive recursion while Theorem 5.2(b) requires the entire A to have a positive
recursion.

Example 5.4 (polyhedral Reachsetf(A, b)). Consider the time-invariant discrete-
time linear positive system of Definition 2.1 with system matrices

A =









0 1.6333 1.1049 0
23.5667 6.0944 0 0

0 0 1.1225 1.0672
0 1.6611 0 0.7830









, b =









0
0
1
1









,

where A is irreducible with cyclicity index h = 1. It can be verified that spec(A) =
{10,−4, 1 + 1i, 1 − 1i}. One can recognize that no eigenvalue of A2 = diag(−4, 1 +
i, 1 − i) is positive. Therefore, condition (c3) of Theorem 5.2 holds and it follows
that A has a positive recursion. In fact, it can be verified that in this case it holds
that A6 = 166.7569I4 + 16.1434A + 39.7036A4 + 6.0262A5, where I4 denotes the
identity matrix of dimension 4×4. In addition, we can conclude that Reachsetf(A, b)
is polyhedral with kvert = 6. This is illustrated by Figure 4, where it is observed that
Reachsetk(A, b) stops growing for k ≥ 6, i.e., Reachsetk(A, b) = Reachset6(A, b) for
any k ≥ 6. One can also notice from Figure 4c that Clim ⊂ Reachsetkvert

(A, b), with
Clim introduced in Definition A.4. Note that in this particular example, since h = 1,
we have Clim = cone(Af,0b) = {cvf |c ∈ Rs+}, where vf is the Frobenius eigenvector
of Ah.

Remark 5.5 (Concluding Remark on Theorem 4.5 and Theorem 5.2). Theorem 4.5
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and Theorem 5.2 emphasize the equivalence between the three statements; but this
does not imply that all cases are directly verifiable. In fact, it is very difficult to
verify statement (b) directly especially since k∞vert and kvert are not known a priori. In
practice, statement (a) is practically what one is interested in, and (c) provides numer-
ically verifiable conditions. Statement (b) serves the dual purpose of facilitating the
proof and providing insight into otherwise-very-abstract statement (a) and statement
(c) by relating them to the matrix having a (partial) positive recursion. Moreover,
the characterization (b) will be useful for a different algebraic characterization which
is to be developed.

Special Case. So far it has been assumed that rank(conmatn(A, b)) = n. Based
on this assumption, the polyhedrality of the finite-time reachable set only depends on
the spectrum of A. In addition, kvert ≥ n for Reachsetf(A, b). We now point out that
in the absence of such an assumption, Reachsetf(A, b) can depend on the structure
of b and that the vertex number can be less than n. In particular, it will be shown
that kvert = h if b ∈ Rn

+ is of a particular structure.

Theorem 5.6. Let A ∈ Rn×n
+ be irreducible with cyclicity index h with 0 ≤ h ≤

n− 1. Then, Reachsetf(A, b) = cone
(

conmath(A, b)
)

if b ∈ cone
(

[vf,0 . . . vf,h−1]
)

,
where vf,i, i = 0, . . . , h− 1 are the h positive eigenvectors of Ah.

Proof. Assume b =
h−1
∑

i=0

civf,i for some c ∈ Rh
+. Then, since

Ahb =
h−1
∑

i=0

ciρ
h(A)vf,i = ρh(A)b,

it is immediate to see that A
(

conmath(A, b)
)

=
(

conmath(A, b)
)

X has a positive
solution

X =















0 0 · · · 0 ρh(A)
1 0 · · · 0 0
0 1 0 0
...

. . .
...

0 · · · 0 1 0















,

which, in the view of Corollary 5.1, completes the proof.

For A primitive (i.e., h = 1), this results in the obvious case of Reachsetf(A, b) being
a ray along the Frobenius eigenvector vf of A when b = cvf for any c ≥ 0.

6. Does the Reachable Set contain a Prespecified Set?. A direct conse-
quence of polyhedrality of infinite- or finite-time reachable subset discussed in Sec-
tion 4 and Section 5 is that it enables us to determine whether a given subset of the
positive vector space is reachable from the origin. Given a cone Cobj ⊆ Rn

+ of control
objectives or a subset of Rn

+, the problem considered here is to investigate whether
Cobj is contained in Reachsetf(A, b) or in Reachset∞(A, b). Of particular interest is
when Cobj ⊂ Rn

+ is a polyhedral cone or a polytope. Note that if the control objective
cone Cobj is not polyhedral then once can outer approximate it by a polyhedral cone
Cout ⊆ Rn

+ such that Cobj ⊂ Cout.
Here, it is assumed that the reachability cone or its closure is polyhedral and that

its corresponding vertex number or an upper bound of it is known. Note that the
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authors are not aware of any method to directly compute an upper bound for kvert
or for k∞vert. Nonetheless, such an upper bound could be imposed by length of the
control sequence that can be practically applied. Let N ∈ Z+ denote an upper bound
to k∞vert, or, where applicable, an upper bound to kvert. Hence Reachset∞(A, b) =
cone

(

[b . . . AN−1b vf,0 . . . vf,h−1]
)

and/or Reachsetf(A, b) = cone
(

[b . . . AN−1b]
)

.

Proposition 6.1. Let Cobj = cone([p1 . . . pm]) or Cobj = conv([p1 . . . pm]),
where pi ∈ Rn

+, i = 1, . . . ,m. Then
(a) Cobj is reachable in finite time if and only if

∀ p ∈ {p1, . . . ,pm}, p ∈ Reachsetf(A, b).

(b) Cobj is reachable in infinite time (to be called almost reachable) if and only if

∀p ∈ {p1, . . . ,pm}, p ∈ Reachset∞(A, b), and

∃ p′ ∈ {p1, . . . ,pm} such that p′ /∈ Reachsetf(A, b).

Proof. The proof is obvious from Proposition 3.3 and considering the fact that a
cone can be expressed as a positive combination of its generators.

It is obvious from Proposition 6.1, that checking for reachability from the origin
involves checking the following condition for each i ∈ {1, . . . ,m}:

(28) ∃xi ∈ {z|Mz = pi, z ∈ RN
+},

where M ∈ Rn×N
+ . Depending on the problem being investigated, either

M = [b . . . AN−1b vf,0 . . . vf,h−1] or M = [b . . . AN−1b].
In general, since N ≥ n (see Remark 4.6 and Remark 5.3), (28) defines an un-

derdetermined system of equations. It is known that the positive solution of (28) is
not unique in general [18, 51], and that uniqueness is guaranteed when the solution is
sufficiently sparse [18]. The author of [16] characterizes necessary and sufficient condi-
tions on the polytope P = conv(M) for uniqueness of the solution, and he proves that
a unique solution exists if and only if P is k-neighborly 2. In [17, 51], an equivalent
condition is presented in terms of the null space of M . In this regard, this problem
relates to the sparse measurement problem, where the aim is to reconstruct a positive
sparse vector from lower-dimensional linear measurements [40]. The results in this
field do not directly apply here as the necessary sparsity condition is usually not met.
In addition, we are not interested in finding the sparsest solution of (28), which is
normally an NP-hard problem [18].

Consider for n ∈ Z+ the positive matrix A ∈ Rn×n
+ . Let N ∈ Z+ with N > n

be an upper bound of kvert or an upper bound of k∞vert. Denote by C(N,n) size of
the set of all n-subsets of ZN = {1, . . . , N}. Let the index set Ij be an n-subset (i.e.,

|Ij | = n) of ZN for j = 1, 2, . . . , C(N,n) such that ∪
C(N,n)
j=1 Ij = ZN and Ij 6= Ik,

j, k = 1, 2, . . . , C(N,n), j 6= k.
Let IIj

denote the matrix with n columns, where the columns are chosen from
columns of IN (i.e., the identity matrix of dimension N) according to the index set
Ij and let Cobj = cone([p1 . . . pm]).

Proposition 6.2. Consider the above defined objects. Then, for any
i ∈ {1, . . . ,m}, equation (28) has a solution xi if and only if,

(29) Xi =
{

xi
j

∣

∣xi
j = IIj

(MIIj
)−1pi, xi

j ∈ RN
+ , j = 1, . . . , C(N,n)

}

,

2A k-neighborly polytope is a convex polytope in which every set of k or fewer vertices forms a
face [54, 23].
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is a non-empty set.

Proof. From our assumption we have pi ∈ cone(M). Since N > n, due to the
Carathéodory theorem [1], pi also lies in at least one simplicial cone generated by
n columns of M . Let J i ⊂ {1, . . . , N} with |J i| = n be an index set composed of
the indices of the columns generating this simplicial cone, and let MJ i denote the
columns of M corresponding to J i. We can then write pi ∈ cone(MJ i), which can
be expressed as MIJ izi = pi having a solution zi ∈ Rn

+. Since M has full row rank
and IJ i is of full column rank, one obtains zi = (MIJ i)−1pi. Finally, we obtain a
solution xi

j ∈ RN
+ , where xi

j = IJ izi = IJ i(MIJ i)−1pi.

The converse is proved in a straightforward manner by noticing that every z ∈ Xi

satisfies (28).

Remark 6.3. Let Xi =
{

xi
1, . . . ,x

i
qi

}

for some qi ∈ Z+. It is then clear from the

proof of Proposition 6.2 that the set of solutions of (28) is the convex hull of Xi, i.e.,
we have for (28) that xi ∈ conv(Xi).

Note that even though Proposition 6.2 provides a method to determine whether Cobj ⊆
cone(M) by checking inclusion of Cobj in any simplicial subcone of cone(M), the
computational complexity of this method can be prohibitive as the check must be
conducted for all C(N,n) simplicial subcones in the worst case. A more practical
approach is then presented by the following proposition.

Proposition 6.4. Let

Mf = [b . . . AN−1b],

M∞ = [b . . . AN−1b vf,0 . . . vf,h−1],

Cobj = cone([p1 . . . pm]).

Define the following optimization problem for each i ∈ {1, . . . ,m}:

min
xi

xT
i 1(30)

subject to Mxi = pi, and xi ≥ 0.

We then have the following:
(a) The optimization problem (30) with M = M∞ has an optimal solution x∗

i ∈ RN
+

if and only if (28) has a solution with M = M∞.
(b) The optimization problem (30) with M = Mf has an optimal solution x∗

i ∈ RN
+

if and only if (28) has a solution with M = Mf.

Proof. If (28) has a solution, the set Xi in (29) is non-empty. As mentioned in
Remark 6.3, the feasible set of (30) is conv(Xi). Therefore, the convex optimization
problem with linear penalty function converges to the minimum 1-norm solution in
the feasible set. The converse is obvious.

Example 6.5. We conclude this section with an example illustrating the applica-
tion of Proposition 6.4. Consider the system matrices of Example 5.4. Let Cobj be
the polytope given by

Cobj =
{

p ∈ R4
+

∣

∣

∣p =

4
∑

i=1

λipi, λi ≥ 0,

4
∑

i=1

λi = 1
}

,
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where

p1 = [1, 3, 1, 1]T, p2 = [1, 3, 4, 3]T,

p3 = [1, 2, 2, 1]T, p4 = [1, 1, 2, 1]T.

We will now check whether the system initially at rest can be steered to any point
in Cobj in finite time. From Example 5.4, it is known that kvert = 6. Thus taking
M = [b Ab . . . A5b], we solve the linear programming problem (30) using the Dual-
Simplex algorithm implemented in the Matlab Optimization Toolbox. The optimal
solutions are obtained as

x∗
1 = [0.1209, 0.3735, 0, 0.0078, 0, 0.0001]T,

x∗
2 = [2.3460, 0.6165, 0.0876, 0, 0.0003, 0]T,

x∗
3 = [0.2989, 0.6982, 0.0473, 0, 0.0003, 0]T,

x∗
4 = [0.2517, 0.7798, 0.0071, 0, 0.0003, 0]T.

Hence, the vertices of Cobj can be reached from the origin in a finite number of steps
using positive inputs, which are determined by the solution vectors x∗

i . Moreover,
since kvert = 6, every vertex of Cobj can be reached in at most 6 steps from the
origin. Since Cobj is the convex hull of its vertices, we can conclude that any point

p =
∑4

i=1 λipi ∈ Cobj can be reached from the origin in at most 6 steps using the

input sequence u∗ =
∑4

i=1 λix
∗
i .

7. Conclusions and Future Work. The main contribution of the paper is the
result that the reachable set from the origin of a linear positive system can be either a
polyhedral cone or a nonpolyhedral cone depending on the system matrices. Among
other applications, this has direct consequences for the realization problem, where the
choice for the reachable subset from the origin is essential as observability of a linear
positive system is then of interest only for states in the reachable set.

For a single-input case, necessary and sufficient conditions for polyhedrality of
the reachable set from the origin and its closure are provided. These conditions are
expressed in terms of characteristics of eigenvalues of the system. Finally, the paper
presents a method to determine for a positive linear system whether a given target
set in the positive orthant can be reached from the origin.

There are several technical issues to be studied. Is it possible to determine in a
finite number of steps for a positive matrix whether there exists a positive recursion
for it?

In this paper, we have focused on the single input case, where b ∈ Rn
+. The

problem of characterizing the reachability set from the origin for the multi-input case is
an interesting problem because the results developed here are not directly applicable.
The main issue, as noted in [4], is that the direct sum of two non-polyhedral cones
may still result in a polyhedral cone. Therefore, one cannot apply the results of this
paper to a set of systems (A, bi) separately, with bi being a column of B.

Finally, it is also of interest to investigate the geometry of the reachable set when
the controllability matrix is not of full rank. As far as the authors of this paper know,
this is still an open issue.
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Appendix A. Positive Matrices. The reader finds in this appendix a sum-
mary of the theory of positive matrices including concepts and decompositions as far
as is necessary for the understanding of this paper. This theory is well known and
therefore not stated in the body of the paper.

Decompositions of Positive Matrices. As is well known in the theory of
positive matrices, such matrices can be either reducible or irreducible as defined next.
See the books [6, 28] for the definitions.

Definition A.1. Consider a positive matrix A ∈ Rn×n
+ for n ∈ Z+. Call this

matrix reducible if

∃ P ∈ Rn×n
+ , a permutation matrix,

∃ n1, n2 ∈ Z+, ∃ A11 ∈ Rn1×n1 , A12 ∈ Rn1×n2 , A22 ∈ Rn2×n2 ,

such that n = n1 + n2 and

A = P

(

A11 A12

0 A22

)

PT .(31)

Call the matrix A irreducible if (1) A 6= 0 and (2) A is not reducible.
Call the matrix A fully reduced if either n = 1 or there exists a transformation by

a permutation matrix P so that PAPT has a decomposition in upper-block-diagonal
form with only irreducible submatrices on the block-diagonal. Thus the lower-block-
diagonal matrices are all zero. The particular form of a fully-reduced positive matrix
is thus

A = P



















A11 A12 A13 . . . A1,n−1 A1,n

0 A22 A23 . . . A2,n−1 A2,n

0 0 A33 . . . A3,n−1 A3,n

...
...

. . .
...

...
0 0 . . . An−1,n−1 An−1,n

0 0 . . . 0 An,n



















PT ,(32)

where P ∈ Rn×n
+ is a permutation matrix and the matrices on the block-diagonal of

(32) are all irreducible positive matrices.

Decompositions of Positive Matrices Based on Eigenvalues. Recall that
for a matrix A ∈ Rn×n the spectrum is defined as the set of its eigenvalues and the
spectral radius is defined as ρ(A) = maxλ∈spec(A) |λ|. It follows from [6, Th. 1.3.2]

that every positive matrix A ∈ Rn×n
+ has at least one eigenvalue which equals its

spectral radius.

Definition A.2. [6, Def. 2.2.26]. Define for an integer n ∈ Z+ and an irre-
ducible positive matrix A ∈ Rn×n

+ , the index of cyclicity of A as the number h ∈ Z+

such that h equals the maximum number of distinct eigenvalues of A which are in
modulus equal to the spectral radius ρ(A). In mathematical notation:

h = max{k ∈ Zn| ∀ i ∈ Zk, |λi(A)| = ρ(A)}.(33)

It follows from the comment above the previous definition that h ≥ 1. If h ≥ 2 then
one says that the matrix A is cyclic of index h.

Definition A.3. Consider an integer n ∈ Z+ and an irreducible matrix A ∈
Rn×n

+ . Partition the set of eigenvalues into the following two subsets: σρ(A), which
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is the spectrum of A on the circle centered at origin with radius ρ(A), and σ−(A),
which is the spectrum of A strictly inside the disc centered at origin with radius ρ(A).
Hence,

σρ(A) = {λ ∈ spec(A)| |λ(A)| = ρ(A)},(34)

σ−(A) = {λ ∈ spec(A)| |λ(A)| < ρ(A)}

with

spec(A) = σρ(A) ∪ σ−(A), σρ(A) ∩ σ−(A) = ∅;

n1 = |σρ(A)| = h, n2 = |σ−(A)| = n− n1 = n− h.

In addition, there exists a nonsingular matrix S ∈ Rn×n such that the matrix S−1AS

is block-diagonal with,

S−1AS = Block-diag(A1,A2),(35)

A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 , spec(A1) = σρ(A), spec(A2) = σ−(A).

Finally, define the sets σρ(A2) and σ−(A2) in a similar manner with A being replaced
by A2 in (34) and define the set σ0(A) ⊆ σρ(A2) as the set of all eigenvalues of A2

whose whose polar angle is a rational multiple of 2π.

The notation |σρ(A)| denotes the number of elements of the indicated set. That the
decomposition (35) is indeed a partition follows from Perron-Frobenius theorem [6,
Th. 2.1.4, 2.2.20] and from the concept of spectral radius as the maximal value of the
absolute values of all eigenvalues. In general, the matrices A1 and A2 depend on S.
However, the relations (35) hold for any such S. When the matrices A1 and A2 are
used in the body of the paper, then these are characterized by their spectra. Also
note that in contrary to σρ(A), σρ(A2) can be empty set.

Next, we present the following lemma about the existence of a subset of eigen-
values that are among the (M h)-th root of unity for some M ∈ Z+. This lemma
is used in the sequel for deriving the conditions on spec(A) for A to have a positive
recursion.

Lemma A.1. Consider the objects of Definition A.3.
Then, there exists a minimal integer M ∈ Z+ such that

(36) σ0(A) ⊆
{

λ ∈ spec(A2)
∣

∣

∣ λ = ρ(A2) exp(
2πk

Mh
i), k = 0, . . . ,Mh− 1

}

,

or, equivalently, there exists a minimal integer M ∈ Z+ such that the eigenvalues
of A2/ρ(A2) with unit modulus whose arguments are a rational multiple of 2π are
among the (M h)-th roots of unity.

Proof of Lemma A.1. Let δ0 be a set of nδ0 ∈ Z+ members of σ0 with the prop-
erty that the difference between the polar angle of no two members of δ0 is an integer
multiple of 2π/h, or formally we define δ0 = {λ1, . . . , λnδ0

∈ σ0|arg(λi) − arg(λj) 6=

2zπ/h, i 6= j, z ∈ Z}. For λj ∈ δ0, j = 1, . . . , nδ0 , let arg(λj) =
2πpj

qj
. Define the sets

σ0
j ⊂ σ0 for j = 1, . . . , nδ0 as

σ0
j =

{

λ ∈ spec(A2)
∣

∣

∣λ = ρ(A2) exp
(

(k/h+ pj/qj)2πi
)

, k = 0, . . . , h− 1
}

,
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or equivalently using the notation sj,k ≡ kqj + hpj(mod hqj),

σ0
j =

{

λ ∈ spec(A2)
∣

∣

∣λ = ρ(A2) exp
(sj,k
hqj

2πi
)

, k = 0, . . . , h− 1
}

.

It is clear that σ0
1 , . . . , σ

0
nδ0

are mutually disjoint. In addition, since the eigenvalues of

A are invariant under polar rotation of 2kπ/h for any k ∈ Z, we have σ0 = ∪
nδ0

j=1σ
0
j .

Noting that 0 ≤ sj,k ≤ hqj−1 for k = 0, . . . , h−1 and for j = 1, . . . , nδ0 , one observes
that σ0 has the form proposed in (36) by choosing M = lcm(q1, . . . , qnδ0

).

It follows from [6, Th. 2.2.20] that if the matrix A ∈ Rn×n
+ is irreducible and if A

is of index of cyclicity h ≥ 2 then there exists a permutation matrix P ∈ Rn×n and
matrices {Ai,i+1 ∈ R

ni×ni+1

+ , i = 0, 1, . . . , h− 1 (mod h)} such that,

h−1
∑

i=0

ni = n,

A = P















0 A1,2 0 . . . 0 0
0 0 A2,3 . . . 0 0
... 0

. . . Ah−2,h−1 0
0 0 0 . . . 0 Ah−1,h

Ah,1 0 0 . . . 0 0















P T ,(37)

with square diagonal blocks.

One then says that the positive matrix A is cogredient to the block matrix of equation
(37); [6, Def. 2.1.2].

The irreducible positive matrix A ∈ Rn×n
+ is called primitive if its trace is strictly

positive; see [6, Def. 2.1.8, Cor. 2.2.28].
It follows from the proof of [6, Th. 2.2.30] that if the matrix A ∈ Rn×n

+ is
irreducible and if A is of index of cyclicity h ≥ 2 then there exists a permutation
matrix P ∈ Rn×n such that

Ah = P















C1,1 0 0 . . . 0 0
0 C2,2 0 . . . 0 0
... . . .

...
. . . 0 0

0 0 0 . . . Ch−1,h−1 0
0 0 0 . . . 0 Ch,h















P T ,

∀ i ∈ Zh, Ci,i ∈ Rni×ni

+ are primitive matrices with ρ(Ci,i) = ρh(A);

h
∑

i=1

ni = n.

Sources for the above theory are not only [6] but also the book [9, Ch. 3].

Limits of Powers of Positive Matrices. It follows from Theorem [6, Th.
2.4.1] that for a primitive irreducible matrix A ∈ Rn×n

+ , the following limit exists:

lim
k→∞

(

A

ρ(A)

)k

∈ Rn×n
+ .

Next the above results can be combined. Consider an irreducible matrix A ∈
Rn×n

+ . Assume that the index of cyclity of A is such that h ≥ 2. It then follows
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from the above that Ah is cogredient to a block diagonal matrix with on the diagonal
primitive irreducible matrices. From the above existence of the limit then follows
that,

Ah = P















C1,1 0 0 . . . 0 0
0 C2,2 0 . . . 0 0
... . . .

...
. . . 0 0

0 0 0 . . . Ch−1,h−1 0
0 0 0 . . . 0 Ch,h















P T ,

lim
k→∞

(

Ah

ρh(A)

)k

= P Block-diag
(

lim
k→∞

(C1,1/ρ
k(C1,1), . . . , lim

k→∞
(Ch,h/ρ

k(Ch,h)
)

P T

= P Block-diag(C∞,1,1, . . . ,C∞,h,h) P
T ∈ Rn×n

+ .

Next, we introduce the following lemma that characterizes the limit behavior of
conmatk(A, b) as k → ∞, and that is used for characterizing the infinite-time reach-
able subset Reachset∞(A, b).

Definition A.4. Let the positive matrix A ∈ Rn×n
+ be irreducible with index of

cyclicity h with 1 ≤ h ≤ n and let b ∈ Rm
+ . Define the matrices and the limit cone

according to

∀ i ∈ {0, . . . , h− 1}, Af,i = limk→∞

(

(

A

ρ(A)

)h
)k

Ai,

Clim = cone([Af,0b . . . Af,h−1b]),

Define for i = 0, . . . , h − 1 the positive eigen vectors vf,i ∈ Rn
+ of the h distinct

eigenvalues of the matrix Ah associated with the Perron root of ρh(A); thus,

Ah vf,i = ρh(A) vf,i.

Lemma A.2. Consider the objects of Definition A.4. Then the limit cone satisfies

Clim ⊆ cone([vf,0 . . . vf,h−1]).

Proof of Lemma A.2. Since A is irreducible, there exists a monomial matrix S ∈
Rn×n

+ [6] such that

Â = STAS =

















0n1
A1 0 . . . 0

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0 . . . . . . 0nh−1
Ah−1

Ah 0 . . . . . . 0nh

















, b̂ = STb

where 0ni
∈ Rni×ni , i ∈ N are square blocks with

h
∑

i=1

ni = n, and where Ai has

no zero rows or columns with L1 =

h
∏

i=1

Ai being an irreducible matrix. Then we
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have Âh = diag(L1, . . . , Lh), where Lk =

h
∏

i=k

Ai

mod(h+k−1,h)
∏

j=1

Aj is a primitive matrix of

dimension nk×nk with Perron root ρh(A). Define the matrix Âf,i = limp→∞

Âph

ρph
Âi

for i = 0, . . . , h− 1. Since Li, i = 1, . . . , h is primitive, it follows from [6] that

Âf,0 =















x1
1 . . . xn1

1 0 0 0 0 . . . 0
0 . . . 0 x1

2 . . . xn2

2 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 x1
h . . . xnh

h















,

where xk
i = cki xi with cki , k = 1, . . . , ni, being some positive scalars and with xi ∈

Rni×ni

s+ being the Frobenius eigenvector of Li. Note that due to the block structure of

Â, Âf,i retains the same structure as Âf,0 up to a scaled permutation of its columns

for i = 1, . . . , h− 1. Hence, we have Âf,ib̂ ∈ cone(C), where

C =















x1 0 . . . 0
0 x2 . . . 0
0 0 . . . 0
...

... . . .
...

0 . . . 0 xh















.

In the original coordinates, we have Af,ib ∈ cone(SC). Clearly, since the columns

of C are the positive eigenvectors of Âh and since S is monomial, we have SC =
[vf,0 . . . vf,h−1], where vf,i ∈ Rn×n

+ is the (i + 1)-th positive eigenvector of Ah for
i = 0, . . . , h−1. This proves that cone([Af,0b . . . Af,h−1b]) ⊆ cone([vf,0 . . . vf,h−1]).
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