
Delft University of Technology
Delft Center for Systems and Control

Technical report 20-020

The distributed Bayesian algorithm:
Simulation and experimental results for a
cooperative multi UAV search use-case∗

J. Fransman, J. Sijs, H. Dol, E. Theunissen, and B. De Schutter

If you want to cite this report, please use the following reference instead:
J. Fransman, J. Sijs, H. Dol, E. Theunissen, and B. De Schutter, “The distributed
Bayesian algorithm: Simulation and experimental results for a cooperative multi UAV
search use-case,” Proceedings of the 11th International Workshop and Optimization
and Learning in Multiagent Systems (OptLearnMAS 2020), Virtual conference, May
2020.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/20_020.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/20_020.html

The Distributed Bayesian algorithm: simulation and experimental
results for a cooperative multi UAV search use-case

Jeroen Fransman
Delft Center for Systems and

Control (DCSC), Delft University
of Technology

j.e.fransman@tudelft.nl

Joris Sijs
Netherlands Organisation for

Applied Scientific Research (TNO)

Henry Dol
Netherlands Organisation for

Applied Scientific Research (TNO)

Erik Theunissen
Netherlands Defence Academy

(NLDA)

Bart De Schutter
Delft Center for Systems and

Control (DCSC), Delft University
of Technology

ABSTRACT

In this work, the Distributed Bayesian (D-Bay) algorithm
is applied to an autonomous search use case. Within the
use case multiple unmanned aerial vehicles equipped with
cameras cooperatively search an area and minimize the re-
quired time. The use case is modeled within the continu-
ous Distributed Constraint Optimization Problem (DCOP)
framework. This framework extends the (discrete) DCOP
framework by allowing variables with continuous domains.
Compared to similar DCOP solvers, the characteristics of the
D-Bay algorithm are well suited for the use case and allow for
the implementation on autonomous vehicles with limited re-
sources (computational power, memory, and communication
bandwidth). Experimental results are given and these results
are used to validate a simulation environment. Within the
simulation environment various scenarios are implemented.
The D-Bay algorithm was able to find solutions within 3.5%
of the optimal solution with a limited amount of samples per
agent.

KEYWORDS

DCOP; Bayesian optimization; UAV; Cooperative search

1 INTRODUCTION

Autonomous vehicles are used for various tasks in order to
increase situational awareness. Examples include surveillance,
search, patrolling, observing, and pursuit-evasion. These tasks
are often represented as a mobile sensor coordination problem
[27], a cooperative search problem [2], or a patrolling problem
[21].

In the literature, numerous types of autonomous vehicles
have been used to perform cooperative search. The reader
is referred to the work of Veres et al. [23] for a systematic
overview of methodologies used for the main classes of au-
tonomous vehicles. For outdoor environments Unmanned
Aerial Vehicles (UAVs) are generally used thanks to their
ability to traverse a large number of types of terrain. This
work focuses on the cooperative search problem in an outdoor
environment performed by UAVs. In typical real-world use
cases, several UAVs need to search a predefined region in as

little time as possible to find particular objects or victims. In
these use cases, a single operator should be able to control all
vehicles in an easy and straightforward manner. Therefore, a
UAV should be able to optimize its own path with respect to
the paths of the other UAVs. For this reason, search problems
have been modeled within various frameworks, such as the
task allocation framework, Markov decision processes, and
game theory. The reader is referred to the work of Robin
and Lacroix [20] for a unifying taxonomy of search related
problems and a comprehensive survey of the application of a
wide range of problem frameworks. The usage of UAVs intro-
duces an implementation problem for the algorithms used to
optimize the individual paths as the complications arise from
limitations in communication, computation, and/or memory.
For UAVs these complications become apparent as the re-
quired hardware needs to be small and lightweight to reduce
negative effects on the endurance. Additionally, due to the
distance between the UAVs during real-world applications,
the communication capabilities to a central system are often
limited. In other words, UAVs are able to communicate with
nearby UAVs but not with a central system. This makes it
impractical to use a centralized approach.

The DCOP framework has been applied to a wide range of
problems. Some notable examples include the works of Meisels
[13], Modi et al. [14], Petcu and Faltings [17], Gershman
et al. [9], and Yeoh and Yokoo [25]. A problem modeled as
a DCOP is based on an objective function that quantifies
the collaborative goal of agents. Thanks to the focus on the
distributed nature of the underlying problems, the solvers
for DCOP are focused on local computation and explicit
communication strategies. This makes the DCOP framework
ideal for modeling and solving the distributed cooperative
search task.

It will be shown that the characteristics of the D-Bay
algorithm make it suitable for the application to UAVs with
limited resources. Secondly, experimental results are given
for a cooperative search use case with multiple UAVs to
illustrate the application of the D-Bay algorithm in a real-
world scenario. In the use case a predefined area needs to be
searched in as little time as possible. Additional simulation

results are given in order to evaluate the performance of the
D-Bay algorithm for a heterogeneous group of UAVs.

Section 3 introduces the D-Bay algorithm and evaluates its
characteristics. In Section 3.2 the overview of the hardware
and the software of the UAVs used in the experiments are
presented. Afterwards, experimental evaluation of the D-
Bay algorithm with multiple UAVs is included in Section 4.
Finally, Section 5 summarizes the results and defines future
work.

2 PROBLEM DEFINITION

We consider a cooperative search use case with multiple au-
tonomous quad-rotor vehicles. These vehicles are selected
thanks to their versatility and high maneuverability. As the
autonomous vehicles will distributively optimize their trajec-
tories, they are referred to as (autonomous) agents. Typically,
these search operations are performed by autonomous vehi-
cles equipped with one or more cameras. While surveying, the
images from the cameras are evaluated by image-processing
software to detect and identify objects of interest. The solu-
tion to the cooperative search problem involves an optimal
division of the search region between all agents. The optimal
division is defined as the division that will require the least
amount of time for all vehicles to complete the entire search
and to return to their initial position.

More specifically, we consider a (rectangular) search region
defined by its width and height as R = (Rw, Rh), where
Rw ≥ Rh. It is assumed that there are no obstacles and that
the size of the region is known by all agents. Every agent has
a single variable xi it can assign, where i is the agent index.
The variables of the agents are related to the size of their
individual segments Ri = (Ri,w, Rh) and Rw =

∑N
i=1 Ri,w.

The search problem is considered to be two-dimensional, as
the altitude for all UAVs is kept constant during the search.
The altitude results from a trade-off between the required
resolution for successful detection of the images and the size
of the area imaged by the camera. Higher resolution images
will therefore enable a larger observed area.

In addition to the time spent searching, the travel times of
the UAVs towards the start of their segments (pi,s), and from
the end of the segment (pi,f) back to their initial positions
(pi) are taken into account. The UAVs will traverse a series
of equidistance parallel legs within their search segments,
where a leg indicates a straight line during which scanning
is performed. This search pattern is often referred to as a
lawnmower pattern. As shown by Ablavsky and Snorrason
[1], the lawnmower pattern is optimal for a rectangular search
area and UAVs of which the sweep width is larger than the
turn radius. For quad-rotor vehicles this holds for any sweep
width as these platforms are holonomic. The sweep width is
based on the width of the camera image (li,w) on the ground.
In order to ensure complete coverage, the distance between
the legs is based on the sweep width such that consecutive
tracks interleave.

An additional distance (lt) is added before the start of the
leg to ensure that all oscillations (caused by the cornering)

are eliminated to ensure that the image quality is constant
while searching. The velocity of the UAVs during scanning
and transit is denoted by vs, and vt, respectively. An overview
of the search segment of a single agent can be seen in Figure 1.

Figure 1: Overview of the search segment of agent
ai.

For agent ai the number of legs of its lawnmower pattern
is defined by

Ni,l(xi−1, xi) =

⌈
Ri,w

2li,w

⌉
=

⌈
xi − xi−1

2li,w

⌉
,

where ⌈·⌉ is the ceiling operator. The start and finish positions
of the pattern of agent ai can be defined according to its
neighboring agent ai−1 as

pi,s(xi−1) = (xi−1 + li,w, 0),

pi,f(xi) =

{
(xi − li,w, 0) if Ni,l is even,

(xi − li,w, Rh) otherwise.

Based on these values and the properties of the search
area, the required time to scan a segment (including transit)
for ai is calculated as

fi(xi−1, xi) = Ti,s(xi−1) + Ti,sc(xi−1, xi) + Ti,f(xi), (1)

where the transit times (Ti,s(·) and Ti,f(·)) and the time spent
scanning (Ti,sc(·)) are defined as

Ti,s(xi−1) =
|pi − pi,s(xi−1)|2

vt
,

Ti,f(xi) =
|pi − pi,f(xi)|2

vt
,

Ti,sc(xi−1, xi) = Ti,c + Ti,l.

The time spent scanning depends on both the time required
for traversing the legs, defined as

Ti,l =
Ni,l(xi−1, xi)Rh

vs
,

and on cornering between the legs, defined as

Ti,c =
(Ni,l(xi−1, xi)− 1)2(lt + li,w)

vs
+ 2Ni,l(xi−1, xi)τ,

where τ is the time required by the UAV to make a turn. In
the next section the search problem will be modeled within
the DCOP framework.

2.1 Problem formulated as a DCOP

A Distributed Constraint Optimization Problem (DCOP)
is a problem framework that is based on a global objective
function that needs to be optimized in a distributed manner.
The global objective function is defined as the aggregate of
utility functions. Typically, the summation operator (

∑
(·)) or

the maximum operator (max(·)) are used as the aggregation
operator. The agents within the DCOP are defined based
on variables. Each agent is able to assign a value to its
variables. Instead of the global objective function, an agent
only knows two properties of the problem. (1) the local utility
functions of which its variables are used as argument, (2) its
neighboring agents, which are defined as agents that share
a utility function, i.e. if there exists a utility function of
which its arguments include variables of both agents. This
local view on the problem creates the need for the agents to
cooperate to optimize the assignment of their variables in
terms of the global objective function.

The value assignments are restricted by the domains of the
variables. This feature of DCOP makes it suitable for prob-
lems with bounded inputs such as many real-world problems.
However, conventionally the domains are defined as finite
discrete sets, while many real-world problems (including co-
operative search) are best described using finite continuous
sets. The reason for the discrete set definition is based on
the origin of the DCOP framework: DCOP originates from
the Constraint Satisfaction Problem (CSP) framework [22],
which is mainly used to model problems such as graph color-
ing problems and meeting scheduling problems. These prob-
lems inherently have finite and discrete domains. The DCOP
framework emerged from extending the CSP framework to
agent-based distributed optimization by Yokoo et al. [26]
and generalization to utility functions instead of constraint
satisfaction checking. Within this process of extending and
distributing, the domains have not been updated to include
continuous values.

To address this issue, in this paper, a continuous version
of DCOP is used to model the cooperative search problem.
Following the notation of Fioretto et al. [7], a continuous
DCOP is defined by D = ⟨A,X,D,F, α, η⟩ where:

• A = {a1, . . . , aM} is the set of agents, where M is the
number of agents.

• X = {x1, . . . , xN} is the set of variables, where N ≥ M
is the number of variables.

• D = {D1, . . . ,DN} is the set of domains of all variables,
where Di ⊆ R is the (continuous) domain associated
with variable xi.
An assignment denotes the projection of variables onto
their domain as σ : X → Σ. In other words, for all xi ∈
X if σ(xi) is defined, then σ(xi) ∈ Di. An assignment of
a subset of variables is denoted by σV = {σ(xi) : xi ∈
V}.

• F = {f1, . . . , fK} is the set of utility functions, where
K is the number of utility functions.

• α : X → A is a mapping from variables to agents. The
agent to which variable xi is allocated is denoted as
α(xi).

• η is an operator that combines all utility functions into
the objective function.

The global objective of a DCOP is to minimize the objective

function, defined by G(σ) =
fn∈F
η

(
fn(σVn)

)
.

Based on this definition the cooperative search problem
can be cast into a DCOP as,

• A = {a1, . . . , aN}, where N is the number of UAVs,
• X = {x1, . . . , xN}, since every agent has a single vari-
able (M = N),

• D = {D1, . . . ,DN}, where Di = [0, Rw] is related to
the search region,

• F = {fi(xi−1, xi) : i ∈ {1, . . . , N}}, where fi(xi−1, xi)
is defined by Equation 1 with x0 = 0,

• α = {xi → ai : i ∈ {1, . . . , N}}, where every agent is
assigned a single variable,

• η = max(·), in order to minimize the maximum time
required for all agents.

Apart from the definition of the continuous DCOP as given
above, a DCOP is typically represented in the form of a graph.
Two frequently used forms are the (undirected) constraint
graph and the (directed) pseudo-tree [8]. In both graphs,
the agents are shown as nodes and neighboring agents are
connected through an edge. Note that a constraint graph
can be converted into a pseudo-tree by means of various
procedures, such as depth-first-search [3]. A benefit of the
pseudo-tree over the constraint graph is that the pseudo-tree
introduces hierarchy to the variables and thereby divides the
problem into subproblems. The hierarchy creates an implicit
communication structure that is used to send messages be-
tween the agents without requiring all-to-all communication.
The subproblems can be exploited by algorithms in order to
efficiently solve the DCOP.

3 ALGORITHM OVERVIEW

Even for near-optimal solvers the complexity increase is linear
based on the cardinality of the largest domain.

The main reason is that the majority of the DCOP solvers
are created for DCOPs with discrete domains. Therefore, in
order to apply these solvers, the continuous domains need to
be discretized. A straightforward approach is to use equidis-
tant discretization for all variables. This allows for the cre-
ation of domains with a cardinality of arbitrary size. As for
most problems, the quality of the solution depends on the
resolution of the variables, where a high resolution allow for
better solutions. This creates a trade-off between solution
quality and computational and memory requirements.

3.1 Description of D-Bay

The D-Bay algorithm involves four sequential phases:

Send new sample

Local optimization Send local optimum

Local optimization

Local optimization

Send new sample

Send local optimum

Threshold
not reached

Threshold
not reached

Threshold
reached

Start

Finish

Figure 2: Graphical overview of the sample phase of D-Bay. Agents are indicated by circles labeled with an
agent index, and utility functions are shown as black lines. Starting from the root a0 (top-left), a sample
message S0 is sent to its children (a1, a2). After iterating between its children and calculating its local utility,
agent a2 combines all local utilities and sends a utility message U0

2 to its parent.

(1) Pseudo-tree construction The agents create a pseudo-
tree from the constraint graph of the DCOP, by per-
forming a depth-first search traversal.

(2) Allocation of utility functions Similar to the al-
location of variables, all utility functions are exclusively
allocated to the agents.

(3) Sample propagation In this phase, every agent op-
timizes its local variables through the Bayesian opti-
mization method and the exchange of sample and
utility messages. This phase is initiated by a sample
message from the root agent. The phase finishes when
a termination criterion is reached by the root agent.
The samples are selected through the optimization of
an acquisition function. A graphical overview of the
sample phase is shown in Figure 2.

(4) Assignment propagation The final phase is the
assignment propagation phase, in which the root agent
sends the final assignment of all its variables to its
children as a finalmessage. Based on these assignments
the children can assign their own variables to the value
corresponding to the optimal utility value.

Based on the taxonomy introduced by Yeoh et al. [24], the
D-Bay algorithm can be classified as a sample-based solver.
This class of solvers uses probabilistic measures to coordinate
the sampling of the global search space. The probabilistic
measures are used to balance exploration and exploitation
of the search space. The two main differences with exist-
ing sample-based solvers (DUCT [16] and Distributed Gibbs
[15]) is the sample selection and their iterative approach.
Firstly, within the D-Bay algorithm, the Bayesian optimiza-
tion method is used for the selection of the samples. The
Bayesian optimization method consists of two elements: a
probabilistic model to approximate an unknown (utility) func-
tion, and an acquisition function to optimally select a new
sample. This method is also referred to as an active learning
approach as the acquisition function makes use of previously
sampled values and the probabilistic model in order to learn

as much about the function in a sample-efficient manner.
To significantly reduce the computational load, a Markovian
class kernel [5] is used within the D-Bay algorithm. A Markov-
ian class kernel possess the property that the corresponding
covariance matrices can be inverted analytically. Secondly,
instead of iterating over the entire pseudo-tree, agents iter-
ate between parent and children only. While this typically
requires more messages than DUCT and Distributed Gibbs,
it ensures determinism with respect to the utility value of a
sample. In other words, a sample will always return the same
utility value.

3.2 Characteristics of D-Bay

The optimization of the local variables is restarted every
time a new sample message from the parent is received. An
agent only needs to store the utility of the values based on
the current (local) iteration in order to send the best utility
value back to its parent, thereby restricting the memory
requirement per agent to O(l). The message size O(t), as the
size of the utility messages is fixed at O(1) while the size of
the sample messages is proportional to the maximal depth of
the tree t. The number of messages scales with O(clt), where
c denotes the largest number of children. In this scenario the
problem structure cannot be exploited to split the problem
into subproblems.

Here d denotes the largest cardinality of the domains
and η denotes the largest number of neighboring agents.
This highlights the fact that by discretizing the continuous
domains, the runtime complexity will significantly increase.
Furthermore, for DUCT there are large memory requirements
O(dt) as it needs to store all the best costs for all messages.
Distributed Gibbs is much more memory efficient and merely
requires O(l). With respect to the message characteristics,
DUCT sends less messages than Distributed Gibbs, but they
are larger in size. A comparison of the D-Bay algorithm with
its closest related solvers for these key characteristics is shown
in Table 1.

Table 1: Comparison of algorithm characteristics
(based on Table 4 of Fioretto et al. [7]).

Runtime Message

Algorithm Complexity Memory # Size

DUCT O(lηd) O(dt) O(lN) O(t)
D-Gibbs O(lηd) O(l) O(lNη) O(1)
D-Bay O(l) O(l) O(clt) O(t)

In this section an overview of the Unmanned Aerial Vehi-
cles (UAVs) used for the experiments is given. The hardware,
software architecture, and the simulation environment are
discussed.

3.3 Hardware overview

In the experiments, quad-rotor UAVs (3DR-X4) are equipped
with a downward facing camera (GoPro Hero5 Session [10])
that image a small section of the search area while traveling
over it while taking snapshots. This camera was selected as
it is low-weight and eliminates the vibrations induced by
the UAV by software-based image stabilization. The camera
is connected to an onboard computer (Raspberry Pi 3B+
[19]), which also runs the D-Bay algorithm and handles the
communication between the agents. The size, weight, and
accessibility of this computer made it ideal for the application.
Communication between the agents is done through low-
power radios (XBee Pro [4]). This radio module is able to
create a meshed network using the ZigBee protocol between
all modules for up to 750m. Note that this holds for an
outdoor environment with line-of-sight between the modules.
Within the network messages up to 84 bytes can be sent.
During flight, the UAV is regulated by a flight controller
(3DR Pixhawk 1 [12]), which uses measurements from an
inertial measurement unit for linear acceleration and angular
speed, barometric pressure measurements for height, and
GPS measurements for latitude and longitude. This flight
controller runs the PX4 autopilot software [6]. An overview
of the UAV and its components is given in Figure 3.

Figure 3: Overview of the 3DR-X4 UAV used during
the experiments. The key components required for
autonomous flight are highlighted.

3.4 Simulation environment

The configuration of the UAVs is modeled in a realistic
simulation environment in order to validate the autonomous
actions of the UAVs. In this work, the Gazebo simulator
[11] is used as it offers a high level of flexibility in modeling
the environment and the UAVs. There is a large open-source
community that actively supports and extends the simulation
environment, and creates high-fidelity virtual models for
various (autonomous) vehicles. These models require a high
level of expert knowledge to construct and validate. Therefore,
within our simulations, the community model of the 3DR Iris
is used. The 3DR Iris is the commercial version of the 3DR-
X4 and is only different in appearance due to the enclosure.
An example of the UAV model in the simulation environment
is shown in Figure 4.

Figure 4: Example of the simulation environment
(Gazebo) of the UAV (3DR Iris) and its simulated
view of the downward facing camera.

3.5 Software overview

An additional benefit of the Gazebo simulation environment is
its extensive interface with Robotic Operating System (ROS)
[18]. This allowed the seamless transition between simulation
and experimental execution of the D-Bay algorithm and
testing of the cooperative search use case. Apart from an
interface to Gazebo and the autopilot, the ROS middleware
is also used to connect all other software components within
the computer, such as the communication module, the D-Bay
algorithm, and the camera interface. A schematic overview
of the software architecture is shown in Figure 5.

4 EXPERIMENTAL EVALUATION

At this altitude the scan width was 5m, therefore li,w = lw =
5m. A velocity of 3m/s was found to produce a stable flight
without large oscillations in speed and position. Postprocess-
ing of the camera images showed the velocity of the UAVs did
not negatively influence the image quality. For this reason,
both the velocity during scanning and transition are equally
set to vt = vs = 3m/s. By investigating the data collected
during the cornering allowed for the determination of the turn
length (lt) and time required per turn (τ). While there were
some minor differences in the amount of oscillations after
a turn, all were damped out after 5m. Therefore, the turn

Pixhawk

D-Bay

Pixhawk

D-Bay

Pixhawk

D-Bay

Simulation Experimental

Gazebo

Camera Communication

Figure 5: Schematic overview of the software archi-
tecture.

length was set as lt = 5m. The average time required per turn
was found to be 1.5 s, however when the UAV was greatly
affected by wind, this could increase to as much as 7.5 s. Even
though there were no strong winds, all experiments were lo-
cated at an old airfield which offered no protection from the
wind. As these gusts of wind occurred only sporadically, the
time required per turn was set to τ = 1.5 s. Additionally, a
search region of R = (Rw, Rh) = (200m, 50m) was defined
to ensure all UAVs would have enough battery power to com-
plete the entire search. The lower left corner of the search
region is used as reference position (0, 0). The UAVs were
placed near the reference position with (approximately) 5m
intervals to ensure enough spacing between the UAVs for
safe takeoff and landing conditions. The required time for
the reference experiment to finish was approximately 240 s.
The times required by the UAVs to finish scanning varied
considerably. This was to be expected as the UAVs had a
similar sized area to scan, but greatly different travel times.

Table 2: Experimental results compared to reference.

Difference

samples Result [s] Percentage [%] Absolute [s]

6 221 7.9 19
12 218 9.2 22
18 208 13.3 32

The trajectories of the UAVs for 18 samples are shown in
Figure 6.

4.1 Validation of simulations

During cornering the UAVs were affected most as the way-
points of the trajectory are located closely together. A gust
of wind can push an UAV off-course, thus needing additional
time to recover. Note that not all UAVs were affected to the
same extent.

4.2 Evaluation of communication

For this reason, it is appropriate to evaluate the communica-
tion between the agents.

Figure 6: Experimental results of the color coded
GPS tracks of the UAVs. The initial locations of the
UAVs are in the bottom left corner.

Despite these issues, we can conclude that the XBee net-
work was capable of sending the messages for the D-Bay
algorithm. Thereby showing the D-Bay algorithm can be suc-
cessfully implemented on a low-bandwidth communication
network.

4.3 Additional simulations

Within the validated simulation environment additional sim-
ulations were performed. Five scenarios were constructed by
changing the properties of some UAVs in order to evaluate
the performance of the D-Bay algorithm for a group of het-
erogeneous UAVs. Scenarios 1-3 alter the scan width of a
subset of UAVs in order to resemble UAVs with cameras of
different quality. Scenario 4 varies the scanning velocity of
three UAVs. In scenario 5 one UAV has a higher scanning
velocity, but a smaller scan width. The (altered) parameters
for the scenarios are defined as follows:
Scenario 1: l1,w = 10m,
Scenario 2: l1,w = 10m, l5,w = 20m,
Scenario 3: l1,w = 10m, l3,w = 2.5m, l5,w = 15m,
Scenario 4: v1,s = 6m/s, v3,s = 1.5m/s, v5,s = 4.5m/s,
Scenario 5: v1,s = 6m/s, l1,w = 2.5m.

In Table 3, an overview of the results of the simulations
for 15 samples per agent are compared with the (optimal)
results of a brute-force method. In Figure 7 the simulation

Table 3: Simulation results compared to optimum.

Difference

Scenario Result [s] Percentage [%] Absolute [s]

1 179.0 3.2 5.5
2 160.0 0.4 0.7
3 179.9 2.4 4.3
4 181.8 3.5 6.2
5 188.5 2.8 5.2

results for scenario 3 are shown. The simulation results show a
close approximation to the optimum for all scenarios. Similar
results were obtained when only 10 samples per agent were
used. The results for all scenarios (except scenario 1) did not
differ more than 2% from the results with 15 samples. This is

UAV 1
UAV 2
UAV 3
UAV 4
UAV 5

Figure 7: Simulation results of the trajectories of the
UAVs for scenario 3. The trajectories are color coded
by UAV.

an indication that the D-Bay algorithm converges relatively
fast even with a very limited amount of samples per agent.

5 CONCLUSIONS

In this work, experimental results for a cooperative search use
case with multiple Unmanned Aerial Vehicles (UAVs) have
been presented. This problem was modeled within the contin-
uous Distributed Constraint Optimization Problem (DCOP)
framework and solved with the Distributed Bayesian (D-Bay)
algorithm. The D-Bay algorithm is specifically designed for
continuous DCOPs and operates directly on the continuous
domains. This makes the D-Bay algorithm excellently suit-
able for the application of real-world problems such as use
cases with autonomous vehicles with limited resources (com-
putational power, memory, and communication bandwidth).

6 ACKNOWLEDGMENT

The authors would like to thank Mathijs Lomme from TNO
for his help during the experiments.

REFERENCES
[1] Vitaly Ablavsky and M Snorrason. 2000. Optimal search for

a moving target: A geometric approach. In AIAA Guidance,
Navigation and Control Conference. Denver, Colorado.

[2] Jose Joaquin Acevedo, Begoña C. Arrue, Ivan Maza, and Anibal
Ollero. 2013. Cooperative large area surveillance with a team
of aerial mobile robots for long endurance missions. Journal of
Intelligent and Robotic Systems: Theory and Applications 70,
1-4 (2013), 329–345. https://doi.org/10.1007/s10846-012-9716-3

[3] Baruch Awerbuch. 1985. A new distributed depth-first-search
algorithm. Information Processing Letters 20, 3 (1985), 147–150.

[4] Digi International. 2014. XBee Pro RF Module. (2014).
https://www.sparkfun.com/datasheets/Wireless/Zigbee/
XBee-Datasheet.pdf

[5] Liang Ding and Xiaowei Zhang. 2018. Scalable stochastic kriging
with Markovian covariances. arXiv arXiv:1803.02575 (2018).

[6] Dronecode Project, Inc. 2019. PX4 autopilot software. (2019).
https://px4.io/

[7] Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. 2018.
Distributed Constraint Optimization Problems and Applications:
A Survey. Journal of Artificial Intelligence Research 61 (mar
2018), 623–698. https://doi.org/10.1613/jair.5565

[8] Eugene C Freuder and Michael J Quinn. 1985. Taking advantage
of stable sets of variables in constraint satisfaction problems. In
International Joint Conference on Artificial Intelligence. Los
Angeles, California, 1076–1078.

[9] Amir Gershman, Amnon Meisels, and Roie Zivan. 2009. Asyn-
chronous forward bounding for distributed COPs. Journal
of Artificial Intelligence Research 34 (2009), 61–88. https:
//doi.org/10.1613/jair.2591

[10] GoPro. 2019. GoPro Session 5. (2019). https://gopro.com/en/
us/yourhero5/session

[11] Nathan Koenig and Andrew Howard. 2004. Design and Use
Paradigms for Gazebo, An Open-Source Multi-Robot Simulator.
In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). Sendai, Japan, 2149–2154.

[12] Manufactured by 3DR. 2014. Pixhawk 1 Flight Controller. (2014).
https://pixhawk.org/

[13] Amnon Meisels. 2007. Distributed Search by Constrained Agents:
Algorithms, Performance, Communication. Springer Science,
London, UK.

[14] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto
Yokoo. 2005. Adopt: asynchronous distributed constraint opti-
mization with quality guarantees. Artificial Intelligence 161, 1-2
(jan 2005), 149–180. https://doi.org/10.1016/j.artint.2004.09.003

[15] Duc Thien Nguyen, William Yeoh, Hoong Chuin Lau, and Roie
Zivan. 2019. Distributed Gibbs: A Linear-Space Sampling-Based
DCOP Algorithm. Journal of Artificial Intelligence Research 64
(mar 2019), 705–748. https://doi.org/10.1613/jair.1.11400

[16] Brammert Ottens, Christos Dimitrakakis, and Boi Faltings. 2018.
DUCT: an upper confidence bound approach to distributed con-
straint optimization problems. Transactions on Intelligent Sys-
tems and Technology 8 (2018), 1–27.

[17] Adrian Petcu and Boi Faltings. 2005. A scalable method for multi-
agent constraint optimization. In International Joint Conference
on Artificial Intelligence. Edinburgh, UK, 1413–1420.

[18] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully
Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. 2009. ROS:
an open-source Robot Operating System. In ICRA Workshop on
Open Source Software. Kobe, Japan.

[19] Raspberry Pi Foundation. 2019. Raspberry Pi 3B+. (2019). https:
//www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

[20] Cyril Robin and Simon Lacroix. 2016. Multi-robot target detection
and tracking: taxonomy and survey. Autonomous Robots 40, 4
(2016), 729–760. https://doi.org/10.1007/s10514-015-9491-7

[21] R. Stranders, E. Munoz De Cote, A. Rogers, and N. R. Jennings.
2013. Near-optimal continuous patrolling with teams of mobile
information gathering agents. Artificial Intelligence 195 (2013),
63–105.

[22] E Tsang. 1993. Foundations of Constraint Satisfaction. Elsevier,
London. https://doi.org/10.1016/C2013-0-07627-X

[23] Sandor M. Veres, Levente Molnar, Nicholas K. Lincoln, and
Colin P. Morice. 2011. Autonomous vehicle control systems –
a review of decision making. Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control
Engineering 225, 2 (2011), 155–195. http://pii.sagepub.com/
content/225/2/155.short

[24] William Yeoh, Ariel Feiner, and Sven Koenig. 2010. BnB-ADOPT:
An asynchronous branch-and-bound DCOP algorithm. Journal
of Artificial Intelligence Research 38 (2010), 85–133.

[25] William Yeoh and Makoto Yokoo. 2012. Distributed problem
solving. AI Magazine 33 (2012), 53–65.

[26] M Yokoo, E H Durfee, T Ishida, and K Kuwabara. 1998. The
distributed constraint satisfaction problem: formalization and
algorithms. IEEE Transactions on Knowledge and Data Engi-
neering 10, 5 (1998), 673–685. https://doi.org/10.1109/69.729707

[27] Roie Zivan, Tomer Parash, and Yarden Naveh. 2015. Applying
max-sum to asymmetric distributed constraint optimization. In
International Joint Conference on Artificial Intelligence (IJ-
CAI). Buenos Aires, Argentina, 432–439.

https://doi.org/10.1007/s10846-012-9716-3
https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf
https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf
https://px4.io/
https://doi.org/10.1613/jair.5565
https://doi.org/10.1613/jair.2591
https://doi.org/10.1613/jair.2591
https://gopro.com/en/us/yourhero5/session
https://gopro.com/en/us/yourhero5/session
https://pixhawk.org/
https://doi.org/10.1016/j.artint.2004.09.003
https://doi.org/10.1613/jair.1.11400
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://doi.org/10.1007/s10514-015-9491-7
https://doi.org/10.1016/C2013-0-07627-X
http://pii.sagepub.com/content/225/2/155.short
http://pii.sagepub.com/content/225/2/155.short
https://doi.org/10.1109/69.729707

	Abstract
	1 Introduction
	2 Problem definition
	2.1 Problem formulated as a DCOP

	3 Algorithm overview
	3.1 Description of D-Bay
	3.2 Characteristics of D-Bay
	3.3 Hardware overview
	3.4 Simulation environment
	3.5 Software overview

	4 Experimental evaluation
	4.1 Validation of simulations
	4.2 Evaluation of communication
	4.3 Additional simulations

	5 Conclusions
	6 Acknowledgment
	References

