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Distributed MPC for Large Freeway Networks
using Alternating Optimization

Uglješa Todorović, José Ramón D. Frejo, and Bart De Schutter, Fellow, IEEE

Abstract—The Model Predictive Control (MPC) framework
has shown great potential for the control of Variable Speed Limits
(VSLs) and Ramp Metering (RM) installations. However, the
implementation to large freeway networks remains challenging.
One major reason is that, by considering the VSLs to be discrete
decision variables, an extremely difficult Mixed Integer Nonlinear
Programming (MINLP) optimization problem has to be solved
within every controller sampling interval. Consequently, many
related papers relax the MINLP problems by considering the
VSLs to be continuous variables. This paper proposes two
novel MPC algorithms for coordinated control of discrete VSLs
and continuous RM rates that do not make this relaxation.
The proposed algorithms use a distributed control architecture
and an alternating optimization scheme to relax the MINLP
optimization problems but still consider the VSLs as discrete
variables and, hence, offer a trade-off between computational
complexity and system performance. The performance of the
proposed algorithms is evaluated in a case study. The case
study shows that relaxing the VSLs to be continuous vari-
ables with a distributed architecture results in a significant
performance loss. Furthermore, both proposed algorithms have
a lower computational complexity than the more conventional
centralized approach and, as a result, they do manage to solve all
optimization problems within the sampling intervals. Moreover,
one of the proposed algorithms has a system performance that is
remarkably similar to the optimal performance of the centralized
approach.

Index Terms—Alternating optimization, distributed MPC, free-
way traffic control, ramp metering, variable speed limits.

I. INTRODUCTION

AS the number of vehicles and the need for transportation
keeps increasing every year, traffic congestion has be-

come a crucial problem in today’s society. There is a need for
a sustainable solution to reduce or even eliminate traffic jams.
Freeway traffic control has shown to be a sustainable solution
to this problem [1], [2], [3].

Especially the implementation of Ramp Metering (RM)
installations and Variable Speed Limits (VSLs) as control
measures is currently a widely researched area, because proper
coordination of those measures has shown great potential for
the reduction of traffic congestion, traffic emissions, and the
risk of accidents [4], [5]. However, for optimal performance,
these control measures have to be coordinated at a large spatial
scale as local control inputs have significant influence on the
traffic state of distant parts of the freeway and, therefore, on
the global network performance [6].
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The Model Predictive Control (MPC) [7] framework has
shown outstanding potential for proper coordination of those
control measures [4], [5], [8], [9], but the real-life implementa-
tion to large freeway networks remains challenging. One major
challenge, on which the current paper focuses, is that often
extremely difficult optimization problems have to be solved
for the application of MPC to large freeway networks. Some
other challenges, which are not addressed by the current paper
but are still a topic of ongoing research, include: robustness
analyses of MPC for freeway control [10], validation of the
prediction models with empirical data [11], and the prediction
of future disturbances.

The difficult optimization problems often arise for the
following reasons. Firstly, due to the inherent nonlinearity of
traffic flow, mostly nonlinear prediction models are used in
literature [4], [12], [13]. Moreover, by law, VSLs are only
allowed to take prescribed discrete values, while RM rates
are typically continuous control inputs (which are usually
afterwards translated into traffic signal cycles [14]). The com-
bination of a nonlinear prediction model with discrete VSLs
and continuous RM rates yields a Mixed Integer Nonlinear
Programming (MINLP) optimization problem that has to be
solved within every controller sampling interval. In general,
the computation time that is needed to solve such an op-
timization problem increases exponentially with the size of
the problem (i.e. with the number of control measures, the
control horizon, etc.). Hence, for the application of MPC
to large freeway networks, the computation time quickly
becomes larger than the controller sampling time, making
MPC unimplementable.

Various approaches have been considered to reduce the
complexity of the optimization problems. Some approaches
simplify the nonlinear prediction model by rewriting it as
a mixed logical dynamical model [15], relaxing the MINLP
optimization problems into mixed integer linear programming
optimization problems [16], [17]. Other approaches param-
eterize the control signals into control laws to simplify the
optimization problems [18]. Some approaches consider the
VSLs as continuous decision variables [4], [5], relaxing the
MINLP optimization problems into nonlinear continuous op-
timization problems. However, related papers draw contradic-
tory conclusions on this relaxation, as some have found that
it results in a large performance loss [19], while others report
that the performance loss is not significant [20]. Hence, the
effect of this relaxation on the system performance is still an
open question in the field and it is investigated in the current
paper.

A distributed control architecture [21] is a popular approach
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to reduce the computational complexity of large-scale MPC
problems in general. However, the implementation of such
an architecture to freeway networks is difficult, as every
distributed agent still has to solve an MINLP problem. Hence,
the existing distributed approaches with application to freeway
traffic control either do not consider VSLs as control inputs
[16], [22], [23], or consider these to be continuous decision
variables in the optimization [5], [6].

The main contribution of the current paper is the proposal
of two novel MPC algorithms that use the distributed control
architectures proposed in [5] and [23], and an alternating
optimization scheme similar to [19] for coordinated control
of discrete VSLs and continuous RM rates: Fully Coopera-
tive Alternating Model Predictive Control (FC-A-MPC) and
Downstream Cooperative Alternating Model Predictive Con-
trol (DC-A-MPC). Both proposed algorithms are similar, but
offer a different trade-off between computational complexity
and system performance. Moreover, both algorithms reduce
the computational complexity of the problem significantly,
such that they are implementable in real time for large freeway
networks. Furthermore, this paper contributes to the state-of-
the-art by investigating the effects on the system performance
by relaxing the VSLs to be continuous decision variables in a
distributed setting.

The remainder of this paper is structured as follows. Section
II outlines the components of the MPC framework that are
used in this work. Subsequently, Section III proposes the two
novel MPC algorithms. Then, Section IV presents a case study
that evaluates the proposed algorithms. Finally, Section V
concludes this paper.

II. MPC FOR FREEWAY TRAFFIC

A. Introduction

MPC is an advanced control methodology where an objec-
tive function is optimized to find optimal control inputs and
a prediction model is used to predict relevant future system
trajectories. With the optimization, multiple control inputs
can be determined, and the prediction model can be used to
predict influences of those control inputs on distant parts of
the network. Therefore, the MPC framework is highly suitable
for coordination of VSLs and RM installations.

The various MPC approaches mainly differ in the prediction
models, the objective functions and the control architectures.
Therefore, the rest of this section outlines the prediction
model, objective function and control architectures that are
used in this work. For a detailed description of MPC, the
reader is referred to [7].

B. Prediction model

The macroscopic traffic model METANET [4] is used as
the prediction model, as it provides a good trade-off between
computational complexity and model accuracy [24] and is
capable of modeling RM installations and VSLs as control
inputs. It is a second-order nonlinear model that models
traffic flow analogous with a compressible fluid. Consequently,
the computational speed of METANET is not affected by
vehicular density, making it highly suitable for model-based

control.
In METANET a traffic network is modeled as a directed

graph, where the links correspond to homogeneous freeway
stretches with similar geometry. Typically, each link m is
partitioned into segments i of length Lm,i. However, the
rest of this work only differentiates between segments and
does not differentiate between links to improve readability.
Hence, the traffic state of each segment i at time step k is
described by three aggregated variables: the traffic density
ρi(k) (in veh/km), the space-mean speed vi(k) (in km/h) and
the traffic flow qi(k) (in veh/h). Moreover, the traffic state
of the segments that contain an on-ramp is described by one
additional variable: the vertical queue length wi(k) (in veh).

Since METANET is very well-known and frequently used
in the field (see e.g. [4], [5], [17], [23]), the reader is referred
to [4] for the system equations of METANET that are used in
this work.

C. Objective function

This paper uses three sub-objectives, which are added
together with appropriate weights for the global network
objective function.

1) Congestion reduction: The Total Time Spent (TTS) is
used as the performance criterion to minimize the congestion
in the network. This is the total time that vehicles spend in
a section or spend waiting at an on-ramp and is the most
commonly used criterion for the reduction of congestion (see
e.g. [5], [16], [25]).

2) Soft constraints: The queue lengths at the on-ramps have
to be limited to avoid spillback to urban roads. This work uses
a penalty term in the objective functions that imposes soft
constraints on these queue lengths. This approach, instead of
hard constraints, is commonly used in literature to simplify
the optimization problems and to avoid potential infeasible
optimization problems (see e.g. [6], [23], [24]).

3) Signal fluctuation: A term is included to penalize the
variation in metering rates to avoid large and frequent fluctua-
tions in the control signal. This is common practice in the field
[4], [9], [23]. Undesirable fluctuations in VSLs are avoided in
a different way, as will be explained in Section III-B.

Subsequently, the global objective function J̄(kc), describ-
ing the network performance at control time step kc over the
prediction horizon Np, is given by:

J̄(kc) =

M(kc+Np)∑
k=Mkc

[
Tc

(∑
i∈Iall

ρi(k)Liλ+
∑
i∈Ir

wi(k)

)
+

ζw

(∑
i∈Ir

(
max(wi(k)− wmax, 0)

)2)]
+

Np−1∑
j=1

[
ζr

(∑
i∈Ir

(
U i

r (kc + j)− U i
r (kc + j − 1)

)2)]
,

(1)
where λ is the number of lanes in the network, U i

r (kc) ∈ [0, 1]
is the RM rate of the on-ramp at segment i at controller time
step kc, M relates the control time step kc and simulation time
step k as k = Mkc, Tc is the sampling time of the controller,
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ζw and ζr are weighting terms, wmax is the soft limit on the
queue lengths, Iall is the set of all segments of the network,
and Ir is the set of segments in the network that contain a
controlled on-ramp.

D. Control architectures

In Section IV, the two proposed distributed algorithms will
be evaluated by comparing their performance to the more
conventional centralized and decentralized algorithms.

1) Centralized MPC: With a centralized architecture, one
central MPC agent determines control inputs for the entire
network. The inputs are found by optimizing the global
objective function using measurements of all the states and,
consequently, all control measures are coordinated optimally.
Hence, centralized MPC generally leads to the optimal system
performance in a receding horizon context [5], [16], [22], [23].
However, it also has the largest computational complexity, as
the size of the optimization problem scales with the size of
the considered network.

2) Decentralized MPC: As opposed to a centralized ar-
chitecture, with a decentralized architecture, the network is
partitioned into subsystems and each subsystem is controlled
by a local MPC agent. The agents determine local control
inputs by optimizing a local objective function without com-
municating with each other. Consequently, decentralized MPC
has the lowest computational complexity, as the size of the
local optimization problems only scale with the size of the
subsystems. However, generally, it also has the worst system
performance in a receding horizon context [5], [16], [22], [23],
as the control inputs are not coordinated at all.

3) Distributed MPC: An intermediate solution to the draw-
backs of a centralized and a decentralized architecture is a
distributed architecture. Similar to a decentralized architecture,
the network is partitioned into subsystems and each subsystem
is controlled by a local MPC agent. However, the agents are
now actively communicating with each other to improve the
global network performance.

Since distributed MPC is a generic term for all approaches
where agents at least share some information while deter-
mining control inputs, there is a great variety in distributed
MPC algorithms [26], [27]. However, with freeway traffic
control, agents often share their objective function with other
agents, such as the downstream neighboring agent [16], [23] or
every other agent in the network [5], [23], but optimize this
objective function for local control inputs. Once the agents
solve their optimization problems, they communicate their
intermediate solutions to the other agents, and proceed solving
their optimization problems with the updated solutions of the
other agents.

If the communication fails in one part of the network, the
optimization problem associated with centralized MPC cannot
be solved (without the estimation of the missing variables),
while the local optimization problems associated with dis-
tributed MPC can still be solved (in the parts of the network
without the errors). This makes distributed MPC typically
more robust than centralized MPC w.r.t. communication errors.

III. DISTRIBUTED MPC USING ALTERNATING
OPTIMIZATION

This section proposes two novel MPC algorithms, FC-A-
MPC and DC-A-MPC, for coordinated control of discrete
VSLs and continuous RM rates. Both algorithms use a dis-
tributed control architecture and an alternating optimization
scheme to relax the MINLP problems. The remainder of this
section formalizes both algorithms.

A. Distributed architecture

An arbitrary long freeway network is considered that is
modeled by Nall segments indexed by i ∈ Iall. All segments
i ∈ Ir contain an on-ramp and all segments i ∈ Ioff contain
an off-ramp. All on-ramps have an RM installation that can
control the number of vehicles that enter the network. Further-
more, the segments i ∈ IVSL contain a matrix sign that can
display speed limits. The network is subject to a mainstream
demand d0 and on-ramp demands di, ∀i ∈ Ir.

For the distributed architecture, the freeway is partitioned
into Nsub subsystems, where each subsystem may contain an
arbitrary number of VSLs and RM installations. Subsequently,
Iall is partitioned into sets {I1, I2, . . . , INsub} ⊆ Iall, such that
all segments in Is are part of subsystem s. Similarly, Ir, IVSL,
Ioff are partitioned into sets Isr , IsVSL, Isoff for every subsystem
s. Associated with the subsystems are Nsub MPC agents, which
determine local control inputs for their respective subsystem.

The two proposed algorithms differ in cooperativeness. A
fully cooperative architecture [5] is used with FC-A-MPC,
where all agents share the same global objective function,
but optimize it for local decision variables. Hence, the global
objective function, based on (1) but partitioned for agent s, is
formulated as:

J̄s(kc) =

M(kc+Np)∑
k=Mkc

[
Tc

(∑
i∈Iall

ρi(k)Liλ+
∑
i∈Ir

wi(k)

)
+

ζw

(∑
i∈Ir

(
max(wi(k)− wmax, 0)

)2)]
+

Np−1∑
j=1

[
ζr

(∑
i∈Is

r

(
U i

r (kc + j)− U i
r (kc + j − 1)

)2)]
.

(2)
A downstream cooperative architecture [16], [23] is used

with DC-A-MPC, where every agent s optimizes a local
objective function that contains the states of agent s and
s + 1. The local objective function of agent s, based on (1),
is formulated as:

Js(kc) =

M(kc+Np)∑
k=Mkc

[
Tc

( ∑
i∈{Is,Is+1}

ρi(k)Liλ+
∑

i∈{Is
r ,I

s+1
r }

wi(k)

)
+

ζw

( ∑
i∈{Is

r ,I
s+1
r }

(
max(wi(k)− wmax, 0)

)2)]
+

Np−1∑
j=1

[
ζr

(∑
i∈Is

r

(
U i

r (kc + j)− U i
r (kc + j − 1)

)2)]
.

(3)
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Fig. 1. A schematic representation of the communication protocols of FC-A-MPC (orange) and DC-A-MPC (green).

A parallel and iterative scheme is implemented to coordinate
the control inputs of the network: once all agents have solved
their optimization problems, they communicate their solutions
to the agents with whom they cooperate and, subsequently,
proceed with solving their optimization problems with the
updated solutions. This process is repeated for ndist iterations.

B. Operational constraints

As previously discussed, the fluctuations in metering rates
are penalized by a term in the objective functions. Similarly,
it is necessary to avoid fluctuations in the VSLs to improve
driver safety and comfort [20], [28]. This is done with hard
constraints because the VSLs are discrete decision variables.
Hence, the hard constraints reduce the size of the solution
space of the VSLs and, therefore, they reduce the complexity
of the optimization problems.

Two types of constraints on the VSLs are considered. The
first constraint allows the VSLs to maximally change ηt per
controller sample:

∣∣U i
VSL(kc)− U i

VSL(kc + 1)
∣∣ ≤ ηt, ∀i ∈ IVSL, (4)

where U i
VSL(kc) is the VSL at segment i at controller time

step kc.
The second constraint allows the VSLs that are on two

consecutive freeway segments to maximally differ ηd from
each other:∣∣U i

VSL(kc)− U i+1
VSL (kc)

∣∣ ≤ ηd, ∀i : {i, i+ 1} ⊆ IVSL. (5)

C. Alternating optimization scheme

The agents use an alternating optimization scheme [19]
to decompose the MINLP problems into two types of sub-
problems: nonlinear non-convex continuous optimization prob-
lems to find RM rates, and discrete optimization problems
to find VSL values. In the continuous optimization problems,
the VSLs are set to be constant variables, and vice versa, in
the discrete optimization problems, the RM rates are set to

be constant variables. The optimization problems are solved
one after another for nalt iterations. In every new iteration,
the constant variables are updated with the control inputs that
have been found in the previous iteration.

The continuous optimization problem for agent s to find the
optimal metering rates Ūs

r (kc) in its subsystem at control time
step kc over the prediction horizon Np is formulated as:

min
Ūs

r (kc)
Js

con(kc) (6)

subject to:

x(kc + l + 1) = fM
(
(x(kc + l), Ūs

r (kc + l),

Ûs
r (kc + l), Ûs

VSL(kc + l), d(kc + l)
)
,

x(kc) = xk,

d(kc + l) = dk,

U i
r (kc + l) ∈ Ur,∀i ∈ Isr ,

U i
r (kc + j) = U i

r (kc +Nc − 1),∀i ∈ Isr ,

for j ∈ {Nu, . . . , Np − 1},
for l ∈ {0, 1, . . . , Np − 1},

(7)

where Js
con is defined in (2) for FC-A-MPC and in (3) for DC-

A-MPC, Ûs
r and Ûs

VSL contain all the RM rates and VSLs that
are constant variables in the optimization, the future states x
of the network are predicted by the system dynamics fM of
METANET, xk are the measurements of the states at time kc,
d are the demands in the network, dk are the measurements of
the demands at time kc, Ur is the input space of the RM rates,
and Nu is the control horizon that simplifies the optimization
problem.

Similarly, the discrete optimization problem for agent s
to find the optimal speed limits Ūs

VSL(kc) in its subsystem
at control time step kc over the prediction horizon Np is
formulated as:
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min
Ūs

VSL(kc)
Js

dis(kc) (8)

subject to:

x(kc + l + 1) = fM
(
(x(kc + l), Ūs

VSL(kc + l),

Ûs
r (kc + l), Ûs

VSL(kc + l), d(kc + l)
)
,

x(kc) = xk,

d(kc + l) = dk,

U i
VSL(kc + l) ∈ UVSL,∀i ∈ IsVSL,

U i
VSL(kc + j) = U i

VSL(kc +Nc − 1),∀i ∈ IsVSL,

for j ∈ {Nu, . . . , Np − 1},
for l ∈ {0, 1, . . . , Np − 1},

(9)

where UVSL is the input space of the VSLs and Js
dis is defined

in (2) for FC-A-MPC and in (3) for DC-A-MPC.

D. Initialization and stopping criteria

To initialize the iterative scheme, values for the constant
variables in the optimization problems of the first distributed
iteration are needed. Therefore, the agents use the time-shifted
VSLs of the previous controller sample for these initial values
[19].

The agents use two stopping criteria to terminate the opti-
mization scheme:

1) timer ≥ tterm: the computation time of the agents,
tracked by timer, becomes larger than tterm.

2) dist = ndist: the optimization problems of the final
distributed iteration ndist are solved, where dist is the
distributed iteration counter.

E. Algorithm formulation

Both FC-A-MPC and DC-A-MPC use the same communi-
cation and optimization protocols, formulated in Algorithm 1
and illustrated in Fig. 1.

The constant variables Ûs
r and Ûs

VSL of agent s contain
the intermediate inputs of agent s (local part) and the in-
termediate inputs of all the other agents with whom agent
s cooperates (nonlocal part). To initialize the algorithms, the
control inputs of the previous controller sample U prev

VSL and
U prev

r are used as constant variables. Every agent solves the
continuous optimization problem and the discrete optimization
problem nalt times for every distributed iteration. The local
part of Ûs

r is updated with Ūs
r every time agent s solves

the continuous optimization problem. Similarly, the local part
of Ûs

VSL is updated with Ūs
VSL every time agent s solves the

discrete optimization problem. After nalt iterations, the agents
communicate their optimal inputs Ūs

r and Ūs
VSL to the agents

with whom they cooperate and similarly receive their optimal
inputs Ū other

r and Ū other
VSL . Subsequently, all agents update the

nonlocal parts of Ûs
r and Ûs

VSL with Ū other
r and Ū other

VSL , and
resolve to the next distributed iteration.

The algorithms are terminated either after ndist distributed
iterations or when the computation time is larger than tterm.

Algorithm 1: Top level communication and optimiza-
tion protocol of FC-A-MPC and DC-A-MPC for agent
s.

Input: U prev
VSL, U prev

r , tterm, ndist, nalt
Output: Ūs

r , Ūs
VSL

Start timer

Set initial values
Ûs

VSL := U prev
VSL

Ûs
r := U prev

r

Start iterative scheme
while timer ≤ tterm do

for dist = 1: ndist do
for alt = 1: nalt do

Solve continuous optimization for Ūs
r

Update local part of Ûs
r with Ūs

r
Solve discrete optimization for Ūs

VSL
Update local part of Ûs

VSL with Ūs
VSL

end
Store Ūs

r and Ūs
VSL

Communicate Ūs
r and Ūs

VSL to other agents
Receive optimal inputs Ū other

r and Ū other
VSL of

other agents
Update nonlocal part of Ûs

r with Ū other
r

Update nonlocal part of Ûs
VSL with Ū other

VSL
end

end

After every distributed iteration, the local inputs that have
been found are stored. Finally, the global objective function
is evaluated for the inputs that have been found in every
distributed iteration. The first time samples of the inputs that
yield the best global objective function value are sent to the
network as control inputs.

IV. CASE STUDY

In this section, the proposed algorithms are evaluated for a
synthetic case study. Firstly, the set-up and the traffic scenario
of the case study are outlined. Secondly, performance criteria
for the algorithms are defined. Then, the no-control network
response is investigated. Subsequently, the control parameters
of the algorithms are described. Then, the results are presented
in two parts. Firstly, the influence on the system performance
by relaxing the VSLs to be continuous decision variables in
a distributed setting is considered. Secondly, a comparison is
presented between the proposed distributed algorithms and the
more conventional centralized and decentralized algorithms.

A. Case set-up and scenario

The freeway network from [24] is used, but it is slightly
modified to include RM installations. The network, depicted
in Fig. 3, has a length of 30 km, is partitioned into Nall = 24
segments in set Iall = {1, 2, . . . , 24}, contains six VSLs on
the segments in the set IVSL = {2, 3, 9, 10, 16, 17}, contains
three RM installations at the on-ramps on the segments in
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Ir = {7, 14, 21}, and contains three off-ramps at segments
in Ioff = {5, 12, 19}. The VSLs are allowed to take values
from the discrete set VSLset = {40, 60, 80, 100} km/h, as
this allows a balanced trade-off between problem size and
system performance. The control inputs are enumerated in the
downstream direction to improve readability as illustrated in
Fig. 3.

METANET, described in Section II-B, is used to simulate
this network. The system parameters of the network have been
chosen identically to [24]. Hence, the only model parameter
that differs per segment is the segment length. The segments
that contain VSLs have a larger length, so that the speed limits
have more influence on the overall traffic state of the network.
To avoid spillback to hypothetical urban roads, soft constraints
are imposed on the queue lengths on all three on-ramps with
wmax = 100 veh (similar values for wmax have been used in
e.g. [4], [5], [8], [9]).

A hypothetical traffic scenario is simulated for 2.5 hours,
which corresponds to Nsim = 900 samples with model sam-
pling time T = 10 s. The demand profile and splitting fractions
βi,∀i ∈ Ioff are chosen similarly to [24], but are modified
so that larger traffic jams occur when no control is applied.
The splitting fractions are constant during the simulations:
β5(k) = 0.21, β12(k) = 0.26, β19(k) = 0.02, ∀k. The demand
profile is shown in Fig. 2.

All the simulations are conducted on an HP ZBook Studio
G4, containing an Intel Core i7 processor and 8GB of RAM.
The simulations are evaluated in MATLAB R2018b.
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Fig. 2. Demands at the mainstream and on-ramps.

B. Performance criteria

Two performance criteria are used to evaluate the MPC
algorithms in terms of system performance and computational
complexity.

1) System performance: The TTS of the comprehensive
freeway network is used to quantify the system performance:

TTS =

Nsim∑
k=1

[
T

(∑
i∈Iall

ρi(k)Liλ+
∑
i∈Ir

wi(k)

)]
. (10)

For convenience, this performance index is also expressed as
a reduction TTSred relative to the no-control case:

TTSred =
TTSnc − TTS

TTSnc
· 100%, (11)

where TTSnc is the TTS of the no-control case.
2) Computational complexity: To quantify the computa-

tional complexity of the algorithms, the computation time
that is needed to determine the control inputs for every
controller sample is investigated. For the computation time

of the distributed algorithms, a summation is made of the
computation times for the number of distributed iterations. The
largest computation time of all controller samples is denoted
as CTmax. Hence, a control algorithm is implementable in real
time if CTmax is smaller than the controller sampling time Tc.

C. No-control system response

In an uncontrolled setting, all ramps are open and all VSLs
are equal to the maximum speed limit, such that U i

r (kc) =
1,∀i ∈ Ir,∀kc and U i

VSL(kc) = 100 km/h, ∀i ∈ IVSL,∀kc.
The consequence of not controlling the high traffic demand

is a major traffic congestion in the network. Two large traffic
jams occur that spread over a large part of the network, as
illustrated in Fig. 4. During the traffic jams, not all vehicles
can freely enter the network from on-ramps. Hence, queues
originate at all three on-ramps, as illustrated in Fig. 5. The
no-control system performance is TTSnc = 5986 veh·h.
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Fig. 4. Heat map of the densities in the network when no control is applied.
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Fig. 5. Queue lengths when no control is applied.

D. MPC details

The following MPC parameters are used in the case study.
1) System partitioning: The network is partitioned into

three subsystems for the decentralized and distributed algo-
rithms. It is partitioned in such a way that each subsys-
tems contains one RM installation and two VSLs: I1 =
{1, 2, . . . , 7}, I2 = {8, 9, . . . , 14}, and I3 = {15, 16, . . . , 24}.
Previous work has shown that the alternating optimization can
be solved accurately with this combination of actuators [19].

2) Sampling time and horizons: All algorithms in this
work use a sampling time of Tc = 120 s. To match this
sampling time, the algorithms use Np = 10. These parameters
haven been chosen in such a way because the algorithms
consequently take into account the network response of 1200
s in the future. This allows the algorithms, at free-flow speed,
to take into account the influences of vehicles over a spatial
distance of 34 km, which is slightly larger than the network
size. To simplify the optimization problems, Nu = 3 is used.
Hence, the horizons have been chosen in line with the rules
of thumb discussed in [20].
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Fig. 3. An illustration of the freeway network used in the case study.

3) Number of alternating iterations: The decentralized and
distributed algorithms use nalt = 2, as, in both cases, the
system performance converges within two iterations. The cen-
tralized algorithm requires nalt = 5 because it has significantly
larger optimization problems.

4) Weighting terms: The weight ζr is chosen zero to avoid
a tedious tuning process and to make the comparison of the
different algorithms more straightforward. If less fluctuation
in the RM signals is desirable, ζr can be increased.

The soft constraint weight is chosen as ζw = 10, as this
results in a good trade-off between queue length behavior and
system performance. A 10% violation in queue constraints
is considered acceptable in this work, since a hypothetical
network is used without details on the urban roads surrounding
the network. If less violation is desirable, ζw can be increased.

For the operational constraints described by (4) and (5), the
parameters are chosen ηt = ηd = 20 km/h, similarly to [19].

5) Optimization algorithms: A comparative analysis of dif-
ferent solution algorithms for nonlinear freeway traffic control
problems has been presented in [29]. All the continuous
optimization problems in this paper are solved with Sequential
Quadratic Programming (SQP) [30] combined with a multi-
start approach. This approach is well known to properly solve
non-convex nonlinear optimization problems and has shown
good results in other works [5], [19]. The distributed and
decentralized algorithms use six initial point profiles for the
multi-start approach, while the centralized algorithm uses 37
initial point profiles as it has a significantly larger solution
space.

The discrete optimization problems of the decentralized and
distributed algorithms are solved by evaluating all the feasible
solutions. Hence, this results in the global optimum of the sub-
problem. The size of the discrete solution space, and therefore
the time needed to evaluate all the feasible solutions, increases
exponentially with the size of the optimization problem. Due
to this exponential growth, it is not possible to evaluate all
the feasible solutions with the centralized algorithm within
reasonable time. Therefore, a genetic algorithm [30] is used
to solve the discrete optimization problems of the centralized
algorithm.

The Optimization Toolbox and the Global Optimization
Toolbox in MATLAB are used to perform the SQP and
genetic algorithm optimization methods, respectively. The
default SQP options of the function fmincon are used, where
MaxFunctionEvaluations and MaxIterations are both modified
to 1·107. The default genetic algorithm options of the function
ga are used, where PopulationSize is modified to 800 and

MaxStallGenerations is modified to 400.

E. Results: relaxation on VSLs
The performance of the proposed algorithms has been com-

pared to the performance of the Fully Cooperative Rounding
Model Predictive Control (FC-R-MPC) [5] and Downstream
Cooperative Rounding Model Predictive Control (DC-R-MPC)
algorithms. Both these algorithms have the same distributed
architectures as the proposed algorithms, but consider the
VSLs as continuous decision variables and afterwards round
these to acceptable values.

Two different cases have been investigated: the first case
only considers one distributed iteration ndist = 1 and the
second case considers multiple distributed iterations: ndist = 4.
In both cases, the termination time is set to tterm = ∞, so that
the convergence of the system performance for increasing ndist
can be compared.

The results are summarized in Table I and II. In the worst
case, the relaxation results in a performance loss of 4.42 %,
corresponding to the fully cooperative architecture with one
distributed iteration, where the scheme that uses alternating
optimization results in TTSred = 25.14 %, while the scheme
that uses rounding results in TTSred = 21.83 %. Moreover, the
schemes that use alternating optimization find solutions much
closer to the optimum with the first distributed iteration.

Hence, relaxing the VSLs to be continuous decision vari-
ables can result in a significant performance loss with a
distributed architecture. This confirms the results in [19] and
extends them to the distributed case.

TABLE I
THE PERFORMANCE OF DC-A-MPC AND DC-R-MPC FOR DIFFERENT

NUMBERS OF DISTRIBUTED ITERATIONS

Controller TTS [veh·h] TTSred [%] ndist

DC-A-MPC 4515 24.57 1
DC-A-MPC 4505 24.74 4
DC-R-MPC 4685 21.73 1
DC-R-MPC 4612 22.95 4

TABLE II
THE PERFORMANCE OF FC-A-MPC AND FC-R-MPC FOR DIFFERENT

NUMBERS OF DISTRIBUTED ITERATIONS

Controller TTS [veh·h] TTSred [%] ndist

FC-A-MPC 4481 25.14 1
FC-A-MPC 4466 25.39 4
FC-R-MPC 4679 21.83 1
FC-R-MPC 4587 23.37 4
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F. Results: architecture comparison

The performance of the proposed distributed algorithms is
now compared to the Centralized Alternating Model Predictive
Control (Cent-A-MPC) and Decentralized Alternating Model
Predictive Control (Dec-A-MPC) algorithms. Both algorithms
also use an alternating optimization scheme, but have a central-
ized an decentralized architecture, respectively. The stopping
criteria of the proposed algorithms is set to tterm = Tc and
ndist = ∞, such that they are implementable in real time.

The performance of the four algorithms and the uncon-

TABLE III
THE PERFORMANCE OF CENT-A-MPC, DEC-A-MPC, FC-A-MPC,

DC-A-MPC, AND THE UNCONTROLLED NETWORK

Controller TTS [veh·h] TTSred [%] CTmax [s]
No control 5986 - 0
Dec-A-MPC 4738 20.85 5
DC-A-MPC 4505 24.74 120
FC-A-MPC 4463 25.44 120
Cent-A-MPC 4452 25.63 10999

trolled system is summarized in Table III. As expected, the
centralized algorithm achieves the best system performance
(TTSred = 25.63 %). However, because only one agent controls
the network by using one comprehensive system model, the
computational complexity is exceptionally high. As a result,
the algorithm is far from implementable in real time because
the optimization problems cannot be solved within the con-
troller sampling intervals. On the other hand, the decentral-
ized algorithm has, as expected, the lowest computational
complexity because three agents are controlling the network
without cooperation. However, due to the lack of cooperation,
the system performance is also rather sub-optimal (TTSred =
20.85 %).

The proposed algorithms offer a trade-off between computa-
tional complexity and system performance. The computational
complexity of the proposed algorithms is significantly lower
than the computational complexity of the centralized algorithm
because three agents, operating in parallel, are controlling the
network. As a consequence, the proposed algorithms man-
age to solve the optimization problems within the controller
sampling intervals. Moreover, both have a significantly better
system performance than the decentralized algorithm because
the agents are actively cooperating to improve the global
network performance.

The system performance of FC-A-MPC (TTSred = 25.44 %)
is similar to the optimal performance of the centralized algo-
rithm. Both manage to keep the network mostly uncongested,
as illustrated in Fig. 6. There is a critical point in both
simulations where all three on-ramps are close to the soft
constraint of wmax = 100 veh, illustrated in Fig. 7. With both
algorithms, the agents decide that slightly violating the soft
constraint at the second on-ramp is beneficial for the network
performance. However, the queue lengths remain within 10 %
of the soft constraint and the violations can be avoided if
necessary by increasing ζw.

DC-A-MPC results in a worse system performance (TTSred
= 24.74 %) than FC-A-MPC because the agents are not
fully cooperating. However, DC-A-MPC is theoretically more

scalable than FC-A-MPC (therefore, less complex from a
computational viewpoint), because the number of terms in the
objective functions that the agents consider does not scale with
size of the network as with FC-A-MPC, but with the size of
the subsystems.

Both the centralized algorithm and FC-A-MPC are actively
limiting vehicles at the first two on-ramps and are using the
first two VSLs to avoid a traffic jam in front of the third on-
ramp, as illustrated in Fig. 9. On the other hand, with DC-A-
MPC, the first agent is barely limiting vehicles from entering
the bottleneck at the third on-ramp, but the second agent is
actively limiting the throughput to the bottleneck. As a result, a
traffic jam originates in front of the third on-ramp. Lastly, with
the decentralized algorithm, the first two agents are keeping
their on-ramps open during the whole simulation due to the
complete absence of cooperation. The result is a major traffic
jam in front of the third on-ramp. Consequently, the queue
at the third on-ramp violates the soft constraint significantly.
The outflows and densities of segment 21 for all algorithms
are plotted in Fig. 8, as this has shown to be a bottleneck in
the network due to on-ramp 3.

V. CONCLUSIONS

In this paper, two similar MPC algorithms that use a
distributed control architecture and an alternating optimization
scheme for coordinated control of discrete VSLs and continu-
ous RM rates on large freeway networks have been proposed.
To the best of the authors’ knowledge, these are the first
distributed MPC algorithms in literature that explicitly handle
the VSLs as discrete decision variables in the optimization.
The algorithms have been evaluated in a case study.

Firstly, the effects on the system performance by relaxing
the VSLs to be continuous decision variables have been
investigated for the first time with a distributed architecture.
It has been found that the relaxation can result in a significant
performance loss. This confirms the findings in [19] that have
been found in a centralized setting, and, hence, extends those
results to the distributed setting.

Secondly, the performance of the proposed algorithms has
been compared to the performance of the more conventional
centralized and decentralized algorithms in terms of system
performance and computational complexity. Both proposed
algorithms have a significantly lower computational com-
plexity than the centralized algorithm, and, as a result, they
do manage to solve all optimization problems within the
controller sampling intervals. Moreover, the performance of
FC-A-MPC is remarkably similar to the optimal performance
of the centralized algorithm (TTSred = 25.44 % versus TTSred
= 25.63 %).

It depends on the size and topology of the considered
freeway network which of the proposed algorithms is more
suitable. For the network in the case study, FC-A-MPC has the
best overall performance, as it has the best system performance
of the algorithms that manage to solve all their optimization
problems within the controller sampling intervals. However,
unlike with FC-A-MPC, with DC-A-MPC the number of terms
in the objective functions (therefore, the computational load)
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does not scale with the size and topology of the considered
freeway network. Hence, DC-A-MPC might be more suitable
for even larger freeway networks.

For future work, it would be interesting to investigate the
scalability of both the proposed algorithms by evaluating their
performance on even larger freeway networks. Moreover, it
would also be extremely relevant to investigate the remaining
challenges, mentioned in the introduction, that are to be solved
in order for MPC to be implementable to large freeway net-
works. These include robustness analyses of MPC for freeway
control, validation of the prediction models with empirical
data, and the prediction of future disturbances.
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Fig. 6. Heat maps of the densities for the different algorithms.
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Fig. 7. Queue lengths in front of the on-ramps for the different algorithms.
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Fig. 9. The inputs for the first two VSLs and metering installations in the network for the different algorithms.


