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A short-term preventive maintenance scheduling
method for distribution networks with distributed

generators and batteries
Jianfeng Fu, Alfredo Núñez, Senior Member, IEEE, and Bart De Schutter, Fellow, IEEE

Abstract—Preventive maintenance is applied in distribution
networks to prevent failures by performing maintenance actions
on components that are at risk. Distributed generators (DGs)
and batteries can be used to support power to nearby loads when
they are isolated due to maintenance. In this paper, a novel short-
term preventive maintenance method is proposed that explicitly
considers the support potential of DGs and batteries as well as
uncertainties in the power generated by the DGs. Two major
issues are addressed. To deal with the large-scale complexity of
the network, a depth-first-search clustering method is used to
divide the network into zones. Moreover, a method is proposed to
capture the influence of maintenance decisions in the model of the
served load from DGs and batteries via generation of topological
constraints. Then a stochastic scenario-based mixed-integer non-
linear programming problem is formulated to determine the
short-term maintenance schedule. We show the effectiveness and
efficiency of the proposed approach via a case study based on
a modified IEEE-34 bus distribution network, where we also
compare a branch-and-bound and a particle swarm optimization
solver. The results also show that the supporting potential of
DGs and batteries in preventive maintenance scheduling allows
a significant reduction of load losses.

Index Terms—Distributed generators and batteries, preventive
maintenance, short-term maintenance scheduling.

NOMENCLATURE

A. Sets and Indices

b Battery index
g Iteration index in PSO
h Particle index in PSO
j Candidate maintenance action index
k Generating or consuming component index
p, q, q′ Zone index
t Time slot index
T D Set of day time slots
T N Set of night time slots
Ωp Set of neighbor zones of zone p
Ωc

p Set of non-neighbor zones of zone p
Θp,q Set of candidate maintenance actions on the

path between zone p and its neighbor zone q
Φ Set of scenarios
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B. Parameters

A Sweep area of wind turbine blades
c1p,c2p Acceleration constants of PSO
Cp Tip speed ratio of wind turbines
Cpril,p(t) Electricity price for zone p in time slot t
CN

j,p,q ,CN
j,p,q Day-time and night-time maintenance cost

for action j between zone p and its neighbor
zone q

Cday
set (t) Budget for performing day-time maintenance

in time slot t
Cnight

set (t) Budget for performing night-time mainte-
nance in time slot t

dj,p,q Deterioration stage of the component where
maintenance action j has to be performed on
the path between zone p and zone q

nZ Total number of non-PCC zones after clus-
tering

Nb Number of batteries
Ppred,p,s(t) Predicted load of zone p in time slot t when

no maintenance actions are performed in
time slot t for scenario s

SPV Area of PV panel
Smin
bat,b Minimal battery capacity of battery b

Smax
bat,b Maximal battery capacity of battery b

Scap
bat,b Capacity of battery b

td Number of time slots in this maintenance
scheduling period

Tem Temperature of PV panel
T ref
em Reference temperature of PV panel

vout Cut-off wind speed
vstart Start-up wind speed
vwmax Maximum wind speed
wp Inertia weight factor of PSO
Wp Total number of generating, consuming and

energy storage components in zone p
α Weight coefficient of the deterioration cost
αPV Temperature coefficient
β Weight coefficient to assure that SOC stays

around the level σ
ηPV PV panel conversion efficiency
ρ Air density
σ SOC penalty level
τj,p,q Duration of action j between zone p and its

neighbor zone q
ϖ Equality penalty weight in PSO
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ζleak Battery leakage coefficient
ζchar Battery charging efficiency

C. Variables

Closs,s Total cost of load losses for scenario s
Cmain Total cost of performing maintenance actions
Cdeg Cost related to the degradation of the com-

ponents
Csoc,s Penalty term for the SOC utilization of the

batteries for scenario s
IPV Solar radiations
Pp,k,s(t) Power generated or consumed by the kth

generating, consuming, or energy storage
component in zone p in time slot t for
scenario s

Pbat,b,s(t) Power generated/consumed by battery b in
time slot t for scenario s

Ploss,p,s(t) Load loss of the zone p in time slot t for
scenario s

Pp,s(t) Served load for zone p when maintenance
actions are being performed in time slot t
for scenario s

Sbat,b,s(t) SOC level of battery b at the end of time slot
t for scenario s

vw Wind speed
δp,q(t) Connectivity between zone p and any other

zone q in the distribution network in time
slot t

∆j,p,q(t) Indicates whether the jth maintenance action
on the path between the zone p and its
neighbor zone q is performed in time slot
t

I. INTRODUCTION

IN 2016, 12% of the installed wind turbine capacity in
Europe was older than 15 years, and this share will increase

to 28% by 2020 [1]. These old wind turbines will soon reach
the end of their designed service life, which is typically 20
years [2]. In addition, in today’s power systems, commonly
used XLPE cables are suffering from degradation, especially
the water tree [3], [4]. Transformers, one of the critical assets
in a power grid, are also suffering from degradation [5], [6].
Due to the deterioration of the components in the power
system, the efficiency of generation and the reliability of the
power system will be decreased, as the power system may
suffer from faults or breakdowns. Thus, adequately scheduled
maintenance actions are necessary to ensure the quality of
the components and the efficiency and reliability of power
generation and delivery.

Maintenance scheduling of power systems is mostly cor-
rective or preventive [7]. Corrective maintenance is performed
after failure of components [8], [9]. Preventive maintenance
is performed before the failure of components [10]–[12].
It can result in significant budget savings compared to the
corrective maintenance. For example, in [13]–[16], the pre-
ventive maintenance actions are performed to avoid failures
of generation units. Besides, in [17]–[20] a new preventive

maintenance concept “smart maintenance” has been proposed.
Smart maintenance utilizes smart inspections based on big
data analysis technologies, smart devices to collect the data,
smart services, asset management, and other techniques to
make preventive maintenance decisions. In particular, in [20],
a review of the possible applications of big data on failure
diagnosis, the internet of things on data collecting, and other
technologies on smart maintenance can be found.

In preventive maintenance, the degradation conditions of the
components can be evaluated based on different standards. For
example, [21] analyzed the influence of factors such as power
fluctuation, states of charge, and the charging/discharging rates
on the life spans of the electric vehicle batteries. According
to the factors, a charging plan was proposed to enlarge the
life spans of electric vehicle batteries. In [22], the bathtub
curve is used to measure the probability that a component
will survive beyond an established time. A mathematical
quantification model is presented to evaluate the degradation
condition of the components by representing the bathtub
curve as a Markov process. Then the degradation condition
is used in the preventive maintenance of generation units. In
[23], a reliability modeling method for systems composed by
multiple components is proposed. The reliability indices of
each component were used to derive the reliability of the whole
system. In the standards such as the “Guide for condition
evaluation of distribution network equipment”, as shown in
Chapter 7 of [24], a procedure to evaluate the condition scores
of the components is described by evaluating the condition
score of each sub-component individually and then summing
them up with different weights.

Then, a cost-effective strategy [10] or a reliability-based
strategy [25]–[27] can be used to determine a maintenance
schedule. In the literature, different methods for preventive
maintenance scheduling have been proposed [28], [29]. In
[28], preventive maintenance is derived by considering the im-
pact of increased short-circuit current flows on the failure rate.
In [29], a cost-effective maintenance scheduling method with
reliability constraints for overhead lines is proposed. Cost-
based reliability indices are used for modeling. The methods in
the literature for preventive maintenance scheduling in power
systems minimize maintenance costs, maximize reliability,
and also consider other factors, e.g., the influence of short-
circuit currents on the failure rate [28] and the reliability
[29]. In these preventive maintenance scheduling methods, the
supporting power potential of DGs and batteries to reduce load
loss cost was not explicitly considered. In [30], a preventive
maintenance strategy considering the distributed generation
in distribution networks is proposed. However, the islanding
mode of the microgrids is not considered in the problem
formulation. Thus, the supporting power potential of the DGs
and batteries when microgrids are being islanded was not
evaluated.

In literature, corrective maintenance and system restoration
methods have been proposed considering the supporting power
potential of DGs, batteries and the reconfiguration [8], [31]–
[33]. Although one of the objectives of these methods is to
serve more loads using DGs and batteries, these methods are
designed for scheduling the maintenance actions after the fail-
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ures and damages have emerged, e.g., a flood or a hurricane.
However, preventive maintenance methods are designed for
scheduling the maintenance actions so as to prevent the failures
by considering the trade-off between the degradation status
of the components and the total maintenance cost including
cost of load shedding and the cost of performing maintenance
actions. Thus, corrective maintenance methods differ from
preventive maintenance methods and they cannot be used for
the short-term preventive maintenance scheduling directly.

When the number of nodes of the distribution network
increases, the number of the variables increases and the
computation burden is enlarged. In this paper, a state-of-
art depth-first-search (DFS) clustering method is proposed to
simplify the topology of the network into a smaller-scale but
still equivalent topology. Different zones in the distribution
network are constructed according to the locations of the
candidate maintenance actions. Grouping by zones results in
a significant decrease of the number of nodes. In this way,
the formulated preventive maintenance scheduling problem is
simplified, and the computational burden is reduced.

Further, a scenario-based approach is proposed to allow
the inclusion of stochasticities in the optimization problem
while avoiding expensive computational efforts resulting from
traditional robust approaches that require complete realizations
of the stochasticities. Still, the scenario-based approach is
more complicated than a deterministic solution (where no
stochasticities are included), but it can be kept tractable
according to the selected scenario generation method and
scenario reduction method.

After that, two solvers are analyzed, branch-and-bound (BB)
and particle swarm optimization (PSO). The BB solver can
obtain the optimal solution but takes more computation time.
While the PSO solver cannot obtain the optimal solution but
can take less computation time. Interesting results using the
PSO solver have been reported in the literature. For example,
a PSO algorithm is used in [34] to minimize the overall cost,
including investment, replacement, operation, and maintenance
costs during the 20 years of a hybrid wind/photovoltaic genera-
tion system lifetime. A novel multi-objective PSO optimization
algorithm is proposed in [35] to minimize three objective
functions, namely the annualized cost of the system, loss of
load expected, and loss of energy expected, when designing
hybrid wind-solar generating microgrid systems. A multi-
objective PSO algorithm is proposed in [36] to solve the
optimal allocation problem for flexible alternating current
transmission system devices. Besides, a new multi-objective
optimization problem for the coordination of overcurrent re-
lays in interconnected networks is presented in [37]. The
problem is then solved by using multi-objective PSO and a
fuzzy decision-making tool.

The main contributions of this paper are:

• We propose a short-term condition-based preventive
maintenance scheduling method that considers the sup-
porting potential of DGs and batteries.

• Aspects faced in practice are included, such as the uncer-
tainties in decision making, different electricity prices in
different locations, and different durations of maintenance

actions. The problem is formulated as a stochastic mixed-
integer non-linear programming problem and solved us-
ing a scenario-based approach.

• A DFS clustering method is proposed to simplify the
topology into a smaller-scale but equivalent topology,
resulting in a large reduction of the complexity of the
distribution network topology and the computational bur-
den.

• Two optimization algorithms are considered: BB and
a modified PSO algorithm. The BB approach uses an
exact reformulation of the mixed-integer non-linear pro-
gramming problem into a linear programming one. The
BB solver always finds the optimal global solution;
however, recasting the problem increases the number
of optimization variables. The modified PSO algorithm
directly solves the mixed-integer non-linear programming
problem and allows managing the computational burden
at the expense of performance.

The remainder of this paper is organized as follows. Section
II describes the issues of the preventive maintenance problem
and the framework of the proposed method. Section III intro-
duces the method to simplify the topology of the distribution
network. Section IV proposes a method to generate topological
connectivity constraints so as to obtain explicit relationships
between served loads by DGs and batteries and maintenance
decision making variables. Section V formulates the main-
tenance scheduling problem, proposes a method to generate
and reduce the number of scenarios, and then introduces
the BB solver and proposes a specific PSO solver for this
problem. Section VI presents the results and analysis of a case
study. Section VII discusses the contributions and possible
applications of the proposed method. Finally, in Section VIII
conclusions and topics for future research are included.

II. PROBLEM DESCRIPTION AND PROPOSED FRAMEWORK

In this section, we will first describe the problems we face
and intend to tackle. After that, we propose a framework for
scheduling short-term preventive maintenance actions and give
a brief introduction.

A. Problem description
Mid-term preventive maintenance scheduling is a basic

component in asset management of distribution networks. It
is a maintenance scheduling strategy with a larger time scale
and a longer period than the short-term preventive maintenance
scheduling. Thus, it is a rougher preventive maintenance
decision-making strategy. In the mid-term preventive main-
tenance scheduling, the maintenance actions are determined
based on the operation cost, load loss, and degradation of the
components in a medium time scale, e.g., one month or several
months. In this paper, we assume that a mid-term maintenance
scheduling method determines which maintenance actions
should be performed one week in advance [7]. Then we
propose a method to allocate these candidate maintenance
actions within the days of a week. Now, we discuss two major
problems for the design of preventive short-term maintenance
scheduling considering the supporting energy from DGs and
batteries.
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Fig. 1. Distribution networks for illustrating Problem 2

1) Problem 1: In the case of large-scale distribution net-
works, the number of variables to characterize the possible
dynamics during maintenance in the maintenance scheduling
problem can be huge. As such, a method to reduce redundant
variables and to simplify the distribution network without los-
ing crucial information is required. In this paper, a clustering
method is proposed to simply the network so as to reduce the
number of variables in the maintenance scheduling problem.

2) Problem 2: Fig. 1 shows two networks to discuss another
problem addressed in this paper. The numbers in circles with
an arrow indicate the locations where preventive maintenance
actions are to be conducted and the numbers represent labels
of maintenance actions. The blue circles represent DGs, while
the red boxes represent batteries.

In Fig. 1a, 1⃝ should be maintained when the DGs and
the battery can support the loads as much as possible to
reduce the load loss. The load loss is given by the power
required by the loads minus the power provided by the DGs
and the battery. Thus, the time slots to maintain 1⃝ when
the minimum load loss happens can be estimated. However,
when there are several maintenance actions and the network
is more complex as shown in Fig. 1b, the load loss cannot be
calculated easily because of the connectivities between loads,
DGs and the battery determined by where and when mainte-
nance actions are performed. Where and when maintenance
actions are performed are decision making variables in the
maintenance scheduling problem. For example, the served load
in the dashed box of Fig. 1b is determined by the sum of
all the other connecting loads, DGs and the battery. Further,
the connectivities are different for different combinations of
maintenance actions, e.g., when maintenance is performed at
2⃝ or when 2⃝ and 3⃝ are maintained simultaneously. Thus,

another problem is to establish the relationships between load
loss at each time step and maintenance action decision making
variables for complex distribution networks.

Step to 
next week

Problem 
formulation

Clustering
Generation 

of topological 
constraints 

Solve
problem

Scenario 
generation 

and reduction

Start

Fig. 2. Flowchart of proposed method

B. Proposed framework

A framework for scheduling short-term preventive mainte-
nance is proposed as shown in Fig. 2.

In this framework, after obtaining the candidate main-
tenance actions from the mid-term maintenance scheduling
method, a clustering method is applied to divide the network
into zones according to the week-ahead candidate maintenance
operations. Then, a sum of products method is proposed to
represent the connectivity of the topology by maintenance
decision making variables. The explicit expression of the
relationship between maintenance decision making variables
and load loss cost is then derived. After that, the scenarios used
to describe the uncertainties in the programming problem will
be generated by scenario generation and reduction methods.
Then a stochastic MINLP problem is formulated and solved
to determine the daily preventive maintenance schedule. The
method determines the maintenance schedule by minimizing
the maintenance cost including the performance cost, load
loss cost, and the cost related to the degradation of the
components based on a score index. We next introduce the
three main parts of the proposed method including: clustering
method, generation of topological connectivity constraints, and
problem formulation associated with the scenario generation
and reduction methods as well as two possible solvers.

III. CLUSTERING METHOD

Distribution networks consist of many components, e.g.,
paths, DGs, and batteries. Each of these components can be
modeled to understand the dynamics of the network. However,
when considering maintenance operations, usually not all the
components have to be maintained. Thus, the detailed dynam-
ics of each component might not be required for maintenance
scheduling purposes, and methods can be used to reduce the
complexity of the network. In this paper, we define a zone as
the maximal set of connected components such that no matter
when and which candidate maintenance actions are performed,
the connectivity in one zone will not change.

For illustration purposes, Fig. 3 shows a distribution net-
work with a coupled loop topology. There are five candidate
maintenance actions, marked from 1⃝ to 5⃝. In Fig. 3a, zone
1 contains one DG, one battery, and loads, while zone 2
contains loads; zone 3 contains one DG and zone 0 is a point
of common coupling (PCC) zone that connects the outside
system. From Fig. 3a, it can be seen that the connectivity
between components within the five zones will not change
when any of the candidate maintenance actions are being
performed. The simplified representation of the distribution
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Fig. 3. Illustrations of the proposed clustering mechanism

network in Fig. 3a is shown in Fig. 3b.
In Fig. 3b, 1⃝ and 5⃝ are inner maintenance actions of

zone 1 whose scheduled execution time will not influence the
connectivities of the components. From Fig. 3a and Fig. 3b, it
can be seen that components in Fig. 3a are clustered into four
zones in Fig. 3b. A zone can be seen as an integrated compo-
nent, so the scale of the maintenance scheduling problem can
be largely simplified.

As for a method to search the zones to simplify the network,
the depth first search (DFS) method [38]–[40] is considered
to find the largest connecting areas. To fit the DFS method in
the maintenance clustering problem, each component is seen
as a node, and the paths that do not need to be maintained
are seen as connecting path, while the paths that need to be
maintained are seen as break-points, as shown in Fig. 3c. Here
we define a tree as a set of connected paths and nodes. The
details of the steps of the DFS method are as follows:

1) Select as starting node one of the nodes that has not been
visited by other trees. Start a new tree from this starting

node.
2) Visit paths that come out of the most recently visited

node p0. Consider only paths going to un-visited nodes.
3) When all of p0’s paths have been visited, the search

backtracks until it reaches an un-visited adjacent node.
This process continues until all of the nodes that are
reachable from the starting node have been visited. Then
a largest connecting tree has been generated and the
components on the tree originated from the starting point
can be included in one zone.

4) If there are any un-visited nodes, select one of them as a
new starting point and repeat the search from that node.

5) The algorithm repeats this entire process until it has
visited every node. In this paper, we define the zone that
includes the PCC point as zone 0.

Different starting points selection sequences do not influ-
ence the simplified topology, because if from a node pu there
is a path that can reach another node pv , this means that
from pv there must be a path can reach pu. In Fig. 3c, the
zone generation process is shown. The search trees for the
cluster generations are marked with a purple line, red lines,
a blue line, and a green line to represent zone 0 to zone 3
respectively. In addition, the starting nodes of these searching
trees are marked as filled circles in respective colors.

IV. GENERATION OF TOPOLOGICAL CONNECTIVITY
CONSTRAINTS

The load loss cost mentioned in Section II is related to the
gap between the power served to loads and the power required
by the loads, such that for zone p:

Ploss,p(t) = Ppred,p(t)− Pp(t) (1)

where Pp(t) is determined by the connectivity between the
loads and other loads, DGs, batteries, and the PCC based on
power balance equation, such that:

nZ∑
q=0

δp,q(t)Pp(t) = 0, ∀t ∈ {1, ..., td} (2)

where the zone containing the PCC is zone 0. In (2), the binary
variable δp,q(t) is introduced to describe the connectivity
between zones. Define δp,q(t) equals 1 if zone p and zone q
are connected in time slot t. The connectivity variables δp,q(t)
are determined by the maintenance actions because these will
generate break-points dynamically in the network. Next, we
propose a method to express the connectivity between zones
by the maintenance decision making variables.

We introduce the binary maintenance decision making vari-
able ∆j,p,q(t) to indicate whether the maintenance actions are
performed or not. If the jth maintenance action is assigned to
be performed on the path between zone p and zone q in time
slot t, then ∆j,p,q(t) = 1; else ∆j,p,q(t) = 0.

Two points need to be clarified: Firstly, for the maintenance
actions on DGs (or batteries), e.g. the DG in zone 3 of Fig. 3a,
the DG in zone 3 will be shut down and disconnected from
zone 1. Furthermore, performing maintenance actions on the
connecting path between the DG in zone 3 and zone 1 will
also cause the DG in zone 3 to be disconnected from zone 1.
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Thus, maintenance actions on DGs or batteries can be seen
as maintenance actions on the connecting paths between these
DGs or batteries and the other parts of the network. Secondly,
if a maintenance action takes several hours, e.g. 4 hours, then
the corresponding connectivity variable ∆j,p,q(t) equals 1 for
each of the 4 hours when the maintenance action is performed.

After defining maintenance decision making variable
∆j,p,q(t), firstly the connectivity status of zone p and its
neighbor zone q can be derived as:

δp,q(t) =

Nz∏
j=1

(1−∆j,p,q(t)),

∀t ∈ {1, ..., td},∀p ∈ {0, ..., nZ}, q ∈ Ωp, j ∈ Θp,q

(3)

Equation (3) represents that when maintenance actions are
performed on the path between zone p and its neighbor zone
q in time slot t, zone p and zone q will be disconnected.
Secondly, by defining Ωc

p as the set of the non-neighbor zones
of p, for each pair of zones p and q′ (with p ̸= q′ and q′ ∈ Ωc

p),
we determine all possible elementary (i.e. without circuits)
paths p 7→ p1 7→ p2 7→ ... 7→ ph−1 7→ q′ from zone p to
zone q′, possibly including the PCC (with index 0) by using
the paths searching approaches mentioned in, e.g. [41]. Let
(p, p1, p2, ..., ph−1, q

′) represent an elementary path from p to
q′ and let Hp,q′ be the set of all such paths, then we have:

δp,q′(t) =


0

∑
(p,...,q′)∈Hp,q′

δp,p(t)δp,p1
(t)...δph−1,q′(t) = 0

1 otherwise
(4)

In this way, the relationship between the maintenance decision
variables ∆ and the connectivity variables δ can be derived.
Apart from that, the connectivity status from zone p to its
neighbor zone q or non-neighbor zone q′ is the same as that
from zone q′ or zone q to zone p. In addition, the value for
any δp,p is equal to 1 at any time because the status between
a zone and itself is always connected. Thus, we have:

δp,q(t) = δq,p(t), δp,q′(t) = δq′,p(t), δp,p(t) = 1,

∀t ∈ {1, ..., td},∀p ∈ {0, ..., nZ},∀q ∈ Ωp,∀q′ ∈ Ωc
p

(5)

Fig. 4 shows an example for illustration purposes. In
Fig. 4, we will derive δ1,8(t) by using (3) to build the
relationship between the connectivity status variable of zone
1 and zone 8 and the maintenance decision making variables.
There are 3 paths from zone 1 to zone 8, so H1,8 =
{(1, 3, 5, 8), (1, 6, 5, 8), (1, 6, 9, 8)}. Thus, we can derive that:

δ1,8(t) =


0 if

∑
(p,...,q′)∈H1,8

δp,p(t)δp,p1
(t)...δph−1,q′(t) = 0

1 otherwise
(6)

as well as:

δ1,6(t) = (1−∆1,1,6(t))(1−∆2,1,6(t)),

δ5,6(t) = 1−∆1,5,6(t), ∀t ∈ {1, ..., td},
(7)

where ∆1,1,6(t), ∆2,1,6(t) and ∆1,5,6(t) represent whether to
perform maintenance actions 1⃝, 2⃝ and 3⃝ respectively in
time slot t. Thus, in this way, the relationship between all

PCC

zone 1

zone 2

zone 3 zone 4

zone 5

zone 6
zone 8

zone 7

zone 9 zone 10

zone 11

zone 12

2
3

1

Fig. 4. An example of a distribution network

the connectivity variables and maintenance decision-making
variables can be built. The relationships can be used to
generate the power balance functions. The generated power
balance functions can dynamically represent the served powers
to the zones using the maintenance decision variables (see
Section V.A).

V. SCHEDULING PROBLEM AND POSSIBLE SOLVERS

In this section, firstly the stochastic MINLP problem of the
proposed short-term preventive maintenance method will be
formulated. Secondly, the scenario generation and reduction
methods will be illustrated. Thirdly, two possible solvers will
be introduced.

A. Problem formulation

This subsection formulates the optimization problem for the
proposed method. We search for a vector ∆ that contains
all the variables ∆j,p,q(t), and that minimizes the following
objective function:

min
∆

J = EΦ[Closs,s + Cmain − Cdeg + Csoc,s] (8)

where EΦ represents the expected value for scenario set Φ.
More specifically,

Closs,s =

td∑
t=1

(
nZ∑
p=1

(
Ppred,p,s(t)− Pp,s(t)

)
Cpril,p(t)

)
(9)

Cmain =

nZ∑
p=1

nZ∑
q=p+1

∑
j∈Θp,q

1

τj,p,q

( ∑
t∈T D

(1−∆j,p,q(t))C
D
j,p,q

+
∑
t∈T N

(1−∆j,p,q(t))C
N
j,p,q

)
(10)

In this paper we assume that the working crews of day-time
and night-time are different; so we do not consider mainte-
nance actions that are partially performed during the day-time
and partially during the night-time. Note that the result of
summing the (1 − ∆j,p,q(t)) values is τj,p,q , so the result
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should be divided τj,p,q in order to avoid the maintenance
cost Cj,p,q being added multiple times. In addition,

Cdeg = α

nZ∑
p=1

nZ∑
q=p+1

∑
j∈Θp,q

dj,p,q
τj,p,q

(
td −

td∑
t=1

(1−∆j,p,q(t))
)

(11)
In (11), the deterioration stage dj,p,q can be identified by
technicians based on standards (further discussed in Section
VI. A).

It should be noticed that in the short-term preventive main-
tenance, the degradation condition of the components should
also be included in the scheduling problem. That is because,
if there are too many candidate maintenance actions to be
performed in the current week, due to various uncertainties,
limitations, and conditions, only a few time slots can be
used for performing them. As not all candidate maintenance
actions can be performed this week, the components more
likely to become defective associated with a heavy degradation
status should be maintained with a higher priority. Thus,
the degradation status can help define a sort of priority to
perform the maintenance actions in the short-term preventive
maintenance when not all the maintenance actions can be
performed. In our formulation, not only degradation but also
other objectives such as costs are considered. Additionally,
mid-term degradation evaluation is usually rougher, more
uncertain, and dependent on a good degradation model. In
the case of the degradation in the short-term, this can be more
refined, for instance, if it relies on measurements conducted
recently on the component. The short-term degradation factor
will thus include the spatial behavior with the fact that at
some locations, the degradation condition is different than
in other locations. Regarding the temporal dimension, as the
prediction is short-term, it is assumed that no huge changes
in the dynamics of degradation are expected. If this is not the
case for an application, reactive maintenance methodologies
are to be considered. Furthermore,

Csoc,s = β

Nb∑
b=1

td∑
t=1

| Sbat,b,s(t)− σScap
bat,b | (12)

where CSoc,s is defined to keep the SOC of all batteries of
scenario s around a certain level σ, by adding penalties when
the SOC is below or above this level, and the weight to assure
the SOC to stay around the level σ is β.

Using the topological connectivity variables between two
zones introduced in Section IV, now the power balance
constraints can be derived:

nZ∑
q=0

δp,q(t)Pp,s(t) = 0, ∀t ∈ {1, ..., td},

∀p ∈ {0, ..., nZ}, ∀s ∈ Φ

(13)

The output power of one zone is the sum of all the output
powers of all the loads, DGs, and batteries in this zone:

Pp,s(t) =

Wp∑
k=1

Pp,k,s(t), ∀t ∈ {1, ..., td},

∀p ∈ {1, ..., nZ}, ∀s ∈ Φ

(14)

The power constraints of the components in the zones can
be described as:

Pmin
p,k (t) ≤ Pp,k,s(t) ≤ Pmax

p,k (t), ∀t ∈ {1, ..., td},
∀p ∈ {1, ..., nZ}, ∀k ∈ {1, ...,Wm}, ∀s ∈ Φ

(15)

The constraints on the maintenance costs are as follows:

1

τj,p,q

nZ∑
p=1

nZ∑
q=p+1

∑
j∈Θp,q

∆j,p,q(t)C
D
j,p,q ≤ Cday

set (t), ∀t ∈ T D,

1

τj,p,q

nZ∑
p=1

nZ∑
q=p+1

∑
j∈Θp,q

∆j,p,q(t)C
N
j,p,q ≤ Cnight

set (t), ∀t ∈ T N

(16)
To avoid that maintenance actions are performed more than

once, the total maintenance duration for each maintenance
action must be zero (i.e. maintenance will not be performed at
all) or it should be equal to the duration τj,p,q (i.e. maintenance
will be performed, but only once). So, the following constraint
is added:

td∑
t=1

∆j,p,q(t) = τj,p,q ∨
td∑
t=1

∆j,p,q(t) = 0

∀p, q ∈ {1, ..., nZ}, ∀j ∈ Θp,q

(17)

In order to keep the process of performing maintenance ac-
tion continuous, we have the following constraint by assuming
∆j,p,q(0) = 0:

td∑
t=1

| ∆j,p,q(t)−∆j,p,q(t− 1) |≤ 2,

∀p, q ∈ {1, ..., nZ}, ∀j ∈ Θp,q

(18)

which means that if a certain maintenance action will be
performed, we can only start once (i.e. ∆j,p,q(t − 1) = 0,
∆j,p,q(t) = 1) and only stop once (i.e. ∆j,p,q(t − 1) = 1,
∆j,p,q(t) = 0). Furthermore, the SOC dynamic equations are:

Sbat,b,s(t) = ζleakSbat,b,s(t− 1) + ζcharPbat,b,s(t),

∀t ∈ {1, ..., td}, ∀b ∈ {1, ..., Nb}, ∀s ∈ Φ
(19)

The remaining capacity constraints are:

Smin
bat,b ≤ Sbat,b,s(t) ≤ Smax

bat,b, ∀t ∈ {1, ..., td},
∀b ∈ {1, ..., Nb}, ∀s ∈ Φ

(20)

B. Scenario generation method and reduction method

In the short-term preventive maintenance problem, the un-
certainties in the prediction of DG generated powers and
load demands will affect the scheduling solutions. In this
paper, we include the uncertainties of the DG generations
and load demands in the optimization problem as scenarios
related to stochastic distributions [42]. The autoregressive
moving average (ARMA) model is applied to generate a
scenario tree [43]. However, the number of generated scenarios
will increase with the number of prediction steps, and the
computational efforts might become time-prohibitive. Thus,
to reduce the computational burden, a fast forward selection
scenario reduction method is applied.

A classic scenario tree is shown in Fig. 5. In the figure,
stages represent the prediction periods. For example, in this
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Stage 0 Stage 1 Stage 2 Stage 30

Fig. 5. Scenario generation process and scenario tree

paper, the weekly prediction horizon is 120 hours (24 hours per
day and five workdays in one week), and each stage represents
4 hours. Then, there are 30 stages in the weekly prediction
horizon. Stage 0 is the current time, so the value of the
variables in stage 0 is known (deterministic). Then, to predict
the value of stage 1, different scenarios are predicted and
branched based on the value of stage 0. Iteratively, scenarios
of each stage can be generated by the values of its related
previous stage.

To generate the scenario tree of the wind speeds, solar
radiations, and load demands, an ARMA model is used
[44]. We define X(k) = [XL(k), XW(k), XP(k)]

T as the
prediction error where XL(k), XD(k), and XP(k) are pre-
diction errors of the load demand, the wind speeds, and
solar radiations at stage k, respectively. Then, the vector
Y (k) = [YL(k), YW(k), YP(k)]

T includes the random Gaus-
sian variables, where YL(k), YW(k), and YP(k) are random
Gaussian variables of the load demands, the wind speeds and
solar radiations at stage k with standard deviations σL, σW

and σP respectively. The general ARMA(pg,qg) model whose
numbers of autoregressive terms and moving-average terms
are pg and qg respectively, can be expressed as:

X(k) = ρ0 +

pg∑
m=1

ρmX(k −m) + Y (k) +

qg∑
n=1

ϱnY (k − n)

(21)
where parameters ρ, σL, σW and σP of the Gaussian dis-
tributions can be obtained based on the historical data of
the wind speeds, solar radiations, and load demands [45]. In
order to branch the scenarios randomly, Y (k) is sampled using
the Monte-Carlo method. Then, each X(k) obtained by each
sampled Y (k) is considered as one possible scenario at stage
k.

The predictions of wind speeds, solar radiations, and de-
mand loads are obtained by adding their averaged predicted
profiles with their corresponding errors X(k). The original
prediction curves can be derived by data methods, e.g., re-
gression analysis [45]. Then, the generation power of the wind
turbines can be obtained by the equation below based on the

wind speeds [46]:

pWT =


0, vw < vstart
1
2ρACpv

3
w, vstart ≤ vw ≤ vwmax

1
2ρACpv

3
wmax, vwmax < vw ≤ vout

0, vw > vout

(22)

As for the PV panels, the generated powers can be obtained
by [47]:

pPV = IPVSPVηPV

(
1− αPV(Tem − T ref

em )
)

(23)

A fixed number of scenarios per stage leads to many possi-
ble scenarios for the whole prediction horizon. For example,
if ten scenarios are considered, at the 30 th stage of the
scenario tree, there will be 1030 possible cases, which makes
the scheduling problem unsolvable. Thus, we apply a fast
forward selection method in [48] to reduce the number of
generated scenarios. The goal is to reduce the original scenario
set into a smaller one that still preserves characteristics of the
original scenario set. In the fast forward selection method, at
one particular stage, the preserved scenario set is generated
based on minimizing the Kantorovich distances between the
original scenario set distribution and the preserved scenario
set distribution. The preserved scenarios are selected one by
one until a maximum number of scenarios has been reached.
Furthermore, the probability of one preserved scenario will
be recomputed by summing its original probability and the
probabilities of the deleted scenarios that are closest to this
preserved scenario.

C. Two possible solvers

In this paper, we consider two solution strategies to solve
the formulated MINLP problem. The BB solver can obtain the
optimal solution, and the modified PSO solver may obtain a
solution near the optimal solution but much faster than the BB
solver [34]–[37], [49].

1) BB solver: The problem formulated in Section V.A
can be transformed into an MILP problem. The ‘or’ logic
in (17), the absolute value in (12) and (18), the products
between binary variables in (3) and (4), can all be exactly
recast into mixed-integer linear constraints as described in
[50]. Thus, the optimization problem with objective function
(8) and constraints (3) - (5), (9) - (20) can be categorized as
an MILP problem. In the literature, various solvers are very
useful for MILP problems. For instance, the BB solver can be
used to obtain the optimal solution of the MILP problem.

2) PSO solver: Using the PSO algorithm [34]–[37], the
optimization problem can be solved directly from its MINLP
form. It is possible to directly handle non-linear constraints,
e.g., the ‘or’ logic, the absolute values, or products between
binary variables. That is because we just have to evaluate
them when computing the objective function value and/or
the constraint violations. Additionally, constraints can be
converted into soft constraints via a penalty function. The
PSO solver considers a population of candidate solutions
(particles) and defines the dynamics of how these particles
will move in the search space by updating their position and
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Fig. 6. Modified PSO algorithm

velocity. In the maintenance problem formulated in this paper,
it is difficult for randomly generated particles to satisfy the
many included constraints. Thus, we propose a modified PSO
algorithm such that the number of constraints is substantially
reduced, making it more likely to obtain feasible solutions.
The scheme of the modified PSO algorithm is shown in Fig.
6.

Four main modifications are considered in the proposed
PSO-based solution. The first one is to deal with (17) and
(18). These two constraints are hard to be satisfied when
the binary decision-making variables ∆j,p,q(t) are generated
randomly. That is because for ∆j,p,q(t) where t ∈ {1, ..., td}
we have 2td combinations of ∆j,p,q , but only very a little
number of them satisfy (17) and (18). Thus, instead of
∆j,p,q(t), we consider the variable ∆̃j,p,q(t), t ∈ {0, ..., td},
which represents the starting time of the maintenance action.
Only one component in ∆̃j,p,q(t) where t ∈ {1, ..., td} will
be equal to 1, and the others are set to 0. When we do not
perform the maintenance action at any time slot, ∆̃j,p,q(0) will
be set to 1, and other components are set to 0. For example,
∆̃j,p,q(5) = 1 and ∆̃j,p,q(t) = 0 for t ∈ {0, ..., td} \ {5}
represents a solution where the maintenance action ∆j,p,q is
performed starting at time slot 5. With ∆̃j,p,q and maintenance
action durations τj,p,q is possible to calculate ∆j,p,q . For
example, if ∆̃j,p,q(2) = 1 and τj,p,q = 2, then ∆j,p,q is equal
to 1 at t = 2, ∆j,p,q(2) = 1. As the duration is 2, then ∆j,p,q

is equal to 1 at t = 3, ∆j,p,q(3) = 1. Finally, ∆j,p,q = 0 for
all other values of t. By using this transformation strategy,
the number of combinations of ∆j,p,q can be reduced from
2td to (td + 2 − τj,p,q), and constraints (17) and (18) can be
easily satisfied by randomly generated variables.

The second modification is to obtain intermediate variables.
For example, δp,q(t) can be obtained from ∆j,p,q(t) using (3),
(4), and (5). Variable Pp,s(t) can be obtained from Pp,k,s(t)
via (14). Variable Sbat,b,s(t) can be obtained from Pbat,b,s(t).
Then, constraints (3) - (5), (14), and (19) will be satisfied
automatically, and the number of variables is further reduced.

The third modification is to set the boundaries of the
particles by using some of the constraints. For instance, when
generating the particle position of Pp,k,s(t), (15) can limit
the particle position of Pp,k,s within its boundary. Then (15)
can be removed from the feasibility checking process.

The fourth modification is that some of the equality
constraints can be included in the objective function via a
penalty term weighted with considerable high value. Then
these constraints can be removed from the feasibility checking
process. Including the constraints (8) - (13) in the objective
function results in the following:

J = EΦ[Closs,s + Cmain − Cdeg + Csoc,s+

ϖ ·
nZ∑
p=0

|
nZ∑
q=0

δp,q(t)Pp,s(t)|]
(24)

where ϖ ≫ 1 is a very high positive number. Finally, only the
inequality constraints (16) and (20) can be violated with the
randomly generated particles, resulting in a reduced number
of constraints in the feasibility checking process compared to
the original problem.

As for updating the particle velocity and location iteration
by iteration, the variables expressed by the particles are ∆̃j,p,q

and Pp,k,s. First, feasibility check is conducted for each
particle. For particles that do not lead to constraint violations,
the velocities and positions of Pp,k,s can be updated according
to the basic PSO algorithm such that:

vPp,k,s(h, g + 1) = wp · vPp,k,s(h, g) + c1p · rand()
·(P lbest

p,k,s (h)− Pp,k,s(h, g)) + c2p ·Rand() · (P gbest
p,k,s

−Pp,k,s(h, g))

(25)

Pp,k,s(h, g + 1) = Pp,k,s(h, g) + vPp,k,s(h, g + 1) (26)

where rand() and Rand() are independent random variables,
uniformly distributed between 0 and 1. Unfeasible particles
are not updated, but they are also not removed from the
population. In the next iteration, all particles are updated based
on the feasible particles in the previous iteration. For the binary
variable ∆̃j,p,q , (25) and (26) cannot be applied as these are
the equations of PSO for continuous variables. Thus, we use an
integer/discrete strategy to update the velocity and position of
∆̃j,p,q in the next iteration directly, by introducing the 1-value
index of ∆̃j,p,q . By definition, among ∆̃j,p,q(t), t ∈ {0, ..., td},
there is only one value of t for which ∆̃j,p,q(t) = 1, and we
define t as the 1-value index. Then the updating steps of the
1-value index of ∆̃j,p,q for the next iteration are:

1. Firstly, the 1-value index of ∆̃j,p,q is a one dimensional
representation of the particle position. Then we can obtain
the velocity and position of the 1-value index in the next
iteration using (25) and (26). The updated variables can
then be real values.

2. Secondly, we separate the interval [0, td+2− τj,p,q) into
td+1−τj,p,q intervals [k1, k2) where k1 ∈ {0, ..., td+1−
τj,p,q} and k2 = k1 + 1. If the position in the dimension
of the 1-value index falls in interval [k1, k2), then we
assume the integer solution will be at the 1-value index
k1.
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Fig. 7. Update the 1-value index

An example of the updating mechanism is shown in Fig. 7. In
Fig. 7, at the current iteration, the 1-value index of ∆̃j,p,q(t) is
12, which represents that the particle position in the dimension
of the 1-value index is 12. Just as an example, we assume that
the current best 1-value index is 1, while the global best 1-
value index is 3. Then the particle is updated according to
(25)-(26). At the next iteration, this 1-value index moves to
7.83. So the position of the particle in the dimension of the
1-value index is 7. Until now, the 1-value index moves from
t = 12 to t = 7. By doing this, we can update the 1-value
index of ∆̃j,p,q and equivalently update ∆j,p,q(t).

VI. CASE STUDY

The test case considers a modified version of the IEEE 34-
bus distribution network [51] as shown in Fig. 8a. Compared
to the IEEE 34-bus network in [51], a path is added to generate
a loop topology. Furthermore, two batteries and four DGs are
added into the distribution network.

As for the candidate maintenance actions, five sets of
candidate maintenance actions that have already been deter-
mined by the mid-term preventive maintenance scheduling are
considered as five cases. In addition, in each case we consider
scenarios with different generated powers of the DGs and
different load demands that are generated by the scenario tree
method and the scenario reduction method.

A comparison method that does not consider the supporting
ability of DGs and batteries in the preventive maintenance is
designed to quantify the effectiveness of the proposed method.
Both the proposed method and the comparison method will
use the results from the clustering method, the topological
constraints generation, and the scenarios generation and re-
duction.

Furthermore, after the comparison between the methods, the
BB solver and PSO solver will be compared. Both solvers are
implemented on Matlab R2020a.

A. Set-up of the cases

The case study networks marked with candidate mainte-
nance actions of Case 1 - 5 are shown in Fig. 8a and Fig. 9, and
the maintenance actions are indicated with an arrow pointing
to the location where they are to be performed. The numbers
surrounded by circles are the labels of the maintenance actions.
Here we assume that the maintenance personnel only works
from Monday to Friday, which means that td equals to 24×5.
Because different sets of candidate maintenance actions cause
different simplified network, here we only show the simplified
networks of Case 1 after using the clustering method in Fig.
8b.

We assume that from the mid-term maintenance scheduling
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(a) Modified IEEE 34-bus network
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(b) Zones obtained with the clustering method for Case 1

Fig. 8. Distribution network of the case study and its simplification for Case
1

TABLE I
PARAMETERS OF THE CANDIDATE MAINTENANCE ACTIONS

Case Candidate
maintenance action

Performance duration
(Hours)

Day-time cost
($/10 k)

Night-time cost
($/10 k)

Deterioration
stage

1

1⃝ 1 1.82 2.22 34
2⃝ 2 1.59 1.99 35
3⃝ 3 2.76 3.36 41
4⃝ 1 2.75 2.95 59
5⃝ 1 1.91 2.11 81
6⃝ 2 2.06 2.46 76
7⃝ 1 2.71 2.91 62
8⃝ 2 1.18 1.58 52
9⃝ 3 1.46 2.06 52

2

1⃝ 2 1.11 2.02 45
2⃝ 2 2.59 4.99 65
3⃝ 3 1000 2.36 24
4⃝ 3 2 3.95 81
5⃝ 3 2.01 3.11 79
6⃝ 2 1.76 2.54 63
7⃝ 2 1.13 2.45 52
8⃝ 2 1.38 2.76 48

3

1⃝ 1 1.11 4.02 36
2⃝ 2 2 6.86 75
3⃝ 3 1.4 1.76 64
4⃝ 2 1.78 3.82 43

4 1⃝ 2 1.76 5.9 40
2⃝ 2 1.89 8.2 73

5 1⃝ 2 1.76 5.9 40
2⃝ 2 1.89 8.2 73

step we have obtained candidate maintenance actions as shown
in Table I, where “Performance duration” is the number of time
slots (hours) required to perform these maintenance actions,
the column of “Day-time cost” is the cost for performing
the candidate maintenance action during the day-time (8:00-
18:00) while the night-time (19:00-7:00) cost is shown in the
“Night-time cost” column. In Case 2, we consider a restriction
that maintenance action 3 must be performed at night-time
by giving the action a large day-time costs (1000 $/10 k).
Other parameters, e.g. DGs and batteries parameters are the
same as for Case 1. In addition, in all cases, we assume that
after performing maintenance, the deterioration stage of the
component will be zero (as good as new).

In Table I, “Deterioration stage” is a score from 0 to
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Fig. 9. Distribution networks of Case 2 to Case 5

100 to represent the deterioration level of a component that

TABLE II
COMPOSITION OF THE DGS

DG Wind turbine (kW) PV panel (kW) Controllable DGs (kW)

DG1 10 20 70
DG2 30 20 100
DG3 40 40 120
DG4 10 40 100

TABLE III
PARAMETERS OF THE BATTERIES

Label Capacity
(kW.h)

Minimal/Maximal Capacity
(kW.h)

Minimal/Minimal
Power (kW)

1 300 45/270 -30/30
2 800 120/720 -80/80

this candidate maintenance action has to be performed on.
The score at a deterioration stage can be evaluated based on
standards, for example, the ones of the State Grids for Chinese
distribution network (Q/GDW 643-2011, Q/GDW 644-2011,
and Q/GDW 645-2011). To evaluate the degradation status
of a transmission line unit, the degradation statuses of the
sub-components, e.g., conductors and tower structure, will be
evaluated first by checking the temperature, broken strands,
rustiness, etc., for conductors as well as toppling, and cracks,
etc., for the tower structure. Then, the degradation status of
each sub-component is multiplied by their weights and then be
summed up as the degradation status of the whole transmission
line unit [52].

In addition, the rated generated powers of DG1, DG2,
DG3, and DG4 are 100 kW, 150 kW, 200 kW, and 150 kW
respectively; their composition details are shown in Table
II. We assume that these wind turbines and PV panels can
operate in islanding mode. This can be realized by planning
controllable DGs, e.g., small hydro generators, which can
support reference voltage and frequency when in islanding
mode, and by installing small capacity batteries on the DC
links of the wind turbines and PV panels as indicated in [53].
Furthermore, the parameters of the batteries are listed in Table
III and the initial SOCs of the batteries are all 50%.

The load demand curves for the 10 scenarios are shown in
Fig. 10a. The wind turbine generated power curves are shown
in Fig. 10b. The PV panel generation curves are shown in Fig.
10c and the load prices of the 34 buses are shown in Fig. 10d.
In Fig. 10c, the power generated by the PV panels at night is 0
and during the day the generated power of the PV panels can
slightly exceed their rated power [54]. In Fig. 10d, we adopt
the electricity price data in the USA such that the industrial
electricity, commercial electricity and residential electricity
prices are 0.07 $, 0.1 $ and 0.13 $ per kW.h individually. Then
the electricity prices of the 34 buses are the mixtures of these
three different electricity prices.

The parameter α in (11) is set to be large enough to assume
that all the maintenance actions obtained from the mid-term
scheduling step are actually performed, e.g. α = 1. Moreover,
β and σ in (12) is set to 0.0001 and 0.5 individually to assure
that the batteries can provide supporting energy to the shed
loads as well as recover the SOC to the level σ when the
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Fig. 10. Scenarios curves and load price curves

SOC deviates from this level.

B. Comparison of methods

The method used for comparison does not consider the
supporting energy ability of the DGs and batteries. Thus, the

TABLE IV
MODIFICATIONS PROGRAMMING PROBLEM FOR COMPARISON

Constraints or objective function Modification

(3)-(5), (9)-(11), (13), (16)-(18) No modification
(8), (14)-(15) Delete terms related to DGs and batteries

(12), (19)-(20) Not included

corresponding optimization problem can be presented as:

min
∆′

J ′ = EΦ[C
′
loss,s + C ′

cost + C ′
deg] (27)

where the expressions of the terms are the same as (8)-(10). In
constraints (13) and (14), the computation of the total output
power of the zones omits the generation powers of the DGs
and batteries in the zones, such that (14) we have:

P ′
p,s(t) =

W ′
m∑

k=1

Pp,k,s(t),

∀t ∈ {1, ..., td}, ∀p ∈ {0, ..., nZ}, ∀s ∈ Φ

(28)

where W ′
m is the total number of consuming components in

zone p regardless of the powers of the DGs and the batteries,
and P ′

p,k,s(t) is the power generated or consumed by the kth
consuming component in zone p in time slot t of scenario s.
In addition in (15), the power limitations on the components
in the zones can be described as:

Pmin
p,k (t) ≤ P ′

p,k,s(t) ≤ Pmax
p,k (t), ∀t ∈ {1, ..., td},

∀p ∈ {1, ..., nZ}, ∀k ∈ {1, ...,W ′
m} ∀s ∈ Φ

(29)

As for (19)-(20), they are not included in the comparison
model. The modifications of the programming problem for
comparison are shown in Table IV. In order to find the
optimal solution, the BB solver is used for the proposed
method and the comparison method. The simulation results
are shown in Table V and Table VI. In Table V, the details of
the maintenance action performances are listed. In Table VI,
the “Load loss costs for the proposed method” was calculated
from the expectation of Closs,s in (8). The “Load loss costs
for the comparison method” is the sum of the load loss costs
in each zone while maintenance actions are performed.

When comparing between Case 4 and Case 5, although
the durations of the maintenance actions are the same, the
load loss costs are different. That is because in Case 4
maintenance actions are in the main paths, and performing
these maintenance actions will cause a large amount of load
loss. However in Case 5, performing maintenance actions will
cause no load loss because DG3 and DG4 are sufficient to
support the loads isolated from the PCC while maintenance
actions are performed. So the more maintenance actions are
on the main paths, the more load will be shed.

Furthermore, among the cases, the load loss costs of the
proposed method are much lower than those obtained by the
comparison method, with 35%, 17.5%, 7.3%, 8.4% load loss
costs reductions in Case 1 to Case 4 individually. Thus, the
proposed method can reduce the load loss costs effectively.
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TABLE V
MAINTENANCE ACTIONS DETAILS OF METHODS COMPARISON

Case Candidate
maintenance action

Performance time slots
of the proposed method

Performance time slots
of the comparison method

1

1⃝ 72 74
2⃝ 73 - 74 73 - 74
3⃝ 33 - 35 105 - 107
4⃝ 9 60
5⃝ 18 87
6⃝ 62 - 63 83 - 84
7⃝ 13 81
8⃝ 108 - 109 71 - 72
9⃝ 72 - 74 71 - 73

2

1⃝ 105 - 106 57 - 58
2⃝ 105 - 106 57 - 58
3⃝ 72 - 74 72 - 74
4⃝ 11 - 13 107 - 109
5⃝ 84 - 86 36 - 38
6⃝ 81 - 82 9 - 10
7⃝ 83 - 84 12 - 13
8⃝ 62 - 63 36 - 37

3

1⃝ 109 57
2⃝ 107 - 108 58 - 59
3⃝ 107 - 109 57 - 59
4⃝ 73 - 74 73 - 74

4 1⃝ 108 - 109 57 - 58
2⃝ 108 - 109 57 - 58

5 1⃝ 105 - 106 9-10
2⃝ 105 - 106 57-58

TABLE VI
LOAD LOSS COSTS OF METHOD COMPARISON

Case Load loss costs for
the proposed method ($)

Load loss costs for
the comparison method ($)

1 124.8 167.87
2 454.18 533.65
3 200.49 215.13
4 227.98 247.14
5 0 0

C. Comparison of the solvers

In this subsection, the results of the comparison between
the BB solver and the modified PSO solver will be presented
and analyzed. After sensitivity analysis, we find the parameters
associated with good performance are ϖ = 500000, wp = 0.9,
c1p = c2p = 0.9, and the velocity boundaries are ±100.
We study the influence of the number of particles and the
number of iterations on the performance of the modified PSO
solver, including the load loss costs and the CPU time. For
each selected combination of the number of particles and the
number of iterations, we run the PSO solver 10 times to obtain
the average values of the load loss costs and the CPU time.
The results are presented in Fig. 11. Results of Case 5 are not
included in Fig. 11 because when the number of particles is
20 and the number of iterations is 20, the PSO can obtain the
optimal solution in 3 s.

In Fig. 11, in the parentheses are the number of iterations
and the number of particles used to obtain the data point. From
Fig. 11, we can observe that when the combinations of the
number of iterations and the number of particles are (500,30),
(600,20), (200,20), (80,20), for Case 1 to 4 respectively,
the increase of the number of iterations influences little on
reducing the costs, but it results in a large increment of
CPU time. We will use the combinations (500,30), (600,20),
(200,20), (80,20), (20,20) for Case 1 to 5 respectively, to
compare with the BB solver. The results of the comparison
are in Table VII.
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Fig. 11. PSO simulation results

In Table VII, “Worst” and “Best” are the best and worst
costs among ten runs separately. “STD” represents the standard
deviation, and “AVR” the average of the costs. “Time” of the
PSO solver is the average CPU time of the ten runs. It can
be seen from Table VIII that the modified PSO solver obtains
sub-optimal solutions that deviate from the optimal solution
obtained by the BB solver with 40.14%, 25.57%, 5.49%, and
0.45%, and 0% for Cases 1 to 5, respectively. However, the
modified PSO solver can largely reduce the computation time
with 37.29%, 48.14%, 55.63%, 65.56%, and 90% for Cases
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TABLE VII
COMPARISON BETWEEN THE PSO SOLVER AND THE BB SOLVER

Case
PSO solver BB solver

Worst Best STD AVR Time Cost Time

1 248.85 130.79 33.4 174.89 4743 124.8 7563

2 646.99 489.89 66.89 570.31 725 454.18 1398

3 230.78 204.04 12.2 211.5 42.6 200.49 96

4 241.32 227.98 3.71 229 12.4 227.98 36

5 0 0 0 0 3 0 30

1 to 5, respectively. Besides, the relative standard deviations
of the load loss costs with respect to 19.1%, 11.73%, 5.77%,
1.62%, and 0% for Cases 1 to 5, respectively.

According to the results, when the scale of the problem
becomes larger, the sub-optimal solutions obtained by the PSO
solver are characterized by larger differences from the optimal
solution, but the computation time reduction is significant for
all the cases. Also, the standard deviations for the PSO solver
are not very large, except for Case 1. However, regarding
the IEEE 34-bus distribution network associated with a small
number of candidate maintenance actions, e.g., below 10, the
computation time for BB solver is acceptable. That is because,
for weekly preventive maintenance scheduling, the decision-
making time is sufficient. In this case study, the longest
computing time is 7563 seconds. At the beginning of every
week, the system operator can use 2-3 hours to solve the
proposed short-term preventive maintenance scheduling prob-
lem using the BB solver. In this case, the BB solver is better
than the PSO solver. In settings where less time is available
for decision making, larger networks, and more maintenance
activities, PSO will provide a sub-optimal solution within the
time limitations.

VII. DISCUSSIONS

The proposed short-term preventive maintenance scheduling
method is evaluated in five cases to schedule the maintenance
actions to their optimal time slots. In these cases, different
numbers of candidate maintenance actions with different lo-
cations, different durations, and different costs are considered.
In all the cases, load losses can be caused when performing
maintenance actions. The proposed method can reduce the
load loss costs from 7.3% to 35% when the supporting power
potential of the DGs and batteries is considered. The proposed
short-term preventive maintenance method can be used by the
power system operator to reduce the influence of the load
shedding when performing maintenance actions.

Furthermore, a comparison between two different solvers
is performed and the results are analyzed. The BB solver can
obtain the optimal global solution, but the computation time is
higher due to the number of equations and variables included
when the exact reformulation of the original problem is con-
structed. With the modified PSO solver, sub-optimal solutions
are obtained, but the computation time can be reduced. In
addition, the evaluation of the cost function for each particle
in PSO can be performed in a fully parallel way. That would

make the computation time of PSO even more competitive.
The power system operator should define the right trade-off
between accuracy and computation time when selecting the
right solver for the application. When the problem is solved
for small-scale or medium-scale networks, e.g., the IEEE 34-
bus network used in the case study, the computation time of
the BB solver can be acceptable. However, when the topology
of the distribution network is much more complex, and when
there are many candidate maintenance actions, e.g., above ten
candidate maintenance actions for the IEEE 34-bus network,
the modified PSO might become a better choice.

In this study, the DGs can support energy to the loads,
particularly when they are part of a dynamically formed mi-
crogrid functioning in islanding mode. An interesting further
study would be to consider how to reduce the influence of the
switching between the islanding mode and the connected mode
on the power system stability. When the DGs are connected
to the power systems by inverters, this will require to include
aspects of power electronics, and for instance, to improve
the performance of the controllers. This can be done by
installing communication devices in the network, so that a
synchronized or coordinated control can be realized. Other
control frameworks proposed in the literature can be tested,
such as the hierarchical droop-based control of [55].

In the case study settings of this paper, we have assumed
that there are controllable DGs and enough capacity batteries
on the DC links of the wind turbines and PV panels. However,
in some networks, this assumption might not hold. Then,
additional constraints have to be included in the optimization
problem. For instance, consider a distribution network con-
taining any number of loads, one DG whose zone label is d,
one PCC whose zone label is 0, and one battery whose zone
label is b. The actual generated power of the DG is Pd(t),
and the rated generated power of the DG is PDG(t). Then
if we consider that the DGs can only operate when they are
connected to the battery or PCC or both of them, the following
additional constraint is required:

Pd(t) = PDG(t)
(
1− (1− δd,0(t))(1− δd,b(t))

)
where δd,0(t) and δd,b(t) are the connecting statuses from the
distributed generator to the PCC and to the battery at time step
t. Then, if the distributed generator is neither connected to the
PCC nor the battery, the value of Pd(t) will be zero which
means that no power is generated by the distributed generator.

In addition, the proposed approach is not limited to the
use of the topological connectivity constraints to formulate
the problem as shown in this paper, but it can also consider
constraints based on power balance rules or others.

VIII. CONCLUSIONS

This paper has proposed a short-term preventive scheduling
method for power systems to reduce the load loss costs
when performing maintenance actions. The power supporting
potential of DGs and batteries when performing maintenance
actions in the distribution network can be systematically op-
timized with the proposed method. A DFS clustering method
has been proposed to reduce the computational complexity
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of the short-term based scheduling problem. To be able to
express the power balance equations in case of maintenance
actions being performed, topological connectivity constraints
are generated and used to define the corresponding mainte-
nance action connectivity variables, which are then used to
write down in the power balance equations. In addition, the
scenarios generated by the scenario generation and reduction
methods are considered to express the uncertainties of the
generation powers of the DGs. The simulation results show
the effectiveness and improvement of this method and its
capacity to reduce the load loss costs during maintenance. In
addition, for the IEEE 34-bus network with a small number
of candidate maintenance actions, the BB solver is better than
the PSO solver. As for the future work, the control strategy
of the DGs, e.g., hierarchical droop-based control, will be
considered so that the formed microgrids during maintenance
can operate more in a more stable condition. Another topic
of further research is the inclusion of transient stages in
the formulation, particularly when the system switches from
one configuration to another. Moreover, an approach based
on Bayes theorem maybe be used for short-term preventive
maintenance scheduling.
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