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Abstract: Model Predictive Control (MPC) has shown promising results in the control of
urban traffic networks, but unfortunately it has one major drawback. The, often nonlinear,
optimization that has to be performed at every control time step is computationally too complex
to use MPC controllers for real-time implementations (i.e. when the online optimization is
performed within the control time interval of the controlled network). This paper proposes
an effective parametrized MPC control approach to lower the computational complexity of
the MPC controller. Two parametrized control laws are proposed that can be used in the
parametrized MPC framework, one based on the prediction model of the MPC controllers, and
another is constructed using Grammatical Evolution (GE). The performance and computational
complexity of the parametrized MPC approach is compared to a conventional MPC controller
by performing an extensive simulation-based case study. The simulation results show that for
the given case study the parametrized MPC approach is real-time implementable while the
performance decreases with less than 3% with respect to the conventional MPC controller.

Keywords: Grammatical Evolution, Parametrized Model Predictive Control, Urban Traffic
Control, Parametrized Controller

1. INTRODUCTION

Due to growing populations and increasing economic ac-
tivities, traffic congestion has become an urgent problem
in urban areas. Traffic congestion results in negative social,
economic, and environmental effects, and in longer travel
times, which will be experienced as a loss of time and
energy. Longer travel times will automatically result in the
use of more fuel, which in its turn has a negative impact on
the environment due to the emission of greenhouse gasses.
The cost of traffic congestion for countries in the Euro-
pean Union (EU) is on average 1% of the country’s GDP,
resulting in a total cost of 110 billion euros a year in the EU
alone (Christidis and Rivas (2012)). Due to the greenhouse
gasses, traffic is responsible for approximately 50% of the
NOx emissions and 90% of the CO emissions (Nagurney
(2000)). Also, with more congested urban areas, driver
stress, aggression, and irritation increase (Hennessy and
Wiesenthal (1999)), resulting in a higher chance of acci-
dents happening.

Nowadays, traffic in urban areas is controlled by traffic
lights to manage the flow of vehicles and to reduce the
aforementioned negative effects. Model Predictive Control
(MPC) is one of the control strategies on which a lot of
research has been done and it has shown promising results
in the control of urban traffic networks (Ye et al. (2019)).
The main drawback of MPC is the online optimization
that is performed at every control time step to calculate
the control inputs. Due to the nonlinear behavior of traffic,
nonlinear prediction models are used to predict future
traffic states in the MPC framework (Lin and Xi (2008);

Lin et al. (2012); Jamshidnejad et al. (2019)), resulting in
a nonlinear and non-convex optimization problem that has
to be solved online. This nonlinearity and non-convexity,
and the need to control networks of intersections (resulting
in a larger number of decision variables), results in a
computationally complex optimization problem and makes
MPC infeasible for real-time implementation in urban
traffic networks.

Various approaches have been proposed to increase the
real-time implementability of MPC for urban traffic net-
works, e.g. by reformulating the nonlinear optimization
problem as a mixed integer linear programming problem
(Lin et al. (2011)), by smoothening the nonlinear predic-
tion model such that efficient gradient-based optimization
algorithms can be used (Jamshidnejad et al. (2017)), or
by solving the online optimization using a distributed (Ye
et al. (2015)) or hierarchical (Ye et al. (2016)) approach
such that small parts of the optimization problem can be
efficiently solved in parallel.

Instead of dividing the optimization problem into smaller
parts or using more efficient optimization methods, an-
other method to lower the computational complexity is to
reduce the number of decision variables in the optimization
step by parametrizing the decision variables (Zegeye et al.
(2012); Pippia et al. (2018)). In parametrized MPC, the
original decision variables (i.e. the inputs of the system)
are determined using a parametrized control law and the
parameters of this control law become the new decision
variables of the optimization problem. Parametrized MPC
has shown promising results in control of freeway traffic
networks (Zegeye et al. (2012)), substantially reducing the



number of decision variables in the optimization problem
with a limited decrease in performance.

In this paper, a parametrized MPC control approach for
the control of urban traffic networks is proposed. Two
parametrized control laws that can be used in the para-
metrized MPC control framework are designed. One is
based on the prediction model of the MPC controllers and
another is constructed using Grammatical Evolution (GE),
a form of genetic programming. By using future states
in the parametrized control laws, the number of decision
variables can be reduced substantially with limited perfor-
mance loss. This paper contributes to the state-of-the-art
in three ways: by showing the possibilities of parametrized
MPC, by proposing GE to construct a parametrized con-
trol law, and by improving the real-time implementability
of MPC in urban traffic networks.

The remainder of this paper is organized as follows. In
Section 2 the principles of conventional and parametrized
MPC are discussed followed by a description of the urban
traffic prediction model used in the parametrized MPC
controllers in Section 3. In Section 4 the application of
parametrized MPC in urban traffic networks is presented.
In Section 5, GE will be introduced. The parametrized
control law that will be used in the parametrized MPC
controller is discussed in Section 6. The parametrized
MPC controller will be compared to a conventional MPC
controller in Section 7 for a case study network. Some final
conclusions and suggestions for future work are given in
Section 8.

2. (PARAMETRIZED) MODEL PREDICTIVE
CONTROL

In this section, the principles of conventional and para-
metrized MPC will be shortly discussed.

2.1 Conventional MPC

In MPC (Rawlings and Mayne (2009)), an objective func-
tion and mathematical model are used to predict the future
evolution of the system and to calculate an optimized
control sequence. From this sequence, only the first set
of inputs is implemented in the system, which is called the
rolling horizon principle of MPC. The number of future
states that are predicted corresponds to the prediction
horizon Np. A control horizon Nc < Np can be used to
reduce the number of decision variables and the inputs are
then held constant for the last Np −Nc steps.

MPC is a promising control method for urban traffic
networks (Ye et al. (2019)) as 1) it can coordinate and
control multiple control objectives at the same time, e.g.,
the total time spent by the vehicles in the network and
the total emissions of the vehicles; 2) due to the rolling
horizon approach, MPC can work with real-time feedback,
allowing to quickly respond to changing traffic demands;
3) queue lengths and green times of the traffic lights can be
constrained as MPC can take input and state constraints
into account; and 4) the prediction model used to predict
the future states can easily be updated or replaced by
another model.

For large-scale systems or systems with fast dynamics, the
(often nonlinear and non-convex) online optimization is

the major drawback as it makes MPC hard to use for real-
time implementation. As mentioned in the introduction,
this paper will focus on reducing the computational com-
plexity of the online optimization by reducing the number
of decision variables in the optimization step. One of these
methods is parametrized MPC (Zegeye et al. (2012)).

2.2 Parametrized MPC

The main idea of parametrized MPC is to reduce the num-
ber of decision variables by making the control inputs of
the system dependent on a parametrized control law. The
parameters of this control law become the new decision
variables of the optimization problem and the control law
is added to the constraints of the optimization problem
(Zegeye et al. (2012)). The optimization problem that is
solved at every control time step is:

min
θ

J(x̃(k),θ) (1)

s.t. x(k + j) = f(x(k + j − 1),u(k + j − 1)),

u(k + j − 1) = µ(x(k + j − 1),θ),

g(x̃(k), ũ(k)) ≥ 0,

for j ∈ {1, . . . , Np} and with

x̃(k) =
[
x⊤(k + 1),x⊤(k + 2), . . . ,x⊤(k +Np)

]⊤
,

ũ(k) =
[
u⊤(k),u⊤(k + 1), . . . ,u⊤(k +Np − 1)

]⊤
,

containing the future states and control inputs, respec-
tively, θ the parameters, J(·) and f(·) the cost function
and prediction model of the MPC controller, respectively,
and µ(·,θ) the parametrized control law. Note that there is
no control horizon Nc as the states will be predicted up to
time step Np and the control inputs are a function of these
states. For simplicity, the formulation of the parametrized
control law only depends on the states at the current
time step, but states at previous control time steps could
be used as well. By introducing the parameters θ, the
number of decision variables is reduced (if the number of
parameters is less than the number of inputs), which then
might result in faster optimization. The main challenge of
parametrized MPC is finding a parametrized control law
that results in faster optimization without losing too much
performance.

Remark: In (1), θ is assumed to be constant over the
prediction horizon, but the parameters can also be chosen
to vary at every time step θ(k), or the idea of move-
blocking MPC (Cagienard et al. (2007)) can be used for
the parameters. In move-blocking MPC, the control inputs
are held constant over several time steps to reduce the
number of decision variables. Four different possibilities for
the variation of the parameters in the parametrized control
laws are proposed in Zegeye et al. (2012): (1) no variation:
the parameters are constant over the control horizon;
(2) time-dependent parameters: the parameters change
every time step; varying parameters at every time step
will generally result in better control, but also in higher
computation times as there are more decision variables in
the optimization; (3) move-blocking parametrized MPC,
where the parameters are held constant for several time
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Fig. 1. Link connecting two traffic-signal-controlled inter-
sections based on Lin et al. (2012).

steps instead of the control inputs as in move-blocking
MPC; (4) the principle of a control and prediction horizon
for the parameters can be used; the parameters are then
variable for some parameter control horizon and are held
constant afterwards.

3. TRAFFIC PREDICTION MODEL

To illustrate the proposed approach we use the S-model
(Lin et al. (2012); Jamshidnejad et al. (2019)) as prediction
model throughout this paper as it provides a good balance
between accuracy and complexity. Note however that
the proposed approach is generic and that other traffic
prediction models can also be used instead. The S-model
is a macroscopic, nonlinear, and discrete-time model that
uses the cycle time of a link’s downstream intersection to
update the states. Here, only the main equations of the
model will be given that are needed to understand the
remainder of the paper. For more details, we refer the
reader to Lin et al. (2012); Jamshidnejad et al. (2019).

The S-model is defined by a set of nodesN , a set of links L,
and a set of intersections J ⊂ N (Fig. 1). A link (u, d) ∈ L
is defined by its upstream node u ∈ N and downstream
node d ∈ N , and has a set of input nodes Iu,d and a set
of output nodes Ou,d. The cycle times of the upstream
and downstream node are given by cu and cd, respectively.
For simplicity, in this paper the cycle times of all the
intersections are chosen equal to the control interval of the
network with time step counter k. The state variables of
the model are the total number of vehicles nu,d(k) and the
queue length qu,d(k) on each link (u, d). The states can
take any non-negative value and are thus not restricted
to integers. The queue lengths can be further divided in
queue lengths for vehicles going to a specific output node
qu,d,o(k) with o ∈ Ou,d. The number of vehicles and the
queue lengths are updated every time step k by

nu,d(k + 1) = nu,d(k) +
(
αenter
u,d (k)− αleave

u,d (k)
)
· cd, (2)

qu,d,o(k+ 1) = qu,d,o(k) +
(
αarr
u,d,o(k)− αleave

u,d,o(k)
)
· cd, (3)

qu,d(k) =
∑

o∈Ou,d

qu,d,o(k), (4)

where αenter
u,d (k) and αleave

u,d (k) are the average entering

and leaving flow rates of link (u, d), αarr
u,d,o(k) the average

arriving flow rate at the tail of the queue of link (u, d)
intending to move toward o, and αleave

u,d,o(k) the average

leaving flow rate of the sub-stream on link (u, d) moving
towards o, in the time interval [kcd, (k+1)cd). The leaving
flow rates are nonlinear functions of the states, making the
S-model nonlinear.

4. (PARAMETRIZED) MPC IN URBAN TRAFFIC
NETWORKS

In this section, the objective function and the formulation
of the optimization problems of the conventional and the
parametrized MPC controllers are described.

4.1 Conventional MPC

At every time step, the MPC controller calculates the sub-
optimal control inputs by solving the following optimiza-
tion problem:

min
g̃(k)

wTTS · JTTS(k)

TTSn
+ wD

D(g̃(k))

Dn
+ wf

Jfinal(k +Np)

Jn
final

s.t. xu,d(k + j) = f(xu,d(k + j − 1),gd(k + j − 1)),(5)

U (gd(k + j)) = 0, for j = 1, . . . , Np, ∀d ∈ J

gmin ≤ g̃(k) ≤ gmax

where TTS stands for the total time spent by the ve-
hicles in the links of the network during the prediction

period, g̃(k) =
[
g⊤(k),g⊤(k + 1), . . . ,g⊤(k +Np − 1)

]⊤
,

in which g(k) is a column vector with the phase times
gd(k) of all the intersections d ∈ J at time step k, xu,d(k)
a vector with the number of vehicles and queue length of

link (u, d) (i.e. [nu,d(k), qu,d(k)]
⊤
), gmin and gmax vectors

of appropriate size with the minimum and maximum green
times of the traffic lights, respectively, wTTS, wD, and wf

the weights that describe the importance of the different
control objectives, TTSn, Dn, and Jn

final are nominal values
of the different control objectives, and U(gd(k + j)) = 0
describes the constraint on the phase times of an intersec-
tion, i.e.

U(gd(k + j)) = cd − yd −
Nph

d∑
i=1

gd,i(k + j) (6)

where yd andNph
d are the total yellow time and the number

of phases at intersection d, respectively, and gd,i the green
time of the i-th phase at intersection d. The different parts
of the objective function in (5) describe the total time
spent, a cost on the control inputs, and a terminal cost to
take the vehicles at the end of the horizon into account,
respectively. We have

JTTS(k) =
∑

(u,d)∈L

Np∑
j=1

cd · nu,d(k + j) (7)

D(g̃(k)) =

∥∥∥∥∥[(g̃(k)− g̃(k − 1))⊤, (g̃(k + 1)− g̃(k))⊤,

. . . , .(g̃(k +Nc)− g̃(k +Nc − 1))⊤
]⊤∥∥∥∥∥

2

(8)

Jfinal(k +Np) =
∥∥∥[n(k +Np),q(k +Np)

]⊤∥∥∥
2

(9)

4.2 Parametrized MPC

In parametrized MPC, the original decision variables are
replaced by the parameters in (5)



min
θ

wTTS · JTTS(k)

TTSn
+ wD

D(g̃(k))

Dn
+ wf

Jfinal(k +Np)

Jn
final

),

(10)
and the parametrized control law is added to the con-
straints in (5)

gd(k + j) = µ(x(k + j),θ) for j = 0, . . . , Np − 1, (11)

where µ(·,θ) is the parametrized control law.

5. GRAMMATICAL EVOLUTION

GE is a form of genetic programming (Koza (1994))
that produces programs based on a user-defined context-
free grammar (O’Neill and Ryan (2001)). Context-free
grammars have a recursive notation and describe how
programs or functions can be constructed from a list
of variables and functions (Hopcroft et al. (2006)). A
context-free grammar consists of four basic components:
a finite set of terminals, a finite set of non-terminals, a
start symbol, and a finite set of production rules. The
production rules represent the recursive behavior of the
context-free grammar.

An evolutionary algorithm is used to evolve the programs
constructed with the context-free grammars (Nicolau and
Agapitos (2018)). These programs can be complex pro-
gramming languages, or more simplistic curve fitting mod-
els or symbolic regressions (Poli et al. (2008)). In our work,
the programs are parametrized control laws. An initial
population of programs is generated and from there, new
populations are generated using mutation and crossover
operations. The individual programs in a population have
an underlying chromosome, which is an integer string that
is mapped to the actual program using the grammar.
Like other evolutionary algorithms, the programs are used
to evaluate the performance of the individuals and the
corresponding chromosome is used to evolve the program
between consecutive generations.

Later on in this paper, GE will be used to construct
a parametrized control laws that checks whether certain
traffic conditions hold in the network and assigns an
appropriate phase time accordingly. As we use an user-
defined grammar, we can place the parameters in the
conditional statements of the controller, which has huge
benefits for the training time of the algorithm as will we
show in the next section.

6. PARAMETRIZED CONTROL LAWS

In our (parametrized) MPC approach, the sum of the
phase times at an intersection should add up to the
available green time of that intersection (i.e. the cycle
time minus the yellow times). This results in an equality
constraint in the optimization problem that can be hard to
satisfy with a parametrized control law. The parametrized
control laws should be designed to satisfy this constraint
at all times. Here, two parametrized control laws are
proposed: one using the relative queue lengths and arriving
flow rates, and one trained using GE.

6.1 Using the relative queue lengths

The leaving flow rate of a lane in the S-model depends on
the traffic conditions on the lane. The leaving flow rate is,

among others, a function of the arriving flow rate and the
queue length. These relations are used in the design of the
first parametrized control law. As the sum of the phase
times should add up to the cycle time of the intersection,
the available green time is divided over the phases based
on the number of vehicles in the queues and the arriving
flow rates with respect to the other phases.

Let us denote qphd,j(k) as the mean queue length of the lanes

that have right-of-way (i.e. a green light) in the j-th phase

at intersection d at control time step k, and qphd (k) as the

mean of qph
d (k), which contains the mean queue lengths

qphd,j(k) of the phases at intersection d. In the same way,

αph,arr
d,j (k), αph,arr

d (k), and αph,arr
d (k) are defined for the

arriving flow rates. The green time gd,j(k) of phase j at
intersection d is calculated by 1

gd,j = gd+
qphd,j − qphd

Nph
d∑

i=1

qphd,i + κq

·θd,1+
αph,arr
d,j − αph,arr

d

Nph
d∑

i=1

αph,arr
d,i + κα

·θd,2 (12)

where gd is the mean green time during one cycle at
intersection d (i.e. the cycle time minus the yellow time,
divided by the number of phases), θd,1 and θd,2 are the

parameters to be optimized, Nph
d is the number of phases

at intersection d, and κq and κα small positive values to
prevent division by zero.

In the formulation of the control law in (12), the sum of
both the part depending on the queue lengths and the
part depending on the arriving flow rate add up to zero.
Therefore, the equality constraint that the phase times
should add up to the cycle time is always satisfied. To some
of the phases some green time is added to the mean green
time, while from other phases this green time is subtracted.

6.2 Using Grammatical Evolution

The second control law is constructed using GE. The
program that is constructed with the grammar used (Fig-
ure 2) does not create a single expression, but creates a
program consisting of multiple if/else-statements in which
certain traffic conditions on the lanes are checked. The
available green time is divided over the phases based on
these conditions. In the conditions, it is checked whether

(1) the relative queue of the phases, qph,reld,j , which is the

coefficient in front of θd,1 in (12), is positive or negative
as that tells something about the degree of congestion on
the lanes compared to the other lanes; (2) all the vehicles
that are initially in the queue, i.e. at the beginning of
a cycle, can leave during this cycle if the phase times
would be equal to the mean green time of the cycle; (3)
the maximum queue length of the phases is higher than a
certain threshold θd,2.

The output of the grammar in Figure 2, yd,j , is a score
(which describes the importance of a certain phase with
respect to the other phases) for the j-th phase of inter-
section d. The variables that are used in the grammar are
qph, qph,rel, and qph,max, which are the mean, relative, and
maximum queue length of phase j, respectively, the mean
1 For the sake of simplicity of notation, the time step indicator k is
left out in the equation.



2

〈deff〉 ::= yd,j = ḡd

if qph
d,j >=:

if qph,rel
d,j >= 0:

〈code〉
else:

〈code〉
else:

if qph,rel
d,j >= 0:

〈code〉
else:

〈code〉
〈code〉 ::= 〈if〉 | 〈stmt〉
〈if〉 ::= if qph,max

d,j 〈relop〉 : 〈if-opt〉
〈if-opt〉 ::= 〈stmt〉 | 〈stmt〉 else: 〈stmt〉
〈relop〉 ::= >= | <= | > | <

〈numif〉 ::= 1 | ... | 4

〈stmt〉 ::= yd,j := yd,j 〈op〉 〈expr〉
〈expr〉 ::= 〈expr〉 〈op〉 〈expr〉 | 〈number〉 | 〈var〉
〈op〉 ::= + | - | * | /

〈var〉 ::= q
ph
d,j | q

ph,max
d,j | q

ph,rel
d,j

〈number〉 ::= 〈num〉.〈num〉 | 〈num〉 | 〈num〉〈num〉 | 0.〈num〉
〈num〉 ::= 1 | ... | 9

Questions / planning next 1-2 months

Note: I will hand in my work after this meeting.

Note: I will start a full time job in September so I will have to make adjustments based on
the feedback in the evenings/weekends.

We were going to plan my final presentation/defence this meeting. As I want to graduate
Cum Laude, I need 4 people in my graduation committee? Last time you said we will choose
them together.

Is it possible to do my presentation at the TU Delft (without family/friends (?)) as I think
that the one hour defence afterwards is quite hard over Skype.

I have to hand in my final work two weeks before the final presentation? In the repository?
Do I have to hand in hard copies as well?

Meeting 13-08-2020

Fig. 2. The user-defined grammar in Backus-Naur form to
construct a parametrized control law for phase j of
intersection d.

green time gd at intersection d, and the saturated flow rate
µu,d. The phase times are calculated using the scores of the
phases:

gd,j =
yd,j∑Nph
d

i=1 yd,i

· gd,tot. (13)

In the above equation, a portion of the available green time
is assigned to each phase, ensuring that the constraint on
the cycle time always holds.

An extensive data set is collected for training the algo-
rithm. The data set consists of sets of phase times per
intersection, i.e. for an intersection with four phases, one
data point consists of four phase times at a certain time
step as the dependent variable, and the mean, relative, and
maximum queue length of the phases at the same time
step as the explanatory variables. The data is generated
by simulating multiple scenarios that are controlled by the
conventional MPC controller defined in Section 7.3. For
training purposes, it is assumed that every generated data
point is independent of the other data points, i.e. traffic at
other intersections did not contribute to the phase times
of the intersection considered in the data point.

In the optimization problem of the parametrized MPC
controller, there are two parameters per intersection to cal-
culate the phase times of that intersection. The parameters
should therefore be optimized per data point as one data
point represents the phase times of one intersection at one
time step. Thus, during training of the control law with
GE, the optimal values for θd,1 and θd,2 must be found
for every data point. The parameter θd,1 is included in
the first if-statement of the <deff> production rule (see
Figure 2) and represents a mean queue length. The second
parameter is included in the conditional statement of the
<if> production rule and represents a maximum queue
length. As the parameters are in the if-statements, we can
evaluate the constructed control law for all combinations
of the mean queue length and maximum queue length in
the explanatory variable to find the performance of the

3

yd,j = ḡd

if qph
d,j >=:

if qph,rel
d,j >= 0:

if qph,max
d,j >:

yd,j := yd,j + 4.7
else:

yd,j := yd,j − 7.7
else:

if qph,max
d,j <=:

yd,j := yd,j + 0.7
else:

yd,j := yd,j × 0.5
else:

if qph,rel
d,j >= 0:

if qph,max
d,j <=:

yd,j := yd,j − 0.9
else:

yd,j := yd,j/1.7
else:

if qph,max
d,j >:

yd,j := yd,j + 7.3
else:

yd,j := yd,j − 7.3

(1)

Meeting 13-08-2020

Fig. 3. The final parametrized control law constructed
using GE.

program on a single data point. The performance over all
the data points is the final performance of a program and
the performance on which the control laws are compared.

7. CASE STUDY

To compare the parametrized MPC controllers to a con-
ventional MPC controller, a simulation-based case study
is performed. In the case study, three traffic scenarios are
considered and simulated in the traffic simulator SUMO
(Krajzewicz et al. (2002)). The interface TraCI (Wegener
et al. (2008)) is used to communicate between SUMO and
Matlab. The focus will be on the system performance,
which is measured by the Total Time Spent (TTS) by the
vehicles in the network, and the computational complexity.
All the simulations are performed on an HP ZBook Studio
G4 (containing an Intel Core i7 processor with a clocking
speed of 2.8GHz and an 8GB RAM) using Matlab R2018b.

7.1 Setup

The urban traffic network that is used for the simulations
is shown in Fig. 4. The model consists of three four-
way intersections and one three-way intersection, seven
origins, and 22 links, which all have three lanes, one for
each turning direction. The length and maximum speed
of a vehicle are 7 [m] and 12 [m/s], respectively. The lane
lengths are 500 [m] except for links 11 and 22, which have a
length of 700 [m], and links 5 and 16, which have a length
of 540 [m]. The cycle time of each intersection is equal
to 60 seconds and the model parameters of the S-model
are identified offline and are given in Table 1. The traffic
flow profiles are generated with SUMO’s built-in route
generator, which generates routes based on flow profiles
and turning rates. The three scenarios lead to different
degrees of congestion in the network and are referred to
as the high-demand, two-peaks, and alternating-demand
scenario (Fig. 5). The duration of the three scenarios is
3600 seconds (one hour) and they are initialized from an
empty network followed by a traffic flow of 0.08 [veh/s]



Fig. 4. Urban traffic network used for the case study.

from all origins for 5 minutes. The prediction horizon of
the controllers is chosen to 5, such that a vehicle that
enters the network is able to leave the network during the
prediction window. The control horizon of the conventional
MPC controller is chosen to be equal to the prediction
horizon.

The cost functions from (5) and (10) are used for the
conventional MPC and parametrized MPC controllers,
respectively, with wD = 1, TTSn = 105 [s], Dn = ∥gmax −
gmin∥2, and Jn

final = 175 [veh]. These nominal values are
derived from their values during one prediction window,
e.g. the total time spent during Np time steps.

7.2 Performance measures

The computational complexity is measured by the pro-
cessor time per control step. The mean computation time
over all the optimization steps is considered to compare the
computational complexity of the different controllers and
the maximum computation time over all the optimization
steps is used to see whether a controller could be used for
real-time implementation. The relative change of the TTS
and of the mean computation time (CT) with respect to
the conventional MPC controller will be used as perfor-
mance measures, e.g.

TTSrel =
TTSPMPC − TTSMPC

TTSMPC
· 100%,

for the TTS. In the same way, CTrel is defined. The phase
times calculated with the parametrized control laws are
rounded before calculating the function values to make
a fair comparison with the conventional MPC controller,
which is restricted to integer values as SUMO uses integer
values (i.e. seconds) to switch the traffic lights.

7.3 Controllers

The performance of the parametrized MPC controllers is
compared to that of a conventional MPC controller and
a fixed-time controller (from which the phase times are
equal to the mean phase time of the intersections, i.e. the
available green time divided by the number of phases).
The optimization of the parametrized MPC controllers and
conventional MPC controller will be solved using genetic
algorithms as these algorithms outperformed other algo-
rithms, such as SQP and simulated annealing, in prelimi-
nary experiments not reported here. Note that in general
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Fig. 5. The demand flow profiles of the different profiles.

the solutions of the optimization problems are a good
approximation of the global minimum, resulting in sub-
optimal performance of the parametrized MPC controller.
Here, the settings of the optimization problems of the
(parametrized) MPC controllers are discussed. For all the
controllers the following holds: if the phase times over the
whole prediction horizon have not changed for 10 consec-
utive generations, the genetic algorithm is terminated.

Conventional MPC controller The linear equality con-
straint in (6) can be used to eliminate and substitute one
of the phase times into the objective function. By using
the equality constraint to eliminate variables, the number
of decision variables is reduced from 75 to 55 for the traffic
network used in the case study. The two-point crossover
and adaptive feasible mutation operators in Matlab are
slightly modified such that only feasible children are pro-
duced. The feasible two-point crossover makes sure that
the chromosomes are only cut after the phase times of
an intersection such that the inequality constraint on the
phase times always holds. For the same reason, the feasible
mutation algorithm mutates the values of one intersection
from which the sum of the mutations adds up to zero to
ensure that the inequality constraint always holds. Using
these feasible operators instead of the standard operators
in Matlab increased the system performance with more
than 20% for the same computation time. Based on the
results of some tuning experiments, the population size is
set to 200 and the maximum optimization time per control
step is set to 36 minutes.

Parametrized MPC - relative queue lengths The num-
ber of parameters in the control law in (12) is two per
intersection, resulting in a total of 8 decision variables
in the optimization problem as the parameters are held
constant over the control horizon. Due to the formulation
of the control law, the equality constraint (6) on the sum
of the phase times is always satisfied and can be left out
of the optimization problem. As the control law is linear
in the parameters, the lower and upper bounds on the
phase times can easily be rewritten as constraints on the
parameters. There are no upper and lower bounds on the
parameters.

The population size of the genetic algorithm is now 100
and the standard scattered crossover and Gaussian mu-
tation operators in Matlab are used. The parameters are
initialized in −40 ≤ θd,1, θd,2 ≤ 40 for all intersections
d ∈ J , to prevent the production of invalid individuals.



Table 1. S-model Parameters. i ∈ {1, 3, 4, 6, 7, 8, 9, 12, 14, 15, 17, 18, 19, 20}, j ∈ {2, 13},
k ∈ {5, 16}, l ∈ {10, 21}, and m ∈ {11, 22}.

Parameter µ [veh\s] vfree [m\s] vidle [m\s] adec [m/s2] ledgei [m] ledgej [m] ledgek [m] ledgel [m] ledgem [m] lveh [m]

Value 0.8436 12.8933 0.4773 -1.7697 492.465 482.941 554.755 457.924 760.871 7.9013

Parametrized MPC - Grammatical Evolution In the
training process of the GE-based control law, all possible
combinations of θd,1 and θd,2 were considered to find the
performance of an individual (see Section 6.2). However,
in the online optimization problem of the parametrized
MPC controller, future states will be predicted which will
differ from the initial queue lengths and maximum queue
lengths. Therefore, the parameters cannot simply be the
values of the queue lengths but will be continuous variables
in the range [0, 30] as queue lengths longer than 30 were
not observed.

The population size is now set to 300 to search a range of
the minima and from there the other regions are searched
using crossover and mutation. With smaller population
sizes, the algorithm might converge to a non-optimal min-
imum without discovering the more optimal regions of the
search space. Both parameters will be initialized around
the current queue length and maximum queue length, i.e.

θd,1∈
[
max(0,min

(
qph
d

)
− 10),min(max

(
qph
d

)
+ 10, 30)

]
,

for d ∈ J , and θd,2 is initialized using the same bounds

but with qph
d replaced by qph,max

d . The standard crossover
and Gaussian mutation operators in Matlab are used.

7.4 Results

In Table 2 the system performance and computational
complexity of the different controllers are shown for the
different demand scenarios. The parametrized MPC con-
trollers reduce the computational complexity of the online
optimization with more than 90% for all the demand
scenarios with respect to the conventional MPC controller,
while the system performance increases only up to 2.2% for
the relative-queue-length-based parametrized MPC con-
troller and 15% for the parametrized MPC controller using
the GE-based control law. The differences in performance
of the parametrized MPC controllers can be explained by
the size of their search spaces. Although the search space
is hard to define, one can imagine that the relative-queue-
length-based parametrized control law has a larger search
space than the GE-based parametrized control law as the
latter is restricted to assign the scores in the different
regions. Although the computation time of the online op-
timization is reduced considerably, the parametrized MPC
controllers cannot be used for real-time implementation as
the maximum computation time is higher than the control
time interval of 60 seconds of the network.

As we strive for real-time implementability of the para-
metrized MPC controllers, all the simulations are per-
formed again with a maximum computation time of 60
seconds for all the (parametrized) MPC controllers. In
Table 3, the system performance of the conventional MPC
controller with time constraints of 36 minutes and 60
seconds, and the two parametrized MPC controllers, are
shown. What stands out is the enormous decrease in
system performance (TTSrel = 25.2%) of the real-time

implementable conventional MPC controller. This empha-
sizes the need for methods that improve real-time imple-
mentability of MPC controllers. The system performance
of both parametrized MPC controllers remains approx-
imately the same, from which we can assume that the
controllers already converge to a good approximation of
the global minimum in the first iterations of the algorithm.
Some performances even improved which could be due to
inaccuracies in the macroscopic prediction model.

8. CONCLUSIONS

In this paper, a parametrized MPC approach for control
of urban traffic networks has been proposed. One of the
parametrized control laws uses the relative queue lengths
and arriving flow rates and the other is constructed us-
ing Grammatical Evolution (GE). The parameters are
inserted in the conditional statements in the grammar of
the GE framework, resulting in efficient training of the
parametrized control law. To demonstrate the effectiveness
of parametrized MPC, a simulation-based case study has
been performed in which the system performance and
computational complexity of the parametrized MPC con-
trollers have been compared to that of a conventional MPC
controller. For the urban traffic network used throughout
this case study and using parametrized MPC, the number
of decision variables decreased from 55 for the optimiza-
tion problems of the conventional MPC controller to 8
for the optimization problems of the parametrized MPC
controllers. This decreased the computational complexity
of the relative-queue-length-based parametrized MPC con-
troller with 97% while the system performance deterio-
rated with less than 3% on all three the demand profiles.
Hence, parametrized MPC is a promising control strategy
to make MPC real-time implementable.

In future work, more complex case studies should be con-
sidered to show the effectiveness of parametrized MPC
on larger networks. Also, we could make the grammar of
the GE framework more rich by using a set of predefined
functions that are simply evaluated in every statement
instead of using the arithmetic operations, which might
increase the performance of the control law. During evolu-
tion, these predefined functions are then interchanged over
the different regions using crossover and mutation. These
predefined functions could, e.g., be the other proposed
parametrized control law or pre-trained artificial neural
networks for different traffic scenarios.
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