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Distributed Adaptive Optimization with

Weight-Balancing
Dongdong Yue, Simone Baldi, Senior Member, IEEE, Jinde Cao, Fellow, IEEE,

and Bart De Schutter, Fellow, IEEE

Abstract—This paper addresses the continuous-time dis-
tributed optimization of a strictly convex summation-separable
cost function with possibly non-convex local functions over
strongly connected digraphs. Distributed optimization methods
in the literature require convexity of local functions, or balanced
weights, or vanishing step sizes, or algebraic information (eigen-
values or eigenvectors) of the Laplacian matrix. The solution
proposed here covers both weight-balanced and unbalanced
digraphs in a unified way, without any of the aforementioned
requirements.

Index Terms—Distributed optimization, weight balancing, di-
rected graphs, multi-agent systems.

I. INTRODUCTION

Distributed optimization stands for the strategy of solving an

optimization problem cooperatively, using a network of agents.

This problem has attracted a lot of interest in recent years

due to its possible application in several domains, spanning

from autonomous vehicles to smart grids and distributed com-

puting [1]–[11]. In its standard (unconstrained) formulation,

distributed optimization involves the problem of solving

min
z∈Rn

F (z) ,
N∑

i=1

fi(z). (1)

where F is a global summation-separable cost function, and

fi are the local cost functions, one for each agent.

In order to solve the distributed optimization problem (1),

different assumptions can be made regarding the topology with

which the agents in the network communicate with each other:

e.g., undirected and connected graphs [1]–[3], [10], [11] or

strongly connected weight-balanced (i.e., weighted in-degree

equals to weighted out-degree for each node) digraphs [4],

[5], or unbalanced digraphs [6]–[9]. In the weight-balanced

case of [4], [5], the algorithms require the selection of a
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parameter based on the eigenvalues of the global Laplacian

matrix. The algorithms in [6], [7], [9] also rely on algebraic

information (e.g., eigenvalues or eigenvectors) of the Laplacian

matrix. From a distributed optimization perspective, removing

the knowledge of the Laplacian matrix is a crucial aspect

for advanced concurrency and enhanced flexibility. A mod-

ified saddle-point algorithm proposed in [8] does not require

such knowledge, but it requires vanishing step sizes, possibly

leading to slow convergence. All aforementioned algorithms

except [9] require convexity of the local functions; [9] allows

local non-convexity at the price of requiring global strong

convexity and monotonously increasing coupling gains in the

whole network, which can possibly lead to slow convergence

with strong oscillations (cf. our simulations in Sect. V).

The idea of balancing an originally unbalanced digraph

in a distributed way, as proposed in the discrete-time algo-

rithms [12]–[15], provides an interesting perspective for re-

thinking distributed optimization over unbalanced digraphs,

e.g. by achieving balancing in finite time before starting

the distributed optimization algorithm. Nevertheless, finite-

time convergence can only be guaranteed for the case of

weight-balancing with integer weights in [13]–[15]. Balancing

a digraph in finite time with real weights is still an open issue.

We focus on continuous-time algorithms, and develop

a novel adaptive framework for solving problem (1) over

strongly connected (balanced or unbalanced) digraphs without

requiring convexity of local functions, nor vanishing step sizes,

nor algebraic information of the Laplacian matrix. For weight-

balanced digraphs, we introduce a saddle-point-like1 algo-

rithm with adaptive gains designed along a directed-spanning-

tree (DST) of the graph. The adaptive gains are designed

to promote the consensus over the estimates of the global

minimizer of (1). In this sense, the proposed methodology

is inspired by the DST adaptive control approach of [16]–

[18], although the presence of the saddle-point-like dynamics

used for optimization requires a completely different design

and stability analysis. For weight-unbalanced digraphs, we

propose a novel distributed continuous-time weight-balancing

algorithm to obtain a balanced digraph in finite time with real

weights, after which the previous saddle-point-like algorithm

can start. This balancing idea departs from those in [12]–[15]

in the sense that instead of adjusting all the weights to balance

a digraph, we show that the digraph can be balanced along an

aforementioned DST, which makes the proposed framework

1We use “saddle-point-like” because the resulting system may not be a true
saddle-point dynamical system due to the possibly non-convex local functions.
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consistent for both balanced and unbalanced cases.

II. PRELIMINARIES AND PROBLEM SETUP

A. Notations

In this paper, R with appropriate dimensions represent the

real spaces and R
+ is the real positive scalar subspace. Let In

and 1n be the n×n identity matrix, and the column vector with

n elements being one, respectively. Zero vectors and zero ma-

trices are all denoted by 0. Let ‖x‖ denote the Euclidean norm

of a vector x. For a real matrix A, denote As = (A+AT )/2:

when A represents the adjacency matrix of a digraph, As

is its undirected version. If A is symmetric, λmax(A) (resp.

λmin(A)) is its maximum (resp. minimum) eigenvalue, and

A > 0 (resp. A ≥ 0) means that A is positive definite (resp.

semi-definite). Denote col(x1, · · · , xN ) = (x1
T , · · · , xNT )T

as the column vectorization. The abbreviation diag(·) denotes

the diagonalization operator and ⊗ stands for the Kronecker

product. The difference of the sets S1 and S2 is denoted by

S1 \ S2. Denote IN = {1, 2, · · · , N} as the set of natural

numbers up to N . For x, q ∈ R, sgn(x) is the sign function

and sigq(x) = sgn(x)|x|q , where |x| is the absolute value

of x. For a differentiable function g : R
n → R, ∇g is its

gradient; g is strictly convex over a convex set Ω ⊆ R
n if

(x− y)T (∇g(x)−∇g(y)) > 0, ∀x, y ∈ Ω with x 6= y.

B. Graph Theory and Technical Lemmas

A weighted directed graph [19] (or simply digraph)

G(V, E ,W) is specified by the node set V = IN , the edge set

E = {eij , i 6= j|i → j}, and the weighted adjacency matrix

W = (wij) ∈ R
N×N , representing the coupling strengths

among nodes, such that wij > 0 if eji ∈ E , and wij = 0
otherwise. If eij ∈ E , i is called an in-neighbor of j, denoted

by i ∈ Nin(j) (resp. j is an out-neighbor of i: j ∈ Nout(i)).
The Laplacian matrix L = (Lij) ∈ R

N×N of G is defined as

follows: Lij = −wij , i 6= j, and Lii =
∑N

k=1,k 6=i wik, i =
1, · · · , N . A path is a sequence of edges connecting a pair of

nodes. A digraph G is strongly connected if any pair of nodes

is connected by a directed path, and is weakly connected if any

pair of nodes is connected by a path disregarding the directions

of the edges. Moreover, G is weight-balanced or balanced if
∑

j∈Nin(i)
wij =

∑

j∈Nout(i)
wji, ∀i ∈ V .

A directed-spanning-tree (DST) Ḡ(V, Ē , W̄) of G is a sub-

graph where there is a node called the root, which has no

in-neighbors, such that one can find a unique directed path

from the root to every other node. In Ḡ, each node has a

unique in-neighbor, except for the root. Moreover, a node is

called a stem if it has at least one out-neighbor, and a leaf

otherwise; the root is called a hub if all its out-neighbors are

leaves. Without loss of generality, we suppose that the root

is node 1. Following the notations in [16]–[18], let ik denote

the unique in-neighbor of node k + 1 in Ḡ, k ∈ IN−1. Then,

Ē = {eik,k+1|k ∈ IN−1} ⊆ E . Correspondingly, L̄ (resp. W̄)

is the Laplacian (resp. weighted adjacency) matrix of Ḡ and

N̄out(i) is the set of out-neighbors of i in Ḡ.

Lemma 1: Suppose G contains a DST Ḡ. Let L̃ = L − L̄.

Define Ξ ∈ R
(N−1)×N as

Ξkj =







−1, if j = k + 1,
1, if j = ik,
0, otherwise.

(2)

Define Q ∈ R
(N−1)×(N−1) := Q̃+ Q̄ with

Qkj =
∑

c∈V̄j+1

(L̃k+1,c − L̃ik,c)

︸ ︷︷ ︸

Q̃kj

+
∑

c∈V̄j+1

(L̄k+1,c − L̄ik,c)

︸ ︷︷ ︸

Q̄kj

,

(3)

where V̄j+1 represents the vertex set of the subtree of Ḡ rooting

at node j + 1. Then, the following statements hold:

1) L has a simple zero eigenvalue corresponding to the right

eigenvector 1N , and the other eigenvalues have positive

real parts.

2) ΞL = QΞ.

3) Q̄ can be explicitly written as

Q̄kj =







w̄j+1,ij , if j = k,
−w̄j+1,ij , if j = ik − 1,
0, otherwise.

4) The eigenvalues of Q are exactly the nonzero eigenvalues

of L.

Proof. The proof of statement 1) can be found in [19, Lemma

2.4]; statement 1) is sufficient and necessary for the existence

of Ḡ. The proofs of statements 2) and 3) can be found in [18].

Statement 4) is a direct application of [20, Lemma 10].

Remark 1: Matrix ΞT is the incidence matrix associated to

Ḡ. Intuitively, statement 2) reveals that the information of the

Laplacian L can be encoded into the reduced-order matrix Q
through a commutative-like relation.

Lemma 2 ([21, Theorem 1.37]): A digraph G with N nodes

is weight-balanced iff 1TNL = 0.

C. Problem Setup

Consider N agents communicating over a digraph

G(V, E ,W), aiming to seek a global minimizer of (1), denoted

by z∗, cooperatively. Each agent i ∈ V is associated to the

local cost function fi(·) of (1).

Assumption 1: The global cost function F (·) is differen-

tiable and strictly convex over R
n. Each local cost function

fi(·) is differentiable; and ∇fi(x) = Υx + ψi(x), where

Υ ∈ R
n×n with Υ ≥ 0, and ‖ψi(x)‖ ≤ K for some K ∈ R

+

(could be unknown), for all x ∈ R
n and all i ∈ V .

Assumption 2: The digraph G is strongly connected.

Remark 2: Strict convexity of F (·) is sufficient for the

existence and uniqueness of the optimizer z∗ of (1), and is

milder than strong convexity2 of F (·) required in [9], [11].

The structure of ∇fi encompasses standard assumptions in

literature, such as the boundedness assumption in [1], [8], [22]

when Υ = 0, and the decoupled multivariable assumption

in [3] when Υ = σIn with scalar σ ≥ 0. Classes of

2Strong convexity means there exists M ∈ R
+, such that (x −

y)T (∇F (x)−∇F (y)) > M‖x− y‖2, ∀x, y ∈ R
n with x 6= y.
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functions with bounded gradients ψi(·) include trigonometric

functions, logarithmic and fractional loss functions used for

classification/regression [10], among others [11]. Furthermore,

differently from [1]–[8], no convexity of fi(·) is assumed here.

Remark 3: Under Assumption 2, one can find at least one

DST rooting at any agent. The assumption on strong con-

nectivity is standard in the distributed optimization literature

[4]–[6], [9], and it is more general than the case of undirected

connected graphs [1]–[3], [10], [11].

The goal of this paper is to solve (1) in a systematic way

for both weight-balanced and unbalanced digraphs. Let us start

with the weight-balanced digraph case.

III. ADAPTIVE SADDLE-POINT-LIKE DYNAMICS FOR

WEIGHT-BALANCED DIGRAPHS

In [4, Eqn. (11)], static saddle-point dynamics with a fixed

coupling gain α has been proposed for solving (1) over weight-

balanced digraphs, with α determined based on the knowledge

of the Laplacian eigenvalues. In this section, a novel adaptive

saddle-point-like dynamics with dynamic coupling gains is

proposed to resolve problem (1) without such knowledge.

Let each agent i ∈ V keep a local estimation xi ∈ R
n

of the optimal decision variable z∗, and an auxiliary variable

yi ∈ R
n. Each agent i can only receive information from

its in-neighbors for adjusting its own xi and yi. Let the

agents communicate yi over G and communicate xi over

GA(V, E ,A(t)), where A(t) = (αij(t)) is the weight matrix

of dynamic coupling gains with A(0) = W . Upon selecting3

any DST Ḡ of G, consider the following algorithm:

ẋi =− γ1∇fi(xi)−
∑

j∈Nin(i)

αij(t)(xi − xj)

−
∑

j∈Nin(i)

wij(yi − yj) (4a)

ẏi =
∑

j∈Nin(i)

αij(t)(xi − xj) (4b)

with dynamic coupling gains

αij(t) =

{
wij , if eji ∈ E \ Ē ,
āk+1,ik(t), if eji ∈ Ē (5a)

˙̄ak+1,ik = γ2

(

(xik − xk+1)−
∑

j∈N̄out(k+1)

(xk+1 − xj)
)T

(xik − xk+1) (5b)

for k ∈ IN−1, where γ1, γ2 ∈ R
+. From (5), the coupling gain

between agent i and its in-neighbor j is updating only when

they communicate xj , and when the edge eji appears in Ḡ (i.e.,

j = ik and i = k + 1 for some k ∈ IN−1). Upon defining

the variables for the whole network x = col(x1, · · · , xN ) and

y = col(y1, · · · , yN ), the algorithm (4) reads

ẋ =− γ1∇f(x)− (LA(t)⊗ In)x− (L ⊗ In)y (6a)

ẏ =(LA(t)⊗ In)x (6b)

3Note that for a strongly connected digraph, a DST can be found in a
distributed way without any knowledge of the Laplacian matrix [23].

where f(x) ,
∑N

i=1 fi(xi) : R
Nn → R is the cumula-

tive cost function of the network state x, with ∇f(x) =
col(∇f1(x1), · · · ,∇fN (xN )) being its gradient. Here and in

the following, let us explicitly use the time index t only for the

matrices related to GA (e.g., the Laplacian LA(t)) to highlight

the time-varying property of the weights in A(t).
Lemma 3: Suppose that G is weight-balanced and Assump-

tions 1-2 hold. If (x̃, ỹ) is an equilibrium point of (6), then

x̃ = 1N ⊗ z∗, i.e., the global minimizer of (1).

Proof. We first obtain the equilibrium point of (6), (x̃, ỹ), by

0 =− γ1∇f(x̃)− (LA(t)⊗ In)x̃− (L ⊗ In)ỹ (7a)

0 =(LA(t)⊗ In)x̃. (7b)

By statement 1) of Lemma 1, 1N is the right eigenvector of

L and LA(t), ∀t, associated to the corresponding simple zero

eigenvalue, so it is guaranteed by (7b) that x̃ = 1N ⊗ z, for

some z ∈ R
n. By Lemma 2, we have 1T

NL = 0. After left-

multiplying (7a) by 1T
N ⊗ In, we get

∑N

i=1 ∇fi(z) = 0, i.e.,

∇F (z) = 0, which implies x̃ = 1N ⊗ z∗ due to the strict

convexity of F (·). Note that if (x̃, ỹ) is an equilibrium of (6),

so is (x̃, ỹ + 1N ⊗ κ), for any κ ∈ R
n.

Remark 4: Problem (1) is equivalent to the following

constrained non-convex optimization problem:

min
x∈RNn

f(x), subject to x1 = x2 = · · · = xN , (8)

where non-convexity arises because f(·) (defined after (6))

may be non-convex on R
Nn under Assumption 1. However,

instead of solving a non-convex problem as in standard liter-

ature [24], we approach problem (8) via a novel saddle-point-

like dynamics. The algorithm (6) can also be interpreted as a

gradient descent in x and a gradient ascent in y [4].

Based on Lemma 3, the remaining is to show that each

trajectory of (6) converges to an equilibrium point. Let us

transfer any equilibrium (x̃, ỹ) to the origin and apply a change

of coordinates:

µ = x− x̃, ν = y − ỹ (9a)

µ̄ = (Ξ⊗ In)µ, ν̄ = (Ξ⊗ In)ν (9b)

where Ξ is defined as in (2). In component-wise form, µ̄ =
col(µ̄1, · · · , µ̄N−1) where µ̄k = µik − µk+1, k ∈ IN−1. In

these new coordinates, the algorithm (4) and the adaptive law

(5b) read

˙̄µ = −γ1(Ξ⊗ In)h− (QA(t)⊗ In)µ̄− (Q⊗ In)ν̄ (10a)

˙̄ν = (QA(t)⊗ In)µ̄ (10b)

˙̄ak+1,ik = γ2

(

µ̄k −
∑

j∈N̄out(k+1)

µ̄j−1

)T

µ̄k (10c)

where h = ∇f(µ+ x̃)−∇f(x̃), and Q as well as QA(t), ∀t,
are defined as in (3) based on the DST Ḡ. More specifically,

QA(t) = Q̃ + Q̄A(t) contains the fixed matrix Q̃, and the

time-varying matrix

Q̄A
kj(t) =







āj+1,ij (t), if j = k,
−āj+1,ij (t), if j = ik − 1,
0, otherwise.

(11)
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To get (10), we have used statement 2) of Lemma 1 and the

properties of the Kronecker product.

Lemma 4: For system (10) with arbitrary initial conditions,

(µ̄, ν̄) asymptotically converges to the origin, and the weights

āk+1,ik , k ∈ IN−1, converge to some finite constant values.

Proof. See the appendix.

Now we formulate the main theorem of this section:

Theorem 1: Suppose that G is weight-balanced and Assump-

tions 1-2 hold. Then, algorithm (4) along with adaptive law

(5) drives xi to z∗ asymptotically, for all i ∈ V , and for any

xi(0), yi(0) ∈ R
n. Moreover, the weights āk+1,ik , k ∈ IN−1,

in ḠA converge to some finite constant values.

Proof. In the original coordinates, (x, y) in (6) converges to

(x̃+ 1N ⊗ τ , ỹ+ 1N ⊗κ), for some τ, κ ∈ R
n, due to Lemma

4 and the fact that the null-space of Ξ is spanned by 1N [17,

Lemma 3.2].

Next, we show that τ = 0 by seeking a contradiction based

on the uniqueness of the optimizer z∗. Assume τ 6= 0. Then,

the steady-state dynamics of τ can be obtained by (6) as

0 = τ̇ =
1

N
(1T

N ⊗ In)ẋ

=− γ1
N

∇F (z∗ + τ)− 1

N
(1T

NLA(t)1N ⊗ (z∗ + τ))

− 1

N
(1T

NL ⊗ In)(ỹ + 1N ⊗ κ)

=− γ1
N

∇F (z∗ + τ) 6= 0,

which is a contradiction. Thus τ = 0.

The above shows that any trajectory of (6) converges to an

equilibrium point (x̃, ỹ+1N⊗κ), for some κ ∈ R
n. By lemma

3, the agents’ estimates converge to the optimizer z∗ of (1).

Remark 5: In line with classical adaptive control [25],

the upper bound K in Assumption 1 is only used for

proving convergence; thus, it can be unknown. Convergence

of algorithm (4) can be guaranteed globally for any initial

x(0), y(0) ∈ R
Nn and any parameters γ1, γ2 ∈ R

+. These

last two parameters can be tuned taking into account that

increasing γ1 allows larger step sizes towards decreasing the

local costs, and increasing γ2 enhances the importance of

communicating the estimates of the global minimizer.

Remark 6: To elaborate on the features of the proposed

algorithm with respect to the most recent state-of-the-art [9] (in

the balanced digraph case), consider that the algorithm (4)-(5)

allows only certain gains along a DST to be adaptive, while all

the coupling gains in the network are made adaptive in [9]. For

the stability analysis, Theorem 1 is built upon the identification

of a proper form of local gradients, which differs from [9] as

the invariant set analysis used therein is not needed for our

approach. The benefits of the DST perspective become even

more evident in the unbalanced digraph scenario considered in

Sect. IV, as the proposed solution overcomes the knowledge

of the Laplacian matrix required in [9] (cf. Remark 6 in [9]).

IV. DISTRIBUTED FINITE-TIME WEIGHT-BALANCING

The balanced property may not be satisfied in many cases.

Our interest now is to extend the framework of Sect. III by

including a finite-time weight-balancing algorithm consistently

based on the same DST Ḡ as the one used in Sect. III.

Accordingly, consider the following balancing law:

βij(t) =

{
wij , if eji ∈ E \ Ē ,
b̄k+1,ik(t), if eji ∈ Ē (12a)

˙̄bk+1,ik = −γ3sigq
( ∑

p∈Nin(k+1)

βk+1,p −
∑

c∈Nout(k+1)

βc,k+1

)

(12b)

for k ∈ IN−1, where q ∈ (0, 1), γ3 ∈ R
+. Moreover, βij(0) =

wij , ∀i, j ∈ V . Denote b̄ = (b̄2,i1 , b̄3,i2 , · · · , b̄N,iN−1
)T .

The design of (12b) is partly inspired by finite-time stabi-

lization [26]. The intuition behind (12b) is to adjust the weight

b̄k+1,ik in order to balance the node k + 1, k ∈ IN−1. Two

questions must be addressed:

1) whether these nodes 2, · · · , N will be balanced;

2) if the answer to question 1) is possible, whether the root

itself will be balanced subsequently.

Question 2) has a positive answer thanks to the following:

Lemma 5: The digraph G is weight-balanced iff 1TNL2:N =
0, where L2:N is the block submatrix of L containing the

second to the last columns.

Proof. Since L1N = 0, we have 1TNL = 0 iff 1TNL2:N = 0.

Then, the lemma holds following Lemma 2.

In order to answer question 1), some preliminary analysis

is needed.

Lemma 6: Suppose Ḡ is a DST of G. Let us take the weights

in Ḡ as independent variables b̄k+1,ik , k ∈ IN−1, and denote

the according Laplacian (resp. weighted adjacency) matrix

with independent variables as LB (resp. WB). Then, there

exists a unique solution b̄∗ := (b̄∗2,i1 , b̄
∗
3,i2

, · · · , b̄∗N,iN−1
)T ∈

R
N−1 to the system of implicit linear equations 1T

NLB
2:N = 0.

Proof. Note that the k-th row of WB, k ∈ {2, · · · , N},

contains exactly one variable entry b̄k,ik−1
. Then, for the

implicit linear equations 1T
NLB

2:N = 0 with variables b̄k+1,ik ,

k ∈ IN−1, the coefficient matrix is square and full rank,

indicating the existence and uniqueness of the solution.

Combining Lemma 5 with Lemma 6, we have that a

balanced digraph is obtained by replacing the weights in Ḡ
with the corresponding components of b̄∗, while keeping the

other weights of G unchanged. More precisely, the resulting

digraph, call it G∗
pseudo, is actually a pseudo-balanced (i.e.,

balanced with possibly negative weights) digraph since b̄∗k+1,ik
may be less than zero. However, G∗

pseudo can be used to obtain

an actual balanced graph G∗, upon changing the edges of

G∗
pseudo whenever necessary. To illustrate how the balancing

process works, let us give a simple example in Fig. 1.

The proposed balancing procedure consists of two steps:

i). Determine the weights in Ḡ to obtain the pseudo-balanced

digraph G∗
pseudo by (12);

ii). If b̄∗k+1,ik
= 0 and wik,k+1 6= 0, remove the edge

eik,k+1; if b̄∗k+1,ik
= 0 and wik,k+1 = 0, introduce two

bidirectional edges eik,k+1 and ek+1,ik with equal positive

weights, e.g., unitary weights. If b̄∗k+1,ik
< 0, introduce an

opposite edge ek+1,ik with weight |b̄∗k+1,ik
| (or increase its

weight by |b̄∗k+1,ik
| if ek+1,ik already exists). This leads to an

actual balanced digraph G∗.
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Fig. 1. (a): An unbalanced digraph G; (b): G with a DST Ḡ, highlighted
in green, where the marks “?” are weights to be adjusted; (c): The pseudo-
balanced digraph G∗

pseudo; (d): The balanced digraph G∗ with a new DST Ḡ∗,

highlighted in red.

Remark 7: It is known that a weight-balanced and weakly

connected digraph is also strongly connected [27, Theorem

1]. After balancing steps i)-ii), the obtained G∗ is weakly

connected and weight-balanced, thus it remains strongly con-

nected.

Now we are in the position of formulating the main con-

vergence results for (12), which is the answer to question 1).

Theorem 2: Let Assumption 2 hold. Then, the balancing law

(12) drives b̄ to b̄∗ in finite time.

Proof. By Lemma 6, the uniqueness of b̄∗ guarantees that the

components b̄∗k+1,ik
have the following recursive form:

b̄∗k+1,ik
=







∑

c∈N̄out(k+1)

b̄∗c,k+1 +
∑

c∈Nout(k+1)\N̄out(k+1)

wc,k+1

− ∑

p∈Nin(k+1),p 6=ik

wk+1,p,

if k + 1 is a stem,

∑

c∈Nout(k+1)

wc,k+1 −
∑

p∈Nin(k+1),p 6=ik

wk+1,p,

if k + 1 is a leaf.
(13)

In the following, we prove the convergence of the weights in

the tree from the bottom to the top. Let d denote the depth of

Ḡ, i.e., the number of edges in the longest path of Ḡ.

First, let us denote E1 = {k ∈ IN−1|k + 1 is a leaf}. For

each k ∈ E1, consider the scalar candidate Lyapunov function

V1 = (b̄k+1,ik − b̄∗k+1,ik
)2. (14)

By (12)-(14), the time derivative of V1 can be obtained as

V̇1 =− 2γ3(b̄k+1,ik − b̄∗k+1,ik
)sigq

(

b̄k+1,ik

−
∑

c∈Nout(k+1)

wc,k+1 +
∑

p∈Nin(k+1),p 6=ik

wk+1,p

)

=− 2γ3V
1+q
2

1 .

According to [26, Theorem 4.2], we have V1 ≡ 0, i.e.,

b̄k+1,ik ≡ b̄∗k+1,ik
, ∀t ≥ T1(k), where T1(k) : E1 → R

+

is the settling-time function given by

T1(k) =
|b̄k+1,ik(0)− b̄∗k+1,ik

|1−q

γ3(1− q)
.

Denote T ∗
1 = max{T1(k), k ∈ E1}. Note that if d = 1, the

root with index 1 is a hub. In this case, we have E1 = IN−1,

and the settling-time of algorithm (12) is explicitly given by

T ∗
h = max{ |b̄k+1,ik

(0)−b̄∗k+1,ik
|1−q

γ3(1−q) , k ∈ IN−1}.

In the case of d > 1, let us sequentially denote Es = {k ∈
IN−1 \

⋃s−1
l=1 El|∀c ∈ N̄out(k + 1), c − 1 ∈ ⋃s−1

l=1 El}, s =
2, · · · , d. Then, we have ik = 1, ∀k ∈ Ed. For any s ∈
{2, · · · , d} and each k ∈ Es, consider the same Lyapunov

function Vs = V1. By (12)-(14), the time derivative of Vs is

V̇s = −2γ3(b̄k+1,ik − b̄∗k+1,ik
)sigq

(

b̄k+1,ik

+
∑

p∈Nin(k+1),p 6=ik

wk+1,p −
∑

c∈N̄out(k+1)

b̄c,k+1

−
∑

c∈Nout(k+1)\N̄out(k+1)

wc,k+1

)

= −2γ3(b̄k+1,ik − b̄∗k+1,ik
)sigq

(

b̄k+1,ik

− b̄∗k+1,ik
−

∑

c∈N̄out(k+1)

(b̄c,k+1 − b̄∗c,k+1)
)

= −2γ3(b̄k+1,ik − b̄∗k+1,ik
)sigq

(

b̄k+1,ik

− b̄∗k+1,ik
−

∑

k′,c−1,c∈N̄out(k+1)

(b̄k′+1,ik′
− b̄∗k′+1,ik′

)
)

.

Combined with the definition of Es, we have

V̇s = −2γ3V
1+q
2

s , ∀t ≥ T ∗
s−1

where T ∗
s = max{Ts(k), k ∈ Es} and Ts(k) : Es → R

+ is

Ts(k) = T ∗
s−1 +

|b̄k+1,ik(T
∗
s−1)− b̄∗k+1,ik

|1−q

γ3(1− q)
.

Thus, Vs ≡ 0, i.e., b̄k+1,ik ≡ b̄∗k+1,ik
, ∀t ≥ Ts(k).

Till now, we know that b̄k+1,ik ≡ b̄∗k+1,ik
, for all k ∈

⋃d

s=1Es, and all t ≥ T ∗
d . It is clear that all Es are nonempty,

disjoint, and
⋃d

s=1Es = IN−1, i.e., ∀k ∈ IN−1, there exists

a unique s ∈ {1, · · · , d} such that k ∈ Es. Then, we can

conclude that b̄ ≡ b̄∗, ∀t ≥ T ∗
d . This completes the proof.

Remark 8: For solving (1) over an unbalanced graph, the left

eigenvector associated with the zero eigenvalue of the global

network Laplacian is required in [9]. The approach proposed

here eliminates the dependence on such information.

Remark 9: In state-of-the-art weight-balancing literature

[12]–[15], all the edge weights are adjusted, and the conver-

gence follows an infinite time for real weight balancing [12],

[14], and follows a finite time for integer weight balancing

[13]–[15]. Differently from these works, our perspective is to

fix all weights in a digraph except those in a DST, leading to

a balanced digraph in finite time with real weights.
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With reference to finite-time convergence, it is worth notic-

ing that it is lost upon selecting q = 1: in this case, (12b)

degenerates into

˙̄bk+1,ik = −γ3
( ∑

p∈Nin(k+1)

βk+1,p −
∑

c∈Nout(k+1)

βc,k+1

)

.

(15)

Theorem 3: Let Assumption 2 hold. Then, the balancing law

(12a)+(15) with γ3 ∈ R
+ drives b̄ to b̄∗ asymptotically. In the

special case that the root of Ḡ is a hub, the convergence is

exponential with rate γ3, i.e., ‖b̄(t)− b̄∗‖ = ‖b̄(0)− b̄∗‖e−γ3t.

Proof. The proof is similar to that of Theorem 2, combined

with LaSalle’s invariance principle [25, Theorem 2.2]. The

details are omitted due to the space limits.

V. AN ILLUSTRATIVE EXAMPLE

Consider a network of 6 agents interacting on the strongly

connected digraph G∗ of Fig. 1(d). The local objective func-

tions are defined over z = (z1, z2)
T ∈ R

2 as

f1(z) = z21 + z1z2 + 3z22 + 5 sin(z1),

f2(z) = (z1 + 1)2 + z1z2 + 3(z2 − 1)2 + 10 cos(z2 + 1),

f3(z) = (z1 − 2)2 + z1z2 + 3(z2 + 2)2 + 20 arctan(2z1z2),

f4(z) = (z1 + 3)2 + z1z2 + 3(z2 − 3)2 − 5 sin(z1),

f5(z) = (z1 − 4)2 + z1z2 + 3(z2 + 4)2 − 10 cos(z2 + 1),

f6(z) = (z1 + 5)2 + z1z2 + 3(z2 − 5)2 − 20 arctan(2z1z2).

It can be easily checked that Assumption 1 is satisfied and

G∗ is weight-balanced. Despite all the local functions being

non-convex, the resulting global function F is strictly convex.

To verify Theorem 1, let us select the DST Ḡ∗ highlighted

in red in Fig. 1(d), and γ1 = γ2 = 0.5 in the algorithm (4)-(5).

The initial xi(0) and yi(0) are chosen from a Gaussian distri-

bution with standard deviation 5. The gradients of the global

function ∇F (·) evaluated at each xi(t) = (xi1(t), xi2(t))
T ,

i ∈ V , are given in Fig. 2 in a logarithmic scale, showing that

the agents cooperatively solve the global optimization problem

(with ∇F (xi) → 0). Fig. 2 also shows that the weights in

the DST Ḡ∗ converge to some constants. For comparison, we

implement a modified4 algorithm based on [9, Eqn. (3)]:

ẋi =− γ1∇fi(xi)− αi(t)ξi −
∑

j∈Nin(i)

wij(yi − yj)

ẏi =αi(t)ξi, α̇i = γ2‖ξi‖2 (16)

where ξi =
∑

j∈Nin(i)
wij(xi − xj). With the same other

parameters as before and αi(0) = 1, the results are shown

in Fig. 3. As compared to Fig. 2, one can see that allowing

only certain coupling gains along a DST to be adaptive can

have the benefit of reducing oscillations and improving the

convergence performance.

In order to highlight the necessity of an adaptive strategy

and to support Remark 6 at the same time, the gradients

4In [9, Eqn. (3)], the gain for ξi is the sum of the adaptive variable αi and
a variable βi = ‖ξi‖

2, where the role of βi is to keep αi from shifting to
high values at the beginning. Here, βi can be safely removed and γ2 can be
moved inside α̇i. These modifications make comparisons more direct.

∇F (xi) under four different pairs of γ1 and γ2 in (4)-(5)

are provided in Fig. 4, where the nonadaptive strategy (upper

left) with γ2 = 0 fails to solve the optimization problem.

If the agents interact over the unbalanced digraph of

Fig. 1(a), one can first perform the weight-balancing process

(12) to get the balanced digraph G∗. Let us select the DST

Ḡ highlighted in green in Fig. 1(b), and γ3 = q = 0.1 in

algorithm (12). As shown in Fig. 5, the balancing weights

b̄k+1,ik(t) in Ḡ converge to the corresponding b̄∗k+1,ik
, ∀k ∈

I5, (see Fig. 1(c)) in finite time, as guaranteed by Theorem 2.

To verify Theorem 3, let us balance the digraph Fig. 1(a)

with (12a)+(15) instead of (12). Select γ3 = 0.1, the balancing

weights converge asymptotically, as shown in Fig. 6.
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Fig. 2. Global gradient ∇F (·) evaluated at xi(t) (in a logarithmic scale),
i ∈ V (left). Adaptive coupling gains āk+1,ik

(t), k ∈ I5, in Ḡ∗ (right).
Here, γ1 = γ2 = 0.5.
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Fig. 3. Optimization and adaptation using (16) (based on [9, Eqn. (3)]).

VI. CONCLUSIONS

A directed-spanning-tree based adaptive framework has

been derived for distributed optimization of a summation-

separable cost function with possibly non-convex local func-

tions over strongly connected digraphs. Firstly, an adaptive

algorithm has been proposed for weight-balanced digraphs.

Secondly, the framework has been extended to unbalanced

digraphs by including a novel finite-time weight balancing

algorithm. We have shown that this framework allows to

remove the knowledge of global Laplacian matrix required

in the literature. Future research directions include extensions

to constrained optimization [2] or to non-convex optimization

even with non-convex global function [22]. Obtaining discrete-

time counterparts of the proposed algorithms could also be an

interesting open research direction.

APPENDIX

PROOF OF LEMMA 4

The main idea of the proof is to utilize the positive defi-

niteness of the matrix Qs so as to entrust the stability of (10)
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Fig. 4. Global gradient ∇F (·) evaluated at xi(t) (in a logarithmic scale),
i ∈ V , for different parameters γ1 and γ2, as comparisons with Fig. 2 (left).
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Fig. 5. Time-varying balancing weights b̄k+1,ik
(t), k ∈ I5, in Ḡ. The dashed

lines are the corresponding weights b̄∗
k+1,ik

in Ḡ∗

pseudo. Here, γ3 = q = 0.1.
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Fig. 6. Asymptotically balancing with (12a)+(15). Here, γ3 = 0.1.

to the adaptive coupling weights āk+1,ik , k ∈ IN−1. Let us

consider the following Lyapunov function:

V =
1

2
µ̄T µ̄+

N−1∑

k=1

1

2γ2
(āk+1,ik(t)− φk+1,ik)

2

︸ ︷︷ ︸

Vµ

+
3λmax(Q

TQ)

λmin(Qs)
· 1
2
(µ̄+ ν̄)T (µ̄+ ν̄)

︸ ︷︷ ︸

Vν

(17)

where Qs > 0 is guaranteed by statement 4) of Lemma 1, and

φk+1,ik ∈ R
+, k ∈ IN−1, are to be decided later.

The time derivative of Vµ along the trajectory of (10) is

V̇µ =− γ1µ̄
T (Ξ⊗ In)h− µ̄T (QA(t)⊗ In)µ̄− µ̄T (Q⊗ In)ν̄

+

N−1∑

k=1

(āk+1,ik − φk+1,ik)(µ̄k −
∑

j+1∈N̄out(k+1)

µ̄j)
T µ̄k.

(18)

From (11), one has

N−1∑

k=1

āk+1,ik(µ̄k −
∑

j+1∈N̄out(k+1)

µ̄j)
T µ̄k

=
N−1∑

k=1

(Q̄A
kk(t)µ̄k +

N−1∑

j=1,j 6=k

Q̄A
jk(t)µ̄j)

T µ̄k

=

N−1∑

k=1

N−1∑

j=1

Q̄A
jk(t)µ̄

T
j µ̄k = µ̄T (Q̄A(t)⊗ In)µ̄. (19)

Let us define Φ ∈ R
(N−1)×(N−1) as

Φkj =







φj+1,ij , if j = k,
−φj+1,ij , if j = ik − 1,
0, otherwise.

(20)

Then, it follows from Assumption 1 and (18)-(20) that

V̇µ =− γ1µ̄
T (Ξ⊗ In)h− µ̄T (QA(t)⊗ In)µ̄

− µ̄T (Q⊗ In)ν̄ + µ̄T ((Q̄A(t)− Φ)⊗ In)µ̄

≤− γ1λmin(Υ)µ̄T µ̄− γ1µ̄
T (Ξ⊗ In)h

′

− µ̄T ((Q̃+Φ)⊗ In)µ̄− µ̄T (Q⊗ In)ν̄ (21)

where h′ = ψ(µ + x̃) − ψ(x̃) with ψ(x) = col(ψ1(x1), · · · ,
ψN (xN )). Using Young’s inequality, we have

−γ1µ̄T (Ξ⊗ In)h
′ ≤ µ̄T µ̄

2
+
γ21h

′T (ΞTΞ⊗ In)h
′

2

≤ µ̄T µ̄

2
+
γ21λmax(Ξ

TΞ)h′Th′

2
(22)

−µ̄T (Q⊗ In)ν̄ ≤ µ̄T µ̄

2
+
ν̄T (QTQ⊗ In)ν̄

2

≤ µ̄T µ̄

2
+
λmax(Q

TQ)ν̄T ν̄

2
. (23)

Since all ψi are bounded by K, we have ‖ψ(x)‖ ≤
√
NK,

for all x ∈ R
Nn. Then,

h′Th′ ≤ (‖ψ(µ+ x̃)‖+ ‖ψ(x̃)‖)2 ≤ 4NK2. (24)
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It follows from (21)-(24) that

V̇µ ≤− µ̄T ((Q̃+Φ+ γ1λmin(Υ)IN−1)⊗ In)µ̄+ µ̄T µ̄

+
λmax(Q

TQ)

2
ν̄T ν̄ + 2NK2γ21λmax(Ξ

TΞ). (25)

The time derivative of Vν can be obtained as

V̇ν =− γ1µ̄
T (Ξ⊗ In)h− µ̄T (Q⊗ In)ν̄

− γ1ν̄
T (Ξ⊗ In)h− ν̄T (Q⊗ In)ν̄

≤ µ̄
T µ̄

2
+ 2NK2γ21λmax(Ξ

TΞ) +
λmax(Q

TQ)µ̄T µ̄

λmin(Qs)

+
λmin(Q

s)ν̄T ν̄

4
+
λmin(Q

s)ν̄T ν̄

2

+
2NK2γ21λmax(Ξ

TΞ)

λmin(Qs)
− λmin(Q

s)ν̄T ν̄

=
λmin(Q

s) + 2λmax(Q
TQ)

2λmin(Qs)
µ̄T µ̄− λmin(Q

s)

4
ν̄T ν̄

+
2NK2γ21λmax(Ξ

TΞ)(1 + λmin(Q
s))

λmin(Qs)
(26)

where Young’s inequality and the positive definiteness of Qs

have been used to get the inequality.

From (25) and (26), V̇ in (17) is upper bounded by

V̇ ≤− µ̄T ((Q̃+Φ+ γ1λmin(Υ)IN−1)⊗ In)µ̄

− λmax(Q
TQ)

4
ν̄T ν̄ + η1µ̄

T µ̄+ η2

where η1 = 1 + 3λmax(Q
TQ)λmin(Q

s)+6λmax(Q
TQ)2

2λmin(Qs)2 , and η2 =

2NK2γ21λmax(Ξ
TΞ)(1 + 3λmax(Q

TQ)(1+λmin(Q
s))

λmin(Qs)2 ).

Let δ ∈ R
+ be an arbitrarily small scalar. Then, when

µ̄T µ̄ ≥ δ, there always exists a sufficiently large η ∈ R
+

such that ηµ̄T µ̄ ≥ η1µ̄
T µ̄+ η2. In this case, we have

V̇ ≤− µ̄T ((Φs − ηIN−1 + Q̃s + γ1λmin(Υ)IN−1)⊗ In)µ̄

− λmax(Q
TQ)

4
ν̄T ν̄.

A natural next step is to find some appropriate φk+1,ik such

that Φs is sufficiently positive definite to stabilize the system.

First, we show that Φs − ηIN−1 > 0 where

Φs =










φ2,i1
1
2φ21 · · · 1

2φN−2,1
1
2φN−1,1

1
2φ21 φ3,i2 · · · · · · 1

2φN−1,2

...
...

. . .
...

...

1
2φN−2,1

... · · · φN−1,iN−2

1
2φN−1,N−2

1
2φN−1,1

1
2φN−1,2 · · · 1

2φN−1,N−2 φN,iN−1











.

To see this, let us denote Ω1 =
(
φ2,i1 − η

)
,

and Ωk =

(
Ωk−1 ϕk

ϕT
k φk+1,ik − η

)

, where ϕk =

1
2 (φk1, φk2, · · · , φk,k−1)

T , k = 2, · · · , N−1. Clearly, Ω1 > 0
by choosing φ2,i1 > η. Now suppose Ωk−1 > 0, k ≥ 2.

Notice by (20) that |φkj | ≤ |φj+1,ij |, ∀j ∈ Ik−1. Then,

one has ϕT
kΩ

−1
k−1ϕk ≤

∑k
j=2

φ2
j,ij−1

4λmin(Ωk−1)
. By choosing φk+1,ik >

η +

∑k
j=2

φ2
j,ij−1

4λmin(Ωk−1)
, one has Ωk > 0 according to the Schur

complement [28, Chapter 2.1]. By mathematical induction,

Φs − ηIN−1 = ΩN−1 is positive definite.

Moreover, since Q̃ and Υ are fixed, one can always choose

sufficiently large φk+1,ik such that λmin(Φ
s − ηIN−1 + Q̃s) >

−γ1λmin(Υ). Then, we have V̇ ≤ 0, for all µ̄T µ̄ ≥ δ and

all ν̄ ∈ R
(N−1)n. As a by-product, the trajectories of (10)

are bounded. Note that since V̇ is continuous, by LaSalle’s

invariance principle [25], we can conclude that µ̄ converges

to the residual set S = {µ̄|‖µ̄‖2 ≤ δ}, and that ν̄ and āk+1,ik

converge to some corresponding values such that V̇ = 0. Since

δ can be arbitrarily small, it is guaranteed that both µ̄ and ν̄
converge to zero, and that the weights āk+1,ik , k ∈ IN−1,

converge to some finite constant values.
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