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Abstract

Some nonlinear systems can be approximated by switching bilinear systems. In this paper, we proposed a method

to design state-based stabilizing controller for switching bilinear systems. Based on the similarity between switching

bilinear systems and switching linear systems, corresponding switching linear systems are obtained for switching

bilinear systems by applying state-based feedback control laws. Instead, we consider asymptotically stabilizing the

corresponding switching linear system through solving a number of relaxed LMI conditions. Stabilizing controllers

for switching bilinear systems can be derived based on the results of the corresponding switching linear systems. The

stability of the controller is proved step by step through the decreasing of the multiple Lyapunov functions along the

state trajectory. The effectiveness of the method is demonstrated by both a theoretical example and an example of

urban traffic network with traffic signals.
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1. Introduction

In practice, many systems have nonlinear features and can be described by nonlinear models. For some of the sys-

tems, such as sociology systems, biology systems, water systems, power systems, and traffic systems, the nonlinearity

can be described by multiple simple nonlinear models, which are combinations of linear terms and comparatively

simpler nonlinear terms. The nonlinear terms usually are the coupling terms of system states and the system inputs,

which means how the system inputs influence the system states not only depends on the value of the system inputs but

also relays on the current system states. This term is considered as the bilinear term, and it will turn into a linear term

once the system state becomes static. Some research works have been done to identify the simple models that build

up the nonlinear systems [33, 34].

Bilinear systems are a kind of special nonlinear systems that have been investigated a lot since the 1960s [15, 20,

28]. They are very simple and close to linear systems, which makes it possible to extend some of the theory results

for linear systems to bilinear systems. A bilinear system involves actually the addition of a linear term and a bilinear

term. Due to the existence of the bilinear term, the structure of the system can be changed compared with the linear

systems. Because of the variable structure of the bilinear systems, some uncontrollable linear systems may become

controllable by simply adding the bilinear term. It has been proved that bilinear system had a better performance than

linear system in optimal control, since the designed controller has more freedom to variate the structure of the system

to achieve better performance due to the existence of the bilinear term [29].

For some nonlinear systems, they can be approximated by dividing them into multiple state-based linear or bilinear

subsystems, and the nonlinearity of the systems can be approximated by switchings among these linear or bilinear

subsystems [16]. In each state region, a subsystem, i.e. a linear or bilinear system, is activated, and the linear or

bilinear subsystem switches to other subsystems when the corresponding state region is switched. This results in
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a state-based switching linear or bilinear systems [8]. Sociology systems, biology systems, water systems, power

systems, and traffic systems [28] are all systems that naturally have the bilinear term, i.e. the states multiplying the

control inputs, and can be approximated by state-based bilinear switching systems. For instance, take traffic system

for example, the nonlinear traffic model can be divided into multiple simple traffic models for each specified traffic

mode (or traffic state region), and every traffic dynamic model of its mode is a combined model with linear terms and

bilinear terms. In other words, the dynamic of the traffic model is divided into several working zones, in each zone

a bilinear model is established. The system state can switch among the different traffic modes, and thus to form the

complex nonlinearity of the whole system. For more information, one can refer to [24]. The reason for the existence

of the bilinear term in the traffic model is that the traffic signal settings (control inputs) and the traffic densities (the

system states) are coupling with each other in the system dynamics, i.e. the impact of the traffic signals on the traffic

system relays on the current traffic densities. This phenomenon can be easily found in other nonlinear systems, such

as sociology systems, biology systems, water systems, and power systems. Consequently, in this paper, we designed

a method to asymptotically stabilizing this kind of switching bilinear systems.

There were many research works investigating the problem in stability and design of switching systems. The

existence of switching rules, and the design of switching sequences or switching laws, were studied to ensure stability

of the switching systems [1, 5, 9, 10, 13, 14, 21, 30–32, 37–39]. Two families of switching laws were extensively

studied, i.e. time-dependent and state-dependent switching laws. For both switching laws, the most celebrated de-

sign approaches are based on switching Lyapunov functions. If a switching quadratic Lyapunov function is shown

to be strictly decreasing during the active intervals and at the switching instants, the switched linear systems are

asymptotic stable for both switching laws, e.g. Yuan et al. [36] designed an interesting switching quadratic Lyapunov

function with time-varying positive definite matrices to guarantee asymptotic stability for time-dependent switched

system; Johansson et al. [18] introduced a piecewise quadratic Lyapunov function, incorporating S-procedure, to show

asymptotic stability for state-dependent switched systems. To a more relaxed situation, multiple Lyapunov functions

were designed to make sure the switching Lyapunov functions decreased during the whole dynamic process of the sys-

tem, but not necessarily decreased for the switching of each time. Stabilizing controllers were designed for nonlinear

systems by modeling them as piecewise affine (PWA) linear systems through splitting the state space into polyhedron

regions [3, 11, 35, 36, 40]. Lyapunov-based controller design methods for switching systems were proposed by Ma

et al. and Huo et al. in [17, 25]. Mhaskar et al. proposed Lyapunov-based methods to stabilize nonlinear switching

systems by guaranteeing the reduction of the Lyapunov functions along the sequence of system switchings, and this

method is carried out in several control synthesis including output feedback control, predictive control and robust

predictive control [12, 26, 27]. For switching bilinear systems, studies had been done to design state feedback laws

to guarantee the asymptotic stability of the systems [2, 4, 22]. In general, these works utilized the similarity of linear

systems and bilinear systems, and investigated the stability of the bilinear systems by turning them into linear systems

through adopting state feedback control laws. The control design was expressed in the form of a Linear Matrix In-

equality (LMI) feasibility problem, which can be solved by LMI solvers efficiently. However, not much attention has

been paid to study the state feedback control law design to asymptotically stabilize the state-based switching bilinear

systems by multiple different Lyapunov functions.

In this paper, a method is proposed for designing controllers to stabilize state-based switching bilinear systems.

By considering the similarity between linear systems and bilinear systems, feedback control laws are designed for

the switching bilinear systems to turn the close-loop systems into corresponding state-based switching linear systems.

Instead of studying the method to stabilize the switching bilinear system directly, we propose a theorem to asymptot-

ically stabilize the close-loop switching linear system based on multiple Lyapunov functions. In addition, we further

relax the conditions by allowing the Lyapunov functions to jump on the boundary of the neighboring state regions. In

other words, the value of the Lyapunov functions does not necessarily continuously decrease along the state trajectory.

A stabilizing controller for switching bilinear systems can be obtained by checking the feasibilities of LMI conditions.

In order to test the effectiveness of the results, we apply the method to a second-order switching bilinear system, and

to a two-link urban traffic system with traffic signals.

The paper is organized as follows: Section 2 presents the problem statement; Section 3 gives some preliminary

knowledge on state-based controller design for switching bilinear systems; the controller design and proof are pre-

sented in Section 4; examples are given in Section 5; and Section 6 concludes the paper.
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2. Problem Statement

Consider a Switching Bilinear System (SBLS)

ẋ = Aix+
mi

∑
j=1

(Gi, jx+bi, j)ui, j, if x ∈ Ωi, i ∈ Λ, (1)

where Ai and Gi, j are n × n matrices, bi, j is an n × 1 vector, Λ is the set of the state space partitions, Ωi is the

corresponding polyhedral region with i ∈ Λ in the set of the state space partition Ω ⊂R
n (∪i∈ΛΩi = Ω,Ωi 6= /0,∀i ∈ Λ),

j ∈ Mi = {1, . . . ,mi}, and Ui = [ui,1 ui,2 · · ·ui,mi
] ∈ R

mi is an mi-dimensional control input with ui,1, ui,2 ... ui,mi
are

scalars.

Eq. (1) can be written as

ẋ = Aix+
mi

∑
j=1

bi, j(c
T
i, jx+1)ui, j, if x ∈ Ωi, i ∈ Λ, (2)

if matrix Gi, j can be written as the inner product of two vectors. Particularly, when the rank of Gi, j is

rank(Gi, j) = 1, (3)

then matrix Gi, j can be expressed as

Gi, j = bi, jc
T
i, j, if i ∈ Λ, j ∈ Mi. (4)

This means that each of the control inputs ui, j( j ∈ Mi, i ∈ Λ) only corresponds to one system state, i.e. element

xi (i ∈ {1, . . . ,n}), in other words, the bilinear terms in (1) only exist for the local control inputs and states having

direct correlations with each other (indirect correlations are considered by the dynamic model). In practice, it is

easy to find systems with this property, like flow dynamic systems, such as water networks, traffic networks, power

networks, etc.

In general, smooth nonlinear functions can be approximated with multiple simpler functions, such as piecewise

affine (PWA) linear functions and bilinear functions. The switchings among multiple simple linear or nonlinear

functions can construct a complex nonlinear feature. In other words, a complex nonlinear function is actually the

addition of a number of simple linear and nonlinear functions. In [16], switched nonlinear systems with smooth

nonlinear subsystem functions are approximated with piecewise affine (PWA) functions under a novel framework,

and a controllable switching signal that orchestrates the switching between PWA subsystems. In practice, a nonlinear

system has multiple working zones, and in each working zone the system dynamic can be described by a simple model.

If the models are linear affine, then the nonlinear system can be approximated by switched PWA linear functions; If

the models are bilinear, then the nonlinear system can be approximated by switched bilinear functions; More complex

case could be the nonlinear system is approximated with different kinds of simple functions. When the model can be

described by bilinear functions, usually it is because the system states are coupled with the control input variables,

for example in traffic flow system. By separating the state space according to the working zones, we could partition

the state space into multiple regions, in each of which a linear or bilinear model is established. When the trajectory of

the system switches among the state space sub-regions, it is actually switching among different working zones. The

method in this paper is to design feedback controllers to stabilize the nonlinear system during the switchings of the

working zones.

3. PRELIMINARIES

According to the similarity between bilinear systems and linear systems, specific controllers were designed for

bilinear systems, which provide state-based linear controllers for the divided bilinear system [28]. When only one

subsystem in (2), the system turns into a bilinear system. Based on [15], a division controller can be designed to

stabilize the bilinear system as follows. Let e j(x) = cT
j x+1( j ∈ M), and the state space is divided into the following

regions:






S+j = {x|e j(x)≥ ε}

S0
j = {x|− ε ≤ e j(x)≤ ε}

S−j = {x|e j(x)≤−ε},
(5)
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where ε is a small positive scalar. Then, the division controller can be expressed for these regions as:

u =







k+j x+uref
j

e j(x)
, x ∈ S+j

0, x ∈ S0
j

k−j x+uref
j

e j(x)
, x ∈ S−j ,

(6)

with k+j and k−j as the 1×n state-feedback gain, and uref
j the input reference for specifying the equilibrium point.

The bilinear system can be stabilized by the designed division controller for the predefined equilibrium state.

Before the start of the design, Finsler Lemma is presented here [19]:

Lemma 1. Let x ∈ R
n, Q ∈ R

n×n, and B ∈ R
m×n such that rank(B)< n. The following statement are equivalent:

• xTQx < 0, ∀x 6= 0 such that Bx = 0;

• BT
⊥QB⊥ < 0;

• ∃λ ∈ R: Q−λBTB < 0;

• ∃ζ ∈ R
n×m: Q+ζ B+BTζ T < 0.

where B⊥ is a basis for the null space of B.

The lemma is used in the proof of the stability of the controller design.

4. SBLS Stabilizing Controller Design

For the switching bilinear system described in (2), a method is proposed to design a stabilizing controller for the

SBLS based on the aforementioned division controllers. The controller design can be carried on step by step: 1)

deriving the corresponding Switching Linear System (SLS) from the SBLS; 2) designing a stabilizing state-feedback

controller for the derived SLS; 3) obtaining the stabilizing controller for the SBLS.

4.1. Obtain Corresponding Switching Linear System

By designing stabilizing switching division controllers for each bilinear subsystem i∈Λ, we could turn the switch-

ing bilinear systems into the corresponding switching linear systems, by partitioning the state-space polyhedron Ωi

into multiple subregions. When the control input is ui, j(i ∈ Λ, j ∈ Mi) with Mi = {1, . . . ,mi} for sub-bilinear system

i ∈ Λ, then two state-feedback controllers can be designed for each control input ui, j as

{
S+i, j = {x|ei, j(x)≥ 0}

S−i, j = {x|ei, j(x)≤ 0},
(7)

where ei, j(x) = cT
i, jx+1 ( j ∈M), and therefore there will be at most 2mi state subspace partitions in Ωi. Let’s define the

set of state subspace partitions of Ωi is Γi. For region S0
j in (5), the switching dynamic depends only on the dynamics of

the two linear systems on the both sides, thus we could temporally omit the ε . The polyhedral partition of Ωi (i∈Λ) for

bilinear subsystem i can be defined as {Ωi,l}i∈Λ,l∈Γi
, where ∪l∈Γi

Ωi,l =Ωi,Ωi,l 6= /0,Ωi,l1 ∩Ωi,l2 6= /0,∀l1 6= l2, l1, l2 ∈Γi.

According to the polyhedral partition of the state space, the controller can be designed for each polyhedron Ωi,l as

Ui,l = [ui,l,1 ui,l,2 · · ·ui,l,mi
], i ∈ Λ, l ∈ Γi,mi ∈ Mi, (8)

with the equilibrium as the origin, where

ui,l, j =
ki,l, jx

ei, j(x)
, if x ∈ Ωi,l , j ∈ Mi, l ∈ Γi, i ∈ Λ. (9)

If (9) is substituted into (2), then the bilinear terms are eliminated, and a close-loop linear system is obtained. Conse-

quently, the bilinear system in (2) becomes a switching linear system, i.e. the corresponding SLS of the SBLS. With
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(9), the parameter of the control input, which is related to the system state, will be eliminated in (2). In other words,

the bilinear term in the switching bilinear system turns into a linear term. However, if the denominator is 0, the control

input will explode due to the singularity point. For this reason, the state space in the corresponding switching linear

system is further divided into more subspace partitions by letting ei, j(x) = cT
i, jx+1 = 0.

To control the SBLS, the state-feedback controller can be first designed to stabilize the following corresponding

SLS:

ẋ = (Ai +
mi

∑
j=1

bi, jki,l, j)x, if x ∈ Ωi,l , j ∈ Mi, l ∈ Γi, i ∈ Λ. (10)

Define

Bi = [bi,1 bi,2 · · ·bi,mi
],

Ki,l = [(ki,l,1)
T (ki,l,2)

T · · ·(ki,l,mi
)T]T, (11)

then the equations of the corresponding SLS system can be described as

ẋ = (Ai +BiKi,l)x, if x ∈ Ωi,l , j ∈ Mi, l ∈ Γi, i ∈ Λ. (12)

4.2. State-feedback Control Design for SLS

Now, we will design switching state-feedback control laws to stabilize SLS in (12), and asymptotically steer the

system state to the predefined equilibrium (i.e. the origin) using an extension of the approach in [13, 16, 23]. After

deriving the correspond SLS system, stabilizing controllers will be designed based on the results in [16]. But, this

paper aims at designing stabilizing controller for SBL systems that are often found in flow systems. To address the

specific problem, we mainly focuses on the state-based switchings, and state feedback controllers are designed for the

switching bilinear systems. In addition, in this paper, a relaxed switching condition is proposed to improve the feasible

region of the control input, and it guarantees the reduction of the overall Lyapunov function along the switchings of the

subsystems at the same time. This is realized by designing the relaxing LMI constraints. The effect of the relaxation

is verified in the experiment.

We can describe each polyhedral region Ωi,l as a series of linear inequalities, where Fi,l is the parameter matrix,

and fi,l is the constant vector of the linear inequalities of the polyhedral region Ωi,l ,

[Fi,l fi,l ]
︸ ︷︷ ︸

F̄i,l

[
x

1

]

≥ 0, if x ∈ Ωi,l , (13)

and so we can use an equality and inequality to represent the boundary hyperplane for two neighboring regions Ωi,l

and Ω
i′,l

′ as

[Ψ
ii′,ll

′ ψ
ii′,ll

′ ]
︸ ︷︷ ︸

Ψ̄
ii′ ,ll

′

[
x

1

]

= 0, and [Φ
ii′,ll

′ φ
i′,ll

′ ]
︸ ︷︷ ︸

Φ̄
ii′,ll

′

[
x

1

]

≥ 0,

∀ x ∈ Ωi,l ∩Ω
i′,l

′ . (14)

The linear equalities represent the hyperplane of the boundary, and the linear inequalities indicate on which region of

the hyperplane the boundary is active. Ψ
ii′,ll

′ is the parameter matrix, and ψ
ii′,ll

′ is the constant vector of the linear

equalities of the boundary hyperplane between the two neighboring regions Ωi,l and Ω
i′,l

′ . Φ
ii′,ll

′ is the parameter ma-

trix, and φ
ii′,ll

′ is the constant vector of the linear inequalities of the boundary hyperplane between the two neighboring

regions Ωi,l and Ω
i′,l

′ .

Lyapunov functions are described for each polyhedral region Ωi,l (l ∈ Γi, i ∈ Λ) as

Vi,l(x) =

[
x

1

]T [
Pi,l ⋆
sT

i,l ri,l

]

︸ ︷︷ ︸

P̄i,l

[
x

1

]

︸ ︷︷ ︸

x̄

, ∀ l ∈ Γi, i ∈ Λ,x ∈ Ωi,l , (15)

5



[
Q̄i,l ⋆
F̄i,lQ̄i,l Ri,l

]

> 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 6∈ Ωi,l}, (19)

[
Qi,l ⋆
Fi,lQi,l Ri,l

]

> 0, Q̄i,l =

[
Qi,l ⋆
0 qi,l

]

> 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ∈ Ωi,l}, (20)

[

ĀiQ̄i,l + Q̄i,lĀi
T
+ B̄iNi,l +NT

i,lB̄i
T

⋆

F̄i,lQ̄i,l −Mi,l

]

< 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 6∈ Ωi,l}, (21)

[
AiQi,l +Qi,lA

T
i +BiNi,l +NT

i,lB
T
i ⋆

Fi,lQi,l −Mi,l

]

< 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ∈ Ωi,l}, (22)







Q̄i,l ⋆ ⋆ ⋆
Q̄i,l Q̄i′,l′ ⋆ ⋆
Ψ̄ii′,ll′Q̄i,l 0 −λii′,ll′ ⋆
Φ̄ii′,ll′Q̄i,l 0 0 −Θii′,ll′






≥ 0, ∀ i, i′ ∈ Λ, l ∈ Γi, l

′ ∈ Γi′ : Ωi,l ∩Ω
i′,l

′ 6= /0 (23)







Q̄i′,l′ ⋆ ⋆ ⋆
Q̄i′,l′ Q̄i,l ⋆ ⋆
Ψ̄ii′,ll′Q̄i′,l′ 0 λii′,ll′ ⋆
Φ̄ii′,ll′Q̄i′,l′ 0 0 Θii′,ll′






≥ 0, ∀ i, i′ ∈ Λ, l ∈ Γi, l

′ ∈ Γi′ : Ωi,l ∩Ω
i′,l

′ 6= /0 (24)

where x̄ = [x 1]T, Pi,l ∈ R
n×n is a symmetric matrix, si,l is an n×1 dimensional vector, and ri,l ∈ R.

Based on the definitions above, a sufficient condition can be derived to design switched state-feedback control

laws for the SLS in (12), which can asymptotically steer the system state to the origin (i.e. the equilibrium for at least

one of the subsystems).

In order to describe in a more compact way, we use the augmented system matrices defined as follows in the

following theorems:

Āi =

[
Ai 0

0 0

]

, B̄i =

[
Bi

0

]

. (16)

Theorem 2. The SLS system in (12) can be asymptotically stabilized, on condition that feasible solutions are founded

satisfying (19)-(24), with positive definite matrices Q̄i,l , Qi,l , Ri,l , and Mi,l , and matrices Θi,l and scalars λi,l , and

deriving the state-based feedback control laws with gains for different regions as

K̄i,l = Ni,lQ̄
−1
i,l = Ni,lP̄i,l ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 6∈ Ωi,l}, (17)

and

Ki,l = Ni,lQ
−1
i,l = Ni,lPi,l ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 ∈ Ωi,l}. (18)

Proof : First, we apply the Schur complement on (19) to the second row and column. By multiplying from both

sides by Q̄−1
i,l = P̄i,l , the result yields

P̄i,l − F̄T
i,lR

−1
i,l F̄i,l > 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 6∈ Ωi,l}, (25)

which makes sure that the Lyapunov function is positive on each state polyhedron, that is

Vi,l > 0, if F̄i,l x̄i,l ≥ 0 and x̄i,l 6= 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 6∈ Ωi,l}. (26)

Second, we apply the Schur complement again on (21) with respect to the second row and column. By multiplying

from both sides by Q̄−1
i,l = P̄i,l , and using (17). then the result turns into

P̄i,l(Āi + B̄iK̄i,l)+(Āi + B̄iK̄i,l)
TP̄i,l + F̄T

i,lM
−1
i,l F̄i,l < 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 6∈ Ωi,l}, (27)
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which makes sure that the derivative of the Lyapunov function is negative on each state polyhedron, i.e.

V̇i,l < 0, if F̄i,l x̄i,l ≥ 0 and x̄i,l 6= 0, ∀ (i, l) ∈ {(i, l) | i ∈ Λ, l ∈ Γi,0 6∈ Ωi,l}. (28)

In particular, when the subsystem contains the origin, i.e. for the polyhedron with 0 ∈ Ωi,l , the LMIs in (20) and (22)

are applied to guarantee the Lyapunov function is positive and the derivative of Lyapunov function is negative on the

region. In order to guarantee that the derivative of the Lyapunov function V̇i,l will only become zero if the state x is

zero, the conditions in (19) and (21) need to be satisfied, where the row and column corresponding to the augmented

variable are removed. In (20), the augmented Q̄i,l is defined for the polyhedron Ωi,l with the origin, which makes it

comparable with the augmented Q̄i,l for the polyhedron Ωi,l without the origin in the boundary conditions (23) and

(24).

At last, the Schur complement is carried out on (23) 3 times, every time with respect to the last row and the last

column. Again, adopting (17), the result is multiplied from both sides by Q̄−1
i,l = P̄i,l . Then we derive

P̄i,l − P̄i′,l′ +λ−1
ii′,ll′Ψ̄

T
ii′,ll′Ψ̄ii′,ll′ + Φ̄T

ii′,ll′Θ
−1
ii′,ll′Φ̄ii′,ll′ ≥ 0, ∀ i, i′ ∈ Λ, l ∈ Γi, l

′ ∈ Γi′ : Ωi,l ∩Ω
i′,l

′ 6= /0. (29)

An equality and inequality is defined to describe the states on the boundary of the polyhedra Ωi,l and Ωi′,l′ as

Sii′,ll′ = {x̄ | Ψ̄ii′,ll′ x̄ = 0∧ Φ̄ii′,ll′ x̄ ≥ 0}. (30)

Applying Finsler’s Lemma [19], multiplying the augmented states on both sides, we obtain

Vi,l ≥Vi′,l′ , if x̄ ∈ Sii′,ll′ , ∀ i, i′ ∈ Λ, l ∈ Γi, l
′ ∈ Γi′ : Ωi,l ∩Ω

i′,l
′ 6= /0. (31)

For (24), we do the same way and yield

P̄i,l − P̄i′,l′ +λ−1
ii′,ll′Ψ̄

T
ii′,ll′Ψ̄ii′,ll′ + Φ̄T

ii′,ll′Θ
−1
ii′,ll′Φ̄ii′,ll′ ≤ 0, ∀ i, i′ ∈ Λ, l ∈ Γi, l

′ ∈ Γi′ : Ωi,l ∩Ω
i′,l

′ 6= /0. (32)

Multiply the augmented states on both sides, and then applying Finsler’s Lemma in Lemma 1, we derive

Vi,l ≤Vi′,l′ , if x̄ ∈ Sii′,ll′ , ∀ i, i′ ∈ Λ, l ∈ Γi, l
′ ∈ Γi′ : Ωi,l ∩Ω

i′,l
′ 6= /0. (33)

Equations (31) and (33) guarantee the values of the Lyapunov functions are equal to each other (Vi,l = Vi′,l′), on the

boundary of neighboring polyhedra Ωi,l and Ωi′,l′ .

Consequently, by applying the following state feedback control laws to all of the polyhedral regions

Ui,l = K̄i,l x̄ ∀ x̄ ∈ {x̄ | x ∈ Ωi,l ,0 6∈ Ωi,l , i ∈ Λ, l ∈ Γi}, (34)

and

Ui,l = Ki,lx ∀ x ∈ {x | x ∈ Ωi,l ,0 ∈ Ωi,l , i ∈ Λ, l ∈ Γi}, (35)

it is possible to derive a positive decreasing overall Lyapunov function with continuous values on the boundaries

between the switching of polyhedral regions. Therefore, the SLS system in (12) can be asymptotically stabilized by

the designed control laws. �

For constraints (23) and (24), they require the Lyapunov functions need to be equal on the boundaries of the state

regions, which could be too conservative in the controller design. In some situation, there may not have feasible

solutions to satisfy all the constraints, from (19) to (24). Consequently, in following theorem, we remove constraint

(23) and (24), and relax the condition by allowing the Lyapunov functions jumping on the boundaries of the state

polyhedra.

Define xi,l as the point in the state polyhedron Ωi,l that is closest to the origin, and di,l as the distance from xi,l to

the origin.

Theorem 3. If positive definite matrices Q̄i,l , Qi,l , Ri,l , and Mi,l , and matrices Θi,l and scalars λi,l exist and satisfy

inequalities (19)-(22), and (39), then taking (15) as the state-based Lyapunov functions, the state feedback control

laws with gains given in (17) and (18) can stabilize the SLS system in (12) asymptotically.
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





Q̄i,l ⋆ ⋆ ⋆
Q̄i,l Q̄i′,l′ ⋆ ⋆
Ψ̄ii′,ll′Q̄i,l 0 −λii′,ll′ ⋆
Φ̄ii′,ll′Q̄i,l 0 0 −Θii′,ll′






> 0, if di, j > di′, j′ , and {Ωi,l ∩Ω

i′,l
′} 6= /0, ∀i, i′ ∈ Λ, l ∈ Γi, l

′ ∈ Γi′ (39)

infinity

x1

x2

Ω0

Ω1

Ω2

Ω3

Ω4

d1

d2 d3

d4

Inner boundaries

Figure 1: Illustration for sequence of state space partition

Proof : To prove the conclusion, we need to prove that the smallest Lyapunov function value on a state polyhedron

is always scaled on the inner boundaries of the polyhedron that does not contain the origin (i.e. the Lyapunov function

on the polyhedron that does not contain the origin, will always increase when the states tend to infinity); then, based

on the inequality constraints on the boundaries of the polyhedra, a decreasing sequence of Lyapunov functions with

respect to the sequence of state polyhedral switchings is proved to exist, which can lead the states of the system to

converge to the origin.

First, we can prove that, the smallest Lyapunov function on a state polyhedron is always scaled on the inner

boundaries of the polyhedron, except for the polyhedron with origin. Taking the state space partition in Fig. 1 for

example, the inner boundaries of state polyhedron Ω4 are the boundary lines connected with its neighboring state

polyhedra. Suppose the smallest Lyapunov function is inside the polyhedron Ωi,l that does not contain the origin, then

we can prove that there must exist a x∗i,l allowing V̇i,l(x
∗
i,l) = 0. This is contradicting with the condition V̇i,l < 0 on Ωi,l .

In addition, if the smallest value of Lyapunov function is scaled on the infinite boundary of the polyhedron Ωi,l (see

Fig. 1), because we have Vi,l ≥ 0, then it is straightforward that Vi,l(x
∗
i,l) |x∗i,l→∞= 0. This means V̇i,l(x

∗
i,l) |x∗i,l→∞= 0,

which is contradicting with the condition V̇i,l < 0. Consequently, we prove that the smallest Lyapunov function value

on a state polyhedron is always scaled on the inner boundaries of the polyhedron without the origin.

Second, if we can make sure the boundary condition (39) is satisfied, the following inequalities are guaranteed:

P̄i,l − P̄i′,l′ +λ−1
ii′,ll′Ψ̄

T
ii′,ll′Ψ̄ii′,ll′ + Φ̄T

ii′,ll′Θ
−1
ii′,ll′Φ̄ii′,ll′ > 0,

if di, j > di′, j′ , and Ωi,l ∩Ω
i′,l

′ 6= /0,

∀i, i′ ∈ Λ, l ∈ Γi, l
′ ∈ Γi′ , (40)

which ensures that Vi,l ≥Vi′,l′ for all the states x̄ ∈ Sii′,ll′ on the boundary of Ωi,l and Ωi′,l′ .

Third, because the smallest Lyapunov function value is always scaled on the inner boundaries of a polyhedron

that does not contain the origin, we know that the smallest Lyapunov function value of polyhedron Ωi,l must scale on

the boundary of Ωi,l and Ωi′,l′ , i.e. x∗i,l ∈ Ωi,l ∩Ω
i′,l

′ . In addition, since we have Vi,l(x) > Vi′,l′(x) on Sii′,ll′ , we have

8



Vi,l(x
∗
i,l) > Vi′,l′(x) on Sii′,ll′ . Moreover, because the value of the Lyapunov function on the state polyhedron Ωi′,l′ is

always larger equal than the minimum Lyapunov function value, so it is obvious that Vi′,l′(x) ≥ Vi′,l′(x
∗
i′,l′) on Ωi′,l′ .

Therefore, we obtain Vi,l(x
∗
i,l)>Vi′,l′(x

∗
i′,l′), which means that the minimum Lyapunov function values decrease when

the state switches from Ωi,l to Ωi′,l′ .

Let’s define a state polyhedron distance as the shortest distance from the origin to the state polyhedron, such as

dx in Fig. 1. Finally, if a feasible solution exists for (19)-(22) and (39), there must exist a sequence of reducing state

polyhedron distances connecting all the state polyhedra in Ω to form a state polyhedron switching path getting near

and near to the origin, until to the origin. The sequence of state polyhedron distances satisfies

dp ≥ dp−1 ≥ ·· · ≥ d1 ≥ 0, (41)

with p as the index of polyhedron Ωi,l , ∀ i ∈ Λ, l ∈ Γi in Ω, which is corresponding to a sequence of decreasing

minimum Lyapunov function values for all the polyhedra as

Vp(x
∗
p)≥Vp−1(x

∗
p−1)≥ ·· · ≥V1(x

∗
1)≥ 0, (42)

that guarantees to steer the state to asymptotically converge to the origin, from an initial state x0 within any of the

polyhedra in Ω.

In such case, if a Zeno behavior exists on the boundary of two state subspaces, the Lyapunov function will bounc-

ing on the boundary, then the value of Lyapunov function will reduce and then increase without stopping. Conse-

quently, if a feasible solution can be found, it is not possible to have Zeno behaviors on the switching boundaries.

�

Taking the state space partition in Fig. 1 for example, if a feasible solution exists for (19)-(22) and (39), then we

have a sequence of state polyhedron distances

d4 ≥ d3 ≥ d2 ≥ d1 ≥ 0, (43)

corresponding to a sequence of decreasing minimum Lyapunov function values

V4(x
∗
4)≥V3(x

∗
3)≥V2(x

∗
2)≥V1(x

∗
1)≥V0(x

∗
0), (44)

for all the polyhedra Ω0, Ω1, Ω2, Ω3, and Ω4, so that we could use the state feedback control laws with gains given in

(17) and (18) to steer the state to asymptotically converge to the origin.

4.3. Controller Design for Stabilizing SBLS

For the SBLS, when ei, j(x) = 0 on some of the boundaries of the subregions, the value of the controller in (9)

becomes infinite, which is not feasible. Based on the result of stabilizing state-feedback control design for the cor-

responding SLS of the SBLS, the feasibility on the boundaries of the SBLS need to be further checked to make the

whole system stabilized. In order to avoid the explosion in computing near the boundary when ei, j(x) = 0, we define a

small positive value εi, j in the following equations. So, we could check the stability of the switching near the boundary

and its small vicinity with the method in this section. Thus, according to Sec. 3, the following adaptation is made to

adjust the division of the system, as







S+i, j = {x|ei, j(x)≥ εi, j}

S0
i, j = {x||ei, j(x)| ≤ εi, j}

S−i, j = {x|ei, j(x)≤ εi, j},
, ∀i ∈ Λ, j ∈ Mi, (45)

with εi, j is a very small positive value. According to the state space partition in Sec. 4.1, we can write the controller

design of the SBLS as

{

ui,l, j =
ki,l, jx

ei, j(x)
, ∀ x ∈ Ωi,l \S0

i, j : l, l′ ∈ Γi, j ∈ Mi, i ∈ Λ,

ui,ll′, j = 0, ∀ x ∈ (Ωi,l ∩S0
i, j)∪ (Ωi,l′ ∩S0

i, j) : j ∈ Mi, l 6= l′, l, l′ ∈ Γi, i ∈ Λ,
(46)
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where the state-feedback controllers designed for the corresponding SLS are taken as the controllers for the SBLS

within the state polyhedra, however when ei, j(x) = 0, to make sure the designed controllers are feasible on the state

boundaries of some of the switchings, the control inputs are taken as 0. It means that no control input can influence

the system states on the state boundaries of some of the switchings, so only an autonomous system exists on these

boundaries of the bilinear subsystems. If along the switching sequence of state polyhedra obtained in Theorem 3,

the system state can cross these predefined switching boundaries with autonomous system movement, then the SBLS

state can converge to the origin and can be stabilized. This can be checked through the following Theorem.

Theorem 4. Considering an SBLS expressed by (1), suppose it has a corresponding SLS with the form of (12), and

state-feedback controller is obtained based on solving the problem in Theorem 3 for the corresponding SLS system,

then the SBLS can be asymptotically stabilized by the controller described in (46), if along the state-based switching

sequence, at each switching from polyhedron Ωi,l to Ωi,l′ for any bilinear subsystem i, when ui,ll′, j = 0, ∀ j ∈ Mi, it

holds that

∃ x ∈ (Ωi,l ∩S0
i, j)∪ (Ωi,l′ ∩S0

i, j), eAitx ∈ Ωi,l′ \S0
i, j, (47)

which means that, with its autonomous dynamics as in (47), the system state can get over the boundary of Ωi,l and

Ωi,l′ without control inputs (i.e. ui,ll′, j = 0).

Proof : 1) We can obtain the corresponding SLS for the SBLS as in 4.1; 2) According to Theorem 3, we can find

a switching sequence of state polyhedra, and obtain state feedback controllers for each state polyhedron of the SLS to

steer the system state to asymptotically converge to the origin; 3) We can use Theorem 4 to make sure that the state of

SBLS can transit from the previous state polyhedron to the next state polyhedron along the previous derived switching

sequence of the state polyhedra, until to the origin. Therefore, the SBLS is asymptotically stabilized. �

5. Examples

In this section, we evaluate the performance of the proposed method through two examples: one is to design

stabilizing controllers for a SBLS with two second-order subsystems; the other is to design traffic signal controllers

for an urban traffic network with two roads.

5.1. Example 1:

For the first example, the conditions presented in Theorem 4 is applied to design stabilizing control laws for a

second-order system. We directly use the SBLS model in (2) to describe the SBLS, and the vectors and matrices in

the model are as follow:

A1 =

[
−1 4

5 −8

]

, b1,1 =

[
1

0

]

, c1,1 =

[
−1

0

]

A2 =

[
−5 −3

2 −1

]

, b2,1 =

[
0

−1

]

, c2,1 =

[
0

1

]

The two bilinear subsystems are separated by x1 + x2 = 0. According to Sec. 4.1, we can partition the state

space into 4 regions with Λ = {1,2} and Γ1 = {1,2},Γ2 = {1,2}. Therefore, we can derive the parameters for the

corresponding SLS given in (12) as:

A1 =

[
−1 4

5 −8

]

, B1 =

[
1

0

]

,

F1,1 =

[
−1 0

−1 −1

]

, F̄1,2 =

[
1 0 −1

−1 −1 0

]

,

Ψ̄11,12 =
[
−1 0 1

]
, Φ̄11,12 =

[
0 −1 −1

]
,

A2 =

[
−5 −3

2 −1

]

, B2 =

[
0

−1

]

,

F2,1 =

[
0 1

1 1

]

, F̄2,2 =

[
0 −1 −1

1 1 0

]

,

10



Figure 2: Illustration for the overall Lyapunov function

Ψ̄22,12 =
[

0 1 1
]
, Φ̄22,12 =

[
1 0 −1

]

Using the Yalmip toolbox (with SeDuMi solver) to solve the feasibility problems in Section 4.1. If we use Theorem 2

and solve the problems from (19)-(24), no feasible solution can be found. If we use Theorem 3 and solve the problems

from (19)-(22) and (39), then we can obtain an decreasing overall Lyapunov function as in Fig. 2, where the Lyapunov

functions decrease from polyhedron to polyhedron, from far away from the origin to the vicinity of the origin. As a

result, the controllers are obtained as

U1,1 =
K1,1x

−x1 +1
, U1,2 =

K̄1,2x̄

−x1 +1
, U1,12 = 0,

U2,1 =
K2,1x

x2 +1
, U2,2 =

K̄2,2x̄

x2 +1
, U2,12 = 0,

where the feedback control laws for all the regions are

K1,1 = [−2.7384 −1.3923], K̄1,2 = [−4.5474 −2.1275 1.2429];

K2,1 = [−0.3051 −0.6086], K̄2,2 = [−0.6752 −1.9942 −3.2427],

which is able to steer state to the origin for different initial conditions, as shown in Fig. 3(a) and 3(b). The designed

state feedback control laws are illustrated in Fig. 4(a) and 4(b) for the initial states [2,2] and [−2,−2], where the

switchings of the controllers can be seen.

5.2. Example 2:

For the second example, we consider urban traffic flow control problem with traffic signals, and apply the switch-

ing link flow model proposed in [24] to design stabilized traffic light controllers. The traffic model proposed in [24]

describes the nonlinear traffic flow property by dividing it into several working zones, and in each working zone a

bilinear model is established. A bilinear function is used to build the model is because the traffic flow on each link of

the traffic network depends not only on the flow of itself, but also relays on the traffic flows on the upper stream links

and the down stream links. In addition, the impact of the flows on the upper stream links and the down stream links is

coupled with the traffic signal variables (i.e. control input variables), which forms the bilinear term of the model. In

the model, for simplicity, we consider 2 link state modes for each link, i.e. Free-flow mode (F), and Congestion mode

(C). The state of a road link may switch between the two link state modes M = {F,C}.

For each of the link state mode in M, a time-variant model is formulated to update the traffic state on the link

based on the averaged entering and leaving flows, influenced by the traffic signals. The dynamic evolution of the
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Figure 3: Closed-loop trajectories with initial states (a) [2,2] and [−2,−2], (b) [0.5,0.5] and [2,−1.5]
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Figure 4: Feedback control inputs for initial states (a) [2,2] and (b) [−2,−2]
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Link 1

Link 2

Figure 5: A two-link urban traffic system with traffic lights

traffic density at time step k is

ρ(k+1) = Aρ(k)+B1ρ(k)U(k)+B2U(k)+Cd(k)+F, (48)

U(k) = β T(k)r(k), (49)

where ρ(k) is the vector of link densities, U(k) is the scalar control input at time step k, β (k) is the vector of turning

ratios in front of the traffic signals on a link at time step k, r(k) is the vector of green time splits on a link at time

step k, d(k) is a vector containing the demand from upstream links (input flows provided by upstream links), and the

supply from the downstream links (available flows that can be accepted by downstream links).

In this context, the dynamic model can be further written explicitly for the two modes. For the link state mode F,

the upstream and downstream of the link are all having free flows, thus the dynamic model for updating the density

becomes

ρ(k+1) = aρ(k)+bρ(k)U(k)+ cd(k), (50)

where a = 1+βrb, b =−Ts
l

vf, c = [Ts
l

0], and l is the length of the link. For the link state mode C, the upstream and

the downstream link are all congested, thus the dynamic model for updating the density becomes

ρ(k+1) = aρ(k)+ cd(k)+ f , (51)

where a = 1+ Ts
l

wc, c = [0 − Ts
l
], and f = −Ts

l
wcρJ. For more details about the modeling, please refer to [24]. In

fact, as shown in (51), the traffic state in congestion mode cannot be affected by the local traffic signals on this link,

which means, in mode C, congestion cannot be removed by only adjusting the local traffic signals, additional actions

like adjusting upstream and downstream traffic signals are required to regulate the input and output traffic flows of the

link. Therefore, we will focus on designing a local controller for the free-flow region.

We consider an example with two links as Fig. 5 shows. When both Link 1 and Link 2 are in F mode, the model

of the links can be written in a matrix expression as

ρ(k+1) = Aρ(k)+
2

∑
j=1

B jρ(k)U j(k)+Cd(k)+F, (52)

where the matrices are

A =

[
aF 0

0 aF

]

, B1 =

[
bF 0

0 0

]

, B2 =

[
0 0

0 bF

]

,

C =

[
cF 0

0 cF

]

, F =

[
0

0

]

,

Let us define the parameters of the two links as Ts = 90 s, l = 800 m, vf = 60 veh/h, wc = −30 veh/h, ρc = 60

veh/km, ρJ = 180 veh/km, βr = 0.2, and QC = 3600 veh/h. According to the link model described above, we have

bF = −Tsvf/l, aF = 1+βrbF, aC = 1+Tswc/l, cF = Ts/l, cC = −Ts/l, fF = 0, and fC = −TswcρJ/l, which are the

elements of the matrices (52).

We want to control the link densities to their reference densities, i.e. ρr = 30 veh/km. Therefore, we define a new

link state as the error between the link density and the link density reference, i.e. e(k) = ρ(k)− ρ̄r and ρ̄r = [ρr ρr]
T.
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Figure 6: State space partitioned by dotted lines for the two-link bilinear system

Then, the bilinear model for the two-link system can be further written as a bilinear model on system errors, i.e.

e(k+1) = Ae(k)+
2

∑
j=1

B j(e(k)+ρr, j)U j(k)+H, (53)

where ρr,1 = [ρr 0]T, ρr,2 = [0 ρr]
T. According to (2), the model can be further written as

e(k+1) = Ae(k)+
2

∑
j=1

ρr, j(G
T
j e(k)+1)U j(k)+H, (54)

where

G1 = [
bF

ρr
0]T, (55)

G2 = [0
bF

ρr
]T, (56)

H = βrbFρ̄r +Cd(k)+F. (57)

Consequently, the two-link system model is formulated as a bilinear model, based on which we could design

stabilizing controllers according to the method in Section 4. According to Section 4.1, the state space is partitioned into

4 regions by the dotted lines as shown in Fig. 6. The demand of the links (input flows) is given as d(k) = [288 288]T

veh/h. By solving the feasibility problem (19)-(22) and (39) for the 4 regions, a decreasing overall Lyapunov function

is obtained as shown in Fig. 7, where the Lyapunov functions reduce until to the origin (i.e. the error of the link

densities with respect to the reference density e = 0). As shown in Fig. 6, the origin (equilibrium point) is in Region

1. As a result, the controllers are obtained for Region i as

Ui,1 =
Ki,1e

b1,F

ρr
e1 +1

, Ui,2 =
Ki,2e

b2,F

ρr
e2 +1

, i = 1

Ui,1 =
K̄i,1ē

b1,F

ρr
e1 +1

, Ui,2 =
K̄i,2ē

b2,F

ρr
e2 +1

, i = 2,3,4
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Figure 7: Illustration for the overall Lyapunov function for the two-link system
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Figure 8: Closed-loop trajectories with initial states (a) [−30,−30] and [30,30], (b) [−30,30] and [30,−30] of two-link system

where the feedback control laws for all the regions are

K1,1 = [−0.0426 0.0030], K1,2 = [0.0030 −0.0426];

K̄2,1 = [−0.0938 −0.0050 1.5090],

K̄2,2 = [−0.0050 −0.0938 1.5090];

K̄3,1 = [−0.0623 −0.0030 0.8380],

K̄3,2 = [−0.0030 −0.0623 0.8380];

K̄4,1 = [−0.0623 −0.0030 0.8380],

K̄4,2 = [−0.0030 −0.0623 0.8380],

which are able to control the link densities to their reference densities (the origin in the error state space) for different

initial conditions, as shown in Fig. 8(a) and 8(b).

6. Conclusions

In practice, there are some complex nonlinear systems that can be approximated by switching bilinear systems.

Designing stabilizing controller for switching bilinear systems makes it possible to better control these kind of non-
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linear systems. In this paper, a method is proposed for designing controllers to stabilize state-based switching bilinear

systems. By considering the similarity between linear systems and bilinear systems, feedback control laws are de-

signed for the switching bilinear systems to turn the close-loop systems into corresponding state-based switching linear

systems. Instead of studying the method to stabilize the switching bilinear system directly, we propose a theorem to

asymptotically stabilize the close-loop switching linear system based on multiple Lyapunov functions. In addition,

we further relax the conditions by allowing the Lyapunov functions to jump on the boundary of the neighboring state

regions. A relaxed conditions are proved to be able to asymptotically stabilize the corresponding switching linear

systems, and is less conservative.

The results are verified with two examples. First, the proposed method is used to design stabilizing state-based

controllers for a standard second-order switching bilinear system. The results show that when no feasible solution can

be found for the second-order switching bilinear system with the conservative conditions in Theorem 2, we are able

to find a feasible solution by the relaxed conditions in Theorem 3 to stabilize the system. Then, the method is applied

to design traffic light controllers for a two-link urban traffic system. The results show that the controllers are able to

regulate the link densities to the desired reference densities for different initial conditions.

In the future, we will use the proposed method to design traffic signal controllers for larger traffic networks, and

will make it possible to apply the method in real traffic. In addition, we want to further design controllers that not

only stabilize the system, but also optimize the future performance. Methods need to be further considered to solve

nonlinear matrix inequalities, e.g. the Chang-Yang decoupling approach proposed in [6, 7].
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