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Abstract

State-of-the-art Model Predictive Control (MPC) applications for building heating adopt either a deterministic controller
together with a nonlinear model or a linearized model with a stochastic MPC controller. However, deterministic MPC
only considers one single realization of the disturbances and its performance strongly depends on the quality of the
forecast of the disturbances, which can lead to low performance. In fact, inadequate building energy management can
lead to high energy costs and CO2 emissions. On the other hand, a linearized model can fail to capture some dynamics
and behavior of the building under control. In this article, we combine a stochastic scenario-based MPC (SBMPC)
controller together with a nonlinear Modelica model that is able to provide a richer building description and to capture
the dynamics of the building more accurately than linear models. The adopted SBMPC controller considers multiple
realizations of the external disturbances obtained through a statistically accurate model, so as to consider different
possible disturbance evolutions and to robustify the control action. To this purpose, we present a scenario generation
method for building temperature control that can be applied to several exogenous perturbations, e.g. solar irradiance,
outside temperature, and that satisfies several important statistical properties, in contrast with simpler and less accurate
methods adopted in the literature. We show the benefits of our proposed approach through several simulations in which
we compare our method against the standard ones from the literature, for several combinations of a trade-off parameter
between comfort and energy cost. We show how our SBMPC controller approach outperforms the standard controllers
available in the literature.

Keywords: Scenario-based model predictive control, Control of Buildings, Model predictive control, Modelica

1. Introduction

Energy consumed in buildings for heating, ventila-
tion, and air-conditioning (HVAC) purposes accounts for
around half of total energy used in buildings [1–5]. For
companies, especially if they are located in large buildings,
it is therefore very important to limit the amount of energy
wasted due to bad temperature control. Furthermore, it
is also important to reduce as much as possible the energy
waste in order to decrease emissions due to e.g. natural
gas boilers [6]. Moreover, buildings have comfort temper-
ature bounds that have to be respected during working
hours, with few violations allowed [7]. The comfort viola-
tions should be limited while at the same time the energy
cost has to be minimized. Simple solutions where heaters
always run at maximum power are not acceptable due to
the large costs and energy waste.

On top of that, buildings are subject to many exogenous
disturbances, e.g. outside temperature, solar irradiance,
and endogenous ones, e.g. occupancy. The profile of these
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disturbances, if not properly considered when determining
the control actions, can lead to poor performance, both in
terms of energy cost and discomfort. Moreover, the model
of the building considered, due to approximations, may
lead to further errors. However, a too complex model is
also not useful for control purposes due to the high com-
putational burden that it entails. Therefore, the problem
of controlling the room temperature in large buildings is a
complex task.

1.1. Literature review

In this section, we perform a brief literature review of
the two main topics of this research: control for buildings
and scenario generation.

1.1.1. Modeling and control strategies for buildings

Many solutions have been proposed in the literature to
control the room temperature in buildings using informa-
tion available on the current temperature and forecasts of
the disturbances. A simple solution involves a rule-based
approach that is based on if-then-else rules and informa-
tion about the current disturbances [8]. Although these
controllers are simple to implement and may achieve a
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reasonable performance, they are not very efficient since
they are based on user knowledge and rules-of-thumb and
they do not actually perform an optimization. Model pre-
dictive control (MPC) [9–12] is a more advanced control
strategy that is suitable for the room temperature control
problem, since it can naturally include constraints in the
control problem and since it can in general achieve a bet-
ter performance [13–15]. Moreover, a building is subject to
several disturbances, as mentioned before, and MPC can
deal well with disturbances by using a robust or stochastic
controller [11], which can achieve better performance than
the deterministic counterpart. However, despite having a
better constraint satisfaction, a robust MPC controller for
buildings, e.g. [16], could be too conservative for the task of
controlling the temperature of a room and it would result
in a high amount of energy used as it would try to com-
pensate every possible disturbance realization. Therefore,
usually a stochastic MPC controller is preferred for build-
ing heating systems [12, 17]. Indeed, by considering the
stochastic properties of the disturbance or by considering
several disturbance scenarios, stochastic MPC controllers
can potentially achieve a better control performance com-
pared to deterministic controllers, leading therefore to a
reduced energy consumption while limiting the discom-
fort. In particular, scenario-based MPC (SBMPC) meth-
ods stand out as a useful tool in building heating systems,
since they can use past data of the disturbances, which
are available in the case of building heating systems, and
they can successfully be applied to nonlinear models as
well [12].

In this regard, several types of MPC algorithms have
been applied to HVAC systems in the literature [13–15, 17–
29]; see also [30, 31] and the references therein. In par-
ticular, [15] presents two stochastic MPC algorithms, i.e.
a disturbance-feedback approach and a chance-constraint
one. The results show that the stochastic controllers
achieve a better performance than deterministic MPC and
rule-based control. Authors of [17] develop an SBMPC
controller that uses previous data of building occupancy
and external ambient conditions forecast errors to solve
a scenario-based optimal control problem. The scenarios
are built through copulas that can be learned online and
the method is applied to a room in a university building.
The results show that the proposed controller is able to
achieve a good performance in terms of energy cost, while
having a larger computational complexity than standard
deterministic methods. However, the method is applied to
a single room and the authors of [17] suggest that a study
needs to be carried out to asses whether the method can
be applied to a larger building. A similar approach is pre-
sented in [18], where the main differences are that 1) slack
variables are introduced in the cost function to improve
the feasibility of the optimization problem obtained and
2) that different copula families are tested and compared
(see also Section 1.1.2). In both papers, the authors do not
rely on Gaussian assumptions for what concerns the prop-
erties of the disturbances. Given that the two previous

methods might result in a large computational complex-
ity, the authors of [19] extend the concept to an explicit
SBMPC controller, such that the control inputs are com-
puted offline and applied online. Experiments were per-
formed once again for a single university room, showing
better performance with respect to the standard methods.
In order to deal with a multi-room setting, a distributed
MPC controller is presented in [20], where a Lagrangian
dual decomposition relaxation method is used to reduce
the computational burden arising from the several rooms
considered. Simulation results obtained considering a net-
work of 10 rooms show an increased performance with re-
spect to a baseline PID controller. In all these articles
it is shown how stochastic MPC strategies can achieve a
better performance than deterministic MPC. The article
[21] presents an MPC algorithm in which a linear model is
used to control a building including an active cold thermal
storage in order to implement a demand response program.
All these works, i.e. [15, 17–21], use a linearized model de-
scription and do not use a nonlinear model nor other more
advanced modeling tools, e.g. Modelica [32, 33], possibly
leading to a decrease in the performance. Such tools and
nonlinear models for building heating control usually in-
clude more features and components compared to a linear
model and thus they can potentially provide a more accu-
rate description of the building and of the influence of each
disturbance, reducing therefore the modeling error and im-
proving the overall performance. The article [22] adopts a
nonlinear model arising from the heat pump and a battery
inverter considered, but the considered MPC controller is a
deterministic one. For what concerns nonlinear and more
advanced models, while some works did consider their us-
age for HVAC systems, e.g. [13, 14, 23, 24], all of them
considered a deterministic setting instead of a stochastic
one. To the best of our knowledge, no work has considered
a nonlinear model description obtained through Modelica
together with a stochastic controller, which would improve
the performance by taking into account a more accurate
model and the stochastic properties of the disturbances.

1.1.2. Scenario generation

Besides improving the state-of-the-art by proposing a
control approach for more realistic models, i.e. nonlinear
Modelica models, our work also contributes to the existing
literature of scenario generation for buildings by improving
upon the current state-of-the-art. In particular, scenarios
of random variables that represent a time series, e.g. the
ambient temperature for the next 24 hours with an hourly
resolution, need to satisfy several important properties:

1. They should not be restricted to the standard as-
sumption of Gaussian disturbances/forecasting errors
as this assumption is quite restrictive when it comes
to generating scenarios of heteroscedastic1 processes,
e.g. solar irradiance [19].

1A time series variable is heteroscedastic if the variance changes
throughout time.
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2. They need to consider the multivariate distribution
of the random variables: if the scenarios represent a
random variable at different time steps in the future,
these scenarios should model the time correlation of
the random variable [34].

3. Besides modeling the time correlation, they should
explicitly take into account the different time depen-
dencies and avoid modeling a stationary distribution;
i.e. the distribution of the random variable might be
different at different hours of the day/times of the
year or might change with the prediction horizon.

4. The methods to generate scenarios should be flexible
enough to explicitly model the dependencies of the
random variables on exogenous variables.

5. The computational burden of the scenario generation
method should be small enough for online implemen-
tation.

In the context of building heating, while some scenario
generation methods have been considered [15, 17–20, 25,
35–40], they have several problems. In particular, some
of the existing methods [15, 35, 36] rely on the standard
Gaussian assumptions [19]. In addition, although several
works have addressed the Gaussian assumption [17–20, 25,
37, 39, 40], they still lack some of the required properties.

More specifically, in [17], a method based on empiri-
cal copulas is proposed. While the method satisfies some
properties, e.g. time correlation, it fails to satisfy the fol-
lowing two: 1) it does not model time dependencies but
it assumes that the marginal distributions are stationary,
i.e. it assumes that the n-hours ahead distribution of a
variable is the same at any hour of the day, any day of the
year; 2) the scenarios are generated based on historical
data without considering other possible exogenous inputs.
The analytical copula method proposed in [20] overcomes
some of these issues as it explicitly models the time de-
pendency during a day. However, the distributions are
still stationary, i.e. they vary within a day but they do not
change along a year, and they are just based on historical
data. In [18] and [19], a more general approach is proposed
where different copula families are tested, and the best one
is selected to generate scenarios. While the method is very
general and flexible, it requires to compare different cop-
ula functions and can easily become computationally in-
feasible for online MPC. In addition, the method has two
other problems: the best copula is selected by comparison
with the empirical copula of [17], hence it has the same
problems as [17]; moreover, the time dependencies consid-
ered by the copulas are not specified. In [37], scenarios
from a weather meteorological model are employed. Even
though the goal of weather models is to provide an en-
semble of scenarios, to capture the uncertainty in the pre-
diction, the method displays systematic errors, e.g. biases,
and requires the application of advanced post-processing
techniques based on copulas, e.g. ensemble copula coupling
[41]. In [25], a method based on sampling historical fore-
casting errors is considered. Despite the method attempts

to capture time correlation using an auto-regressive er-
ror model, that model is only used for error correction.
In particular, to generate scenarios, the method samples
from past historical errors and fails to satisfy properties
2-4. The recursive feasibility and stability of SBMPC is
studied in [39]. To do so, it is assumed that disturbances
can be represented by a scenario tree, and that the tree
can be built using empirical samples from a discrete set
of disturbances. This approach is clearly very limited as,
it does not satisfy properties 2-4, and in addition it could
have scalability and computational issues when the num-
ber of random variables increases. In [40], scenarios are
used for modeling electricity prices and independent opti-
mization problems are solved for each scenario; however,
the method cannot be used to model uncertainty in other
variables, e.g. weather variables, and fails to satisfy prop-
erties 2-4. In [38], two Poisson distributions are employed
to model the occupancy in the building as a birth-death
process. While such a parametric distribution might work
well for occupancy, it has the same issue as the Gaussian
assumption: the method cannot be generalized to other
random variables.

1.2. Motivation and contributions of the paper

In this article, we focus on a scenario-based MPC
(SBMPC) algorithm that includes both a nonlinear sys-
tem description through Modelica, while using a scenario
generation method based on probability distributions ob-
tained empirically, making it a very suitable tool for a
building heating control problem. The Modelica model
description can lead to an improvement of the model ac-
curacy; note that in the current literature of SBMPC for
heating systems in buildings, a linearized model is always
used. On top of that, by using a nonlinear Modelica model,
we implement for the first time an SBMPC controller for
HVAC systems in buildings that uses a nonlinear Modelica
model description. In addition, we present a parametric
Gaussian copula method to generate scenarios that it can
satisfy the five required properties, whereas the methods
used in the literature of HVAC systems for scenario gener-
ation suffer from some statistical problems, as mentioned
earlier. We perform several simulations showing the bene-
fits of the presented approach. Our contribution is there-
fore threefold:

• We propose a control method for a building heating
systems that considers a Modelica nonlinear model
and an SBMPC controller.

• We generate scenarios using a new approach that, un-
like the existing methods, satisfies all the important
properties of scenario generation methods for time
series data.

• We perform a comparison between several combina-
tions of the couple model-controller: as models, we
consider a Modelica and linear and as controller we
consider a deterministic MPC and SBMPC.
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1.3. Outline

The outline of the article is as follows. In Section 2, we
describe the problem under consideration. We present the
control algorithms used throughout the article in Section
3. In Section 4, the adopted scenario generation method
is presented. We present the simulation results on a case
study in Section 5 and lastly we present some conclusions
and suggestions for future work in Section 6.

2. Model description

2.1. Buildings

In this paper, we focus our attention on buildings with
local heat production units. The type of building con-
sidered can be controlled via two control inputs, i.e.

u =
[
qheat qcool

]⊤
, where qheat is the amount of heating

power transferred to the building and qcool is the cooling
power provided to the building. We assume that the build-
ing can be modeled using an RC-model with two states
[13]: T zone as the average temperature of the rooms and
Twall as the average temperature of the walls. In addition,
it is assumed that the building is affected by three distur-
bances: solar irradiance I, outdoor temperature T amb, and
building occupancy θocc. While past measurements of ex-
ternal disturbances, e.g. solar irradiance and outdoor tem-
perature, are available, we do not have any measurement
of the occupancy of the building. Note that, although this
is an important disturbance to consider, it is also difficult
to measure in practice [42, 43]. Therefore, to estimate the
models and to perform simulations, we assume that the
occupancy profile is fixed for every day of the week, i.e. we
assume that the building is fully occupied during working
hours and empty outside of these hours.

2.2. Modelica

We have modeled the buildings, comprising also the
heating, cooling, and ventilation units, with Modelica
[32, 33], which is an object-oriented and equation-oriented
language that is designed to model the behavior of physical
systems. In particular, the building is modeled based on
an RC-model, which has been identified through the Grey-
Box Buildings toolbox [44]. The building has also been ex-
tensively validated using data collected from the building
as in [13, 44]. Such data has been gathered between 2016
and 2018 and includes e.g. internal temperature, domestic
hot water usage, external temperature, and solar irradi-
ance. The adoption of Modelica in our work provides the
benefit that we can improve the amount of detail and ac-
curacy of the model w.r.t. linear models. Note that e.g.
some of the HVAC components modeled in Modelica re-
sult in nonlinear model components. Therefore, although
many other works, e.g. [15, 17–20], use indeed a lineariza-
tion of a nonlinear model, in this work we directly use a
nonlinear model and we obtain therefore a more meaning-
ful representation of the real building. Readers interested

in the modeling procedure of buildings in a Modelica en-
vironment are referred to [13, 44].

Note that other high-fidelity simulation tools exist for
buildings, e.g. TRNSYS, EnergyPlus, ESP-r, IDA ICE;
see [45, 46] for a complete review. However, compared
to Modelica, these software tools lack in modularity and
flexibility for prototyping and simulating new technologies
[47]. Moreover, in our particular setting, we have data
available from the buildings to be controlled that allows us
to estimate the parameters of the building. However, the
data is not comprehensive enough for satisfactory white-
box modeling. Therefore, as highlighted in [44], we adopt
a grey-box model due to necessity of estimating certain pa-
rameters of the model of the building that are not known a
priori. Whereas in the aforementioned white-box modeling
tools it could in theory be possible to calibrate the param-
eters of the model, the lack of a more detailed physical
knowledge of the building makes the choice of a white-
box model, for our specific setting, less desirable. Lastly,
note that Modelica is an open-source tool, making it par-
ticularly appealing for commercial applications. For more
advantages of using Modelica for HVAC systems we refer
to [48].

Remark 1. Note that, as mentioned in [44], the actual
difference between white-box and grey-box models does not
depend on the complexity of the model. For instance, even
a single-state model can be a white-box model if all its pa-
rameters can be determined based solely on physical knowl-
edge. However, a white-box model becomes grey when one
or more of its parameters are estimated based on a fit-
ting of the model to measurement data, irrespectively of
the complexity of the white-box model.

Remark 2. The model of the building used in this paper
has been extensively validated following the exact same pro-
cedure reported in [44]. Therefore, the validation process
is omitted here as it is already explained in the aforemen-
tioned paper. Multiple-years data has been used to iden-
tify and validate the model. The interested readers might
find the whole identification and validation procedure in
[13, 44].

2.3. Model predictive control

MPC is a control tool that has been extensively studied
in the last forty years [9–11]. The main strength of MPC is
to use a model of the system under control to find optimal
inputs for that system with respect to a certain objec-
tive, which can be either stabilizing the system or mini-
mizing an economical goal. Since in the MPC framework
the problem of finding the optimal inputs for the system
is an optimization problem, constraints can easily be in-
cluded, as well as several performance criteria. Compared
to simpler strategies e.g. rule-based control, MPC requires
a larger computational effort and requires to solve an opti-
mization problem online but it can provide an increase in
performance. Due to its versatility and good performance
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achieved, MPC has been applied to various systems and
fields, e.g. power systems [49, 50], traffic networks [51],
water networks [52], aerospace [53], among others. For a
survey that includes also MPC applications for large-scale
and industrial systems, we refer the reader to [54].

In recent years, several MPC strategies have been de-
veloped to cope with external disturbances, in particular,
robust and stochastic MPC strategies. In this paper we fo-
cus on an SBMPC algorithm, which is presented in Section
3.2.

2.4. Control loop and practical implementation

Many operations have to be carried out on the real build-
ing by the building energy management system; the overall
control scheme is presented in Figure 1. The operations
are [13]:

1. Monitoring: some measurements, e.g. water tempera-
ture, heat flux, are performed by the building energy
control and management system.

2. Forecasting: weather forecasts are obtained as will be
explained in Section 4.

3. State estimation: some states, e.g. internal wall tem-
peratures, cannot be measured and therefore they
have to be estimated.

4. Optimization of the control inputs: an optimization
problem, explained in Section 3, is solved at every
time step with a sampling time of 1h. Only the first
inputs of the optimal sequence are applied to the sys-
tem.

The real building is therefore controlled by all these
steps, carried out in sequence. The optimization problem
discussed in step 4 above is solved through JModelica.org
[55]. The direct collocation method is used to discretize
time so that the optimization problem is reduced to a non-
linear programming problem [56]. CasADi [57] is used to
obtain the first-order and second-order derivatives of the
expressions in the nonlinear programming problem with
respect to the decision variables, which are required by
the solvers used by JModelica.org. We use IPOPT [58] to
solve the nonlinear programming problem, together with
the sparse linear solver MA57 [59].

Remark 3. Note that in this section we consider simu-
lations instead of experiments in the real building. This
implies a small difference w.r.t. Figure 1: instead of apply-
ing the inputs to the real building, we simulate its behavior
through Modelica for one time step. In other words, the
loop is “closed” by applying the optimal inputs to a model
of the building rather than to the building itself, using the
actual values of the disturbances instead of the forecasts.
The model used for simulating the building behavior is the
same Modelica model used for the optimal control problem
in the MPC framework.

�uilding
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Figure 1: Scheme of the MPC framework (adapted from [13]).

2.5. Linear model estimation

To compare the nonlinear MPC controller with the stan-
dard linear counterpart, a linear model of the building is
needed. To obtain such a model, data from the building
is considered and a linear model is estimated using linear
least squares. In detail, considering the same inputs, state
space, and disturbances as for the nonlinear model (see
Section 2.1), we can assume that the building dynamics
are of the form:

[
T zon
k+1

Twall
k+1

]
= A

[
T zon
k

Twall
k

]
+ B1

[
qheatk

qcoolk

]
+ B2

T amb
k

Ik
θocck

 . (1)

Then, using the same data as those used for estimat-
ing the Modelica nonlinear model, we solve a linear least
square problem and estimate the values of the matrices A,
B1, and B2, using the mean absolute error as key perfor-
mance indicator.

Remark 4. In this article, as highlighted in Remark 3,
we use the nonlinear Modelica model to compute the next
state for the closed-loop simulations. This can introduce
some bias when comparing the performance of the con-
trollers that use the linear model with respect to the ones
that use the Modelica model, since there would be no model
mismatch in the latter case. Nevertheless, we present here
also a linearized model as a reference, to show how such
model would behave in the considered scenario.

Remark 5. Related to the previous remark, note also that
this kind of nonlinear Modelica model has been already
applied to a building heating system in [13]. Indeed, in
that reference the same modeling procedure was applied to
a similar building and experimental results were carried
out. No large mismatch between the Modelica nonlinear
model and the actual physical building nor other funda-
mental flaws were noticed. Therefore, we can argue that
the nonlinear Modelica model is a very good approximation
of the real building and can therefore be used in the closed-
loop simulations to simulate the evolution of the system.
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3. Control algorithms and models

In this section we present the two considered control
algorithms, i.e. MPC and SBMPC.

3.1. Deterministic MPC

In Deterministic MPC, the external disturbances, e.g.
temperature or solar irradiance, are predicted with a point
forecasting technique and in which the predictions are then
assumed to represent the expected value. In this con-
text, at each time step, the MPC optimization problem
is solved, yielding an optimal control input sequence u∗.
Then the first element of the sequence is applied, the hori-
zon is moved one time step forward, the system is sampled,
and the optimization problem is solved again.

Given the task of controlling the room temperature in a
building while minimizing both the energy costs and the
discomfort, the optimization problem solved at each time
step by a deterministic MPC controller is given by:

minimize
T1, q1 . . . ,
qN , TN+1

N∑
k=1

(
αJd

k + Je
k

)
+ αJd

N+1 (2a)

subject to

T1 = T 1, (2b)

Tk+1 = f(Tk, qk, dk), for k = 1, . . . , N, (2c)

0 ≤ qheatk ≤ Q
heat

max, for k = 1, . . . , N, (2d)

0 ≤ qcoolk ≤ Q
cool

max, for k = 1, . . . , N (2e)

where:

• N is the prediction horizon.

• The system state is defined by Tk = [T zon
k , Twall

k ], with
T zon
k and Twall

k as the room and wall temperatures.

• T 1 is the current temperature.

• The input control is defined by qk = [qheatk , qcoolk ], with
qheatk and qcoolk as the input heating/cooling power.

• The cost function represents the weighted average be-
tween the energy cost Je

k and the discomfort cost Jd
k :

Jd
k =

(
max(T zon

k − Tmax
k , 0) + min(T zon

k − Tmin
k , 0)

)2
,

(3)

Je
k = cgask

qheatk

ηgask

+ celek

qcoolk

ηcool
, (4)

and α is the weighting parameter that defines the rel-
ative importance of each cost.

• The building dynamics are defined by (2c), where f(·)
represents the Modelica model of the building.

• The building is disturbed by some uncontrollable in-
puts dk = [T amb

k , Ik, θ
occ
k ], with T amb

k the ambient
temperature, Ik the solar irradiance, and θocck the
building occupancy.

• The upper and lower comfort temperature bounds are
respectively defined by Tmax

k and Tmin
k , and they vary

in time depending on the hour of the day and day of
the week.

• Q
heat

max, Q
cool

max, ηcool, ηgas, cgas, and cele are constant
parameters and are, respectively, the maximum heat-
ing power, the maximum cooling power, the cooling
efficiency, the heating efficiency, the gas cost, and the
electricity cost.

It is important to note that the role of the discomfort
cost Jd is to act as a soft constraint so that it penalizes the
deviations of the temperature outside the comfort bounds,
but remains 0 if the temperature is inside the bounds.
The controller can therefore choose to implement a control
action that leads to a violation of the comfort bounds if
this can lead to a lower total cost. Lastly, note that in
(2a) the final cost is related only to the states. This is
standard in the MPC framework (see e.g. [11], Eq. 2.3),
since the inputs are applied from k + 1 until k + N , thus
the evolution of the system is considered from k + 2 until
k+N + 1. Therefore, there is no input cost considered for
time-step k + N + 1, but there is a state cost that is the
one we obtain by applying the inputs at k + N .

3.2. Scenario-based MPC

It is possible to improve the performance of the de-
terministic MPC of the previous subsection by consider-
ing several scenarios of the disturbances acting into the
system. This approach, known as scenario-based MPC
(SBMPC), considers multiple realizations/scenarios for
the disturbances, different system states for each scenario,
and a cost function that consists of the average of the
original cost functions across all scenarios. For the con-
trol inputs, two possibilities exist: different control inputs
for each scenario (as with the system state) and shared
control inputs across all scenarios. While the former has
the advantage of being less conservative, the latter is more
computational friendly. For the case of building control,
we consider shared control inputs across all scenarios as
this reduces the computational complexity.

Defining M different scenarios for the disturbances. i.e.
d = {{dk,i}Mi=1}Nk=1, the SBMPC optimization problem
solved at each time step can be defined as:
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minimize
T1, q1 . . . ,
qN , TN+1

M∑
i=1

(
N∑

k=1

(
αJd

k,i + Je
k,i

)
+ αJd

N+1,i

)
(5a)

subject to

T1,i = T 1 for i = 1, . . . ,M, (5b)

Tk+1,i = f(Tk,i, qk, dk,i), for i = 1, . . . ,M,

for k = 1, . . . , N, (5c)

0 ≤ qheatk ≤ Q
heat

max, for k = 1, . . . , N, (5d)

0 ≤ qcoolk ≤ Q
cool

max, for k = 1, . . . , N (5e)

where:

• Tk = [T zon
k,1 , T

wall
k,1 , . . . , T zon

k,M , Twall
k,M ] represents the state

at time step k for each of the M scenarios.

• dk,i = [T amb
k,i , Ik,i, θ

occ
k,i ], represents the ith disturbance

scenario at time step k.

• The cost function is the average across all scenarios of
the weighted average between the energy cost Je

k and
the discomfort cost Jd

k of each specific scenario.

• The input control qk = [qheatk , qcoolk ] remains equal
across all scenarios.

• The building dynamics are represented independently
for each scenario by (5c).

• The constant parameters are the same as for deter-
ministic MPC.

Remark 6. Note that other stochastic formulations ex-
ist that can provide guarantees on the feasibility of the
obtained solution, e.g. [19]. In this paper, we adopt
the scenario-based formulation (also referred to as multi-
scenario formulation) as in e.g.[60–63]. The implemen-
tation of other stochastic methods will be investigated as
future work.

3.3. Linear MPC

We will compare the SBMPC approach against two lin-
ear MPC approaches: deterministic linear MPC and linear
SBMPC. In both cases, the optimization problems solved
at each time step are the same as the ones defined by (2)
and (5) but with a minor modification. Instead of using
the nonlinear dynamics (2c) and (5c), the dynamics are
given by the linear model defined in (1). In particular, for
linear deterministic MPC, constraint (2c) is replaced by:

Tk+1 = ATk + B1 qk + B2 dk, for k = 1, . . . , N. (6)

Similarly, for linear SBMPC, constraint (5c) is replaced
by:

Tk+1,i = ATk,i + B1 qk + B2 dk,i, for i = 1, . . . ,M

for k = 1, . . . , N.
(7)

4. Scenario generation method

In this section, we describe the scenario generation
method for modeling the uncertainty in the system dis-
turbances.

4.1. Introduction

Let us define a random variable X representing some
time series process, e.g. external temperature, and the
related multidimensional random variable X representing
the distribution of X in a time grid of N time steps, i.e.
X = [X1, . . . , XN ]⊤. To generate scenarios, we will build
the multivariate distribution of X, i.e. F (X), so that by
sampling from F (X) we can obtain M scenarios of X, i.e.
x1, . . . ,xM .

When building F (X), in order to satisfy the desired
properties of scenario generation methods (see Section
1.1.2), several requirements need to be satisfied:

• F (X) should not be substituted by the N marginal
distributions F (X1), . . . , F (XN ). In particular,
F (Xi) only represents the distribution of X at time
step i but does not consider the correlation between
X1, . . . , XN .

• F (X) should not be built as a stationary distribu-
tion. Instead, the distribution should consider the
properties of the underlying random variable X. For
example, in the case of temperature or solar irradi-
ance, it is clear that F (X) should vary with the day
of the year d as well as the hour of the day h, i.e.
F (X) := g(X, d, h).

• The distribution F (X) should include any external de-
pendency of X. For instance, if X represents the am-
bient temperature, F (X) needs to explicitly include
the dependency w.r.t. factors like the solar irradiance
I, i.e. F (X) := g(X, I).

4.2. Scenario generation method

The proposed method consists of four steps:

1. generation of a deterministic forecast x̄ of the random
variable X.

2. Generation of the marginal probability distribution
F (X1), . . . , F (XN ) along the horizon N .

3. Generation of the distribution F (X) using a
parametric copula and the marginal distributions
F (X1), . . . , F (XN ).

4. Sampling of scenarios using F (X).

In this section, we explain the four steps in detail.
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4.2.1. Deterministic forecast

To build a deterministic/point forecast of the variable
of interest we employ state-of-the-art methods for each
variable of interest:

• For the solar irradiance, we consider two forecasting
models: the deep neural network proposed in [64] for
the short-term predictions (anything below 6 hours),
and the ECMWF weather forecast [65] for long-term
predictions (anything beyond 6 hours). This distinc-
tion is made because, in the context of solar irra-
diance forecasting, machine learning techniques per-
form better for the short-term horizons, while numer-
ical weather forecasts are more accurate for long-term
horizons [64] (see also Remark 7). For what concerns
the long-term prediction forecasts, note that weather-
based models are highly complex models based on
weather patterns; for practical applications, these
forecasts are not produced by researcher but rather
purchased from three main providers of weather fore-
casts worldwide and for our study we purchased them
from ECMWF [65].

• For the ambient temperature, considering the re-
cent success of deep learning methods for forecasting
energy-related variables [66–72], we develop a deep
neural network that uses as inputs the past values of
the ambient temperature (hourly values over the last
three days), the ECMWF weather forecast of the so-
lar irradiance on hourly resolution over the forecasting
horizon, and the hour of the day and day of the year
when the prediction is made. For the deep neural
network, we consider a two-hidden layer architecture
whose parameters are optimized using hyperopt [66],
a Bayesian optimization algorithm. We optimize the
number of neurons per layer and the activation func-
tion. As a result of the optimization we considered a
deep neural network with 240 (first hidden layer) and
135 (second hidden layer) neurons. The network uses
the rectifier linear unit as activation function and is
optimized using the Adam [67] optimizer with early
stopping.

It is important to note that the other steps to gener-
ate scenarios are independent of the method employed to
generate the deterministic forecast. As such, while we ad-
vocate for the use of state-of-the-art methods to obtain the
most accurate scenarios, the proposed methodology would
work as well with any deterministic forecast.

Remark 7. The splits between horizon regarding the fore-
cast of the irradiance are a well studied problem in the lit-
erature (see e.g. [64, 68]). Note that the exact split (4, 5,
6 hours) might be specific to the location.

4.2.2. Marginal distributions

To generate the marginal distributions, considering its
simplicity yet high accuracy, we employ the method of

empirical quantiles [69]. In detail, to generate the marginal
distribution F (X) of a variable X, the simplest version of
this method consists of four steps:

1. Consider deterministic forecasts of the variable in the
past, e.g. x̄1, . . . , x̄n.

2. Compute the associated historical forecasting errors
of the deterministic forecast, e.g. ϵ̄1, . . . , ϵ̄n.

3. Compute the empirical quantiles of the errors and its
associated empirical distribution F (ϵ).

4. Model the marginal distributions as the point forecast
plus the marginal distribution of the errors:

F (X) = x̄ + F (ϵ). (8)

For the proposed approach, the method is modified in
order to model non-stationary marginal distributions. In
particular, defining Xk,h,d as the random variable repre-
senting the value of X at time h of day d that is predicted
k time steps ahead, the proposed approach estimates each
distribution F (Xk,h,d) independently. To do so, the distri-
butions of the errors ϵk,h,d are independently considered
for each time step k, time h, and day d, and the distribu-
tion F (Xk,h,d) is estimated accordingly:

F (Xk,h,d) = x̄k,h,d + F (ϵk,h,d). (9)

In addition, the following two considerations are made:

• To obtain non-stationary marginal distributions that
explicitly model the variability of the distribution
along a year, F (ϵk,h,d) is estimated using the histori-
cal errors of the last 60 days.

• To explicitly model the variability of the distribution
with the time step and time of the day, F (ϵk,h,d) is
estimated using past errors of the deterministic fore-
casts made for the same time step k and time of the
day h. Particularly, F (ϵk,h,d) is estimated using the
historical errors ϵ̄k,h,d−1, ϵ̄k,h,d−2, . . . , ϵ̄k,h,d−n.

4.2.3. Scenario generation

To generate scenarios, we consider the marginal dis-
tributions estimated in the previous step, a Gaussian
copula function [70], and Sklar’s Theorem [71, 72]. In
detail, let us define an N -dimensional random variable
X = [X1, . . . , XN ]⊤, its associated marginal distributions
by F1(X1), . . . , FN (XN ), and the multivariate cumulative
distribution by F (X1, . . . , XN ). If the marginals are con-
tinuous, Sklar’s theorem states that there is a copula func-
tion C : [0, 1]N → [0, 1] such that:

F (X1, . . . , XN ) = C
(
F1(X1), . . . , FN (XN )

)
. (10)

In other words, assuming that the copula function is
known, the multivariate cumulative distribution can be
easily obtained if the marginal distributions are known.
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Using this theorem, to generate scenarios, we employ
one of the copulas functions that requires fewer computa-
tional time: the Gaussian copula. This selection is done
for three reasons: i) the method to generate scenarios
should be fast for real time implementation; ii) empiri-
cally, we observed the Gaussian copula to be a good fit
for the disturbances considered, i.e. ambient temperature
and irradiance; iii) the Gaussian copula is a well estab-
lished method that has been used to generate scenarios
for different energy-based applications [70, 73].

For the sake of simplicity, we refer to [70] for details on
the estimation of the Gaussian copula. Here, we simply
outline the main idea of the method, which relies on two
random variables transformations:

1. Given a marginal distribution Fi(Xi) of a random
variable Xi, we can define a new random variable
Yi = Fi(Xi). Due to the properties of Fi(Xi), it can
be easily shown that Yi ∼ U [0, 1], i.e. the new random
variable follows an uniform distribution.

2. Given a random variable Yi ∼ U [0, 1], we can obtain
a random variable Zi = Φ(Yi) ∼ N (0, 1) that is nor-
mally distributed, where Φ is the probit function.

Then, to generate M scenarios of X at time step k, i.e.
{x̄j

k = [x̄j
k,1, . . . , x̄

j
k,N ]⊤}Mj=1, the method consist of 5 steps:

1. Consider historical realizations xk−1, . . . ,xk−n of X.

2. Use the marginal distributions F1(X1), . . . , FN (XN )
to map each historical sample xi = [xi,1, . . . , xi,N ]⊤

to a transformed sample zi = [zi,1, . . . , zi,N ]⊤, where
Zi,j ∼ N (0, 1).

3. Compute the covariance matrix Σ of the historical
transformed samples zk−1, . . . , zk−n.

4. Draw M samples z̄1, . . . , z̄M from the normal distri-
bution N (0,Σ).

5. Use the inverse of the two transformations applied in
the previous steps to map the samples z̄1, . . . , z̄M to
a set of samples x̄1, . . . , x̄M .

The samples x̄1, . . . , x̄M represent the M required
scenarios {x̄j

k = [x̄j
k,1, . . . , x̄

j
k,N ]⊤}Mj=1. In partic-

ular, they follow the original marginal distributions
F1(X1), . . . , FN (XN ) and they model the inter-correlation
in X = [X1, . . . , XN ]⊤.

As it was done for the marginal distributions, the Gaus-
sian copula method is modified in order to model non-
stationary distributions. In particular, defining Xk,h,d as
the random variable representing the value of X at time
h of day d and predicted with a time step k, the proposed
approach estimates the copula function with the two fol-
lowing modifications:

• To have non-stationary distributions that explicitly
model the variability of the distribution along a year,
the copula function is estimated using the historical
data of the last 60 days.
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Figure 2: 10 temperature scenarios obtained with the method
presented in Section 4. A time step corresponds one hour. The
actual measured value of the temperature is shown in black
color.
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Figure 3: 10 solar irradiance scenarios obtained with the
method presented in Section 4. A time step corresponds one
hour. The actual measured value of the temperature is shown
in black color.

• To explicitly model the variability of the distribution
with the time step and time of the day, the copulas are
estimated using marginal distributions F (ϵk,h,d) that
explicitly model the distribution of X as a function of
the time step ahead k, time of the day h, and day of
the year d.

We show 10 temperature scenarios and 10 solar irradi-
ance scenarios in Figures 2 and 3, respectively.

To evaluate the marginal distributions, we compute
their 90% and 80% coverage. That is, we compute the
percentage of historical elements that do indeed fall in the
interval [5%, 95%] and [10%, 90%]. As can be seen from
Table 1, the coverage of the distributions is acceptable.
As could be expected, the distribution of the irradiance is
more far off, but overall the coverage is within expected
errors.

Remark 8. Let us explain here how we capture the cor-
relation between the different variables. Since we generate
scenarios using copula functions and given a set of individ-
ual variables with their marginal distribution, we can use a
copula function to represent the full distribution of all the
variables. For that, we use the individual marginal distri-
butions and some map/inference process. The individual
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variables can be either the same variable at different time
points, e.g. the temperature at different hours, or different
variables altogether. From the perspective of the method
it does not make any difference. In both cases we con-
sider the marginal distributions of the individual variables
(something that we can compute with historical data), and
we map them to a copula function that captures the full
distribution of the variables (including correlation).

Coverage
90% 80%

Temperature 95.59% 84.71%
Irradiance 85.56% 75.85%

Table 1: Coverage of the temperature and irradiance scenarios

4.2.4. Properties

As a final remark, we outline how the proposed method
satisfies each of the required properties mentioned in Sec-
tion 1.1.2:

1. As the distribution of the disturbances are modeled
with non-parametric quantile functions, the generated
scenarios are not restricted to the standard assump-
tion of Gaussian forecasting errors.

2. Since the scenarios are generated using a copula func-
tion, the multivariate distribution is explicitly consid-
ered and the scenarios include the time correlations.

3. As the marginal distributions are estimated for each
hour of the day, time of the year, and time-step, the
resulting multivariate distribution is non-stationary
and captures all time dependencies.

4. As the point forecast considers external factors, the
method is not limited to historical data of the variable
of interest.

5. Since the Gaussian copula and the empirical quantile
methods have low computational costs, the method is
especially suitable for online optimization.

Remark 9. In this section, we presented the properties
that scenario generation methods should have and we adopt
the method presented in Section 4.2.3, qualitatively com-
paring it against other scenario generation methods used
in the literature for SBMPC. However, a comparative and
quantitative study comprehending several scenario gener-
ation methods aimed at investigating which one provides
the best control performance is out of scope for this work
and is left as a suggestion for future work in Section 6.

5. Case study

We present in this section the simulation results in which
we compare 5 different controllers:

Parameter Value Definition

Q
heat

max [W] 500000 Maximum heating power

Q
cool

max [W] 300000 Maximum cooling power

ηcool 2.5 Cooling efficiency

ηgas 0.9 Heating efficiency

cgas [e/kWh] 0.041 Gas cost

cele [e/kWh] 0.15 Electricity cost

Table 2: Parameters of the building considered in Section 5

• PIMPC: perfect-information MPC, obtained using
the values of the measurements of the disturbances
as if they were known in advance. It is of course not
possible to have the real values of the actual mea-
surements beforehand in practice, but this controller
can be used as a benchmark for the ideal theoretical
achievable performance.

• DetMPC-Mod: deterministic MPC controller pre-
sented in Section 3.1 together with the nonlinear Mod-
elica model.

• SBMPC-Mod: SBMPC controller presented in Sec-
tion 3.2 together with the nonlinear Modelica model.

• DetMPC-Lin: deterministic MPC controller together
with the linearized model presented in Section 2.5.

• SBMPC-Lin: SBMPC controller together with the
linearized model.

First, the simulation setup is discussed, then the results
and the discussions are presented.

5.1. Setup

The closed-loop control is applied as explained in Sec-
tion 2.4, i.e. the MPC problem is solved and the first input
is applied to the system. Then, for all the controllers, the
evolution of the real building between sampling times is
simulated through Modelica.

We perform simulations for one month in the winter
season with 1h sampling time, i.e. we solve 24 · 30 = 720
optimization problems for each controller. The prediction
horizon is Np = 24, i.e. corresponding to one day. We
consider an office building in Brussels, Belgium, with 7
floors and a total surface of 10000 m2. A nonlinear model
of the building is estimated using Modelica based on the
considerations of Section 2.1 and using data from the real
building. In addition, a linear counterpart is also esti-
mated using regular linear least squares as explained in
Section 2.5. The heating system consists of 2 gas boilers
of 500 kW each and one chiller of 500 kW. We consider
thermal comfort bounds that change throughout time, i.e.
the lower and upper comfort bounds are set respectively to
21.5◦C and 24◦C during occupation hours and 18◦C and
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α = 50 α = 100 α = 200 α = 500
PIMPC 8104 9009 10573 14676

DetMPC-Lin 11770 17773 29722 65616
DetMPC-Mod 10462 12236 15308 23961

SBMPC-Mod-10 8994 10590 14032 20603
SBMPC-Mod-20 9909 10767 13778 21247
SBMPC-Mod-30 9417 11088 13204 21466
SBMPC-Mod-40 10517 11950 14014 20888
SBMPC-Lin-10 8519 15856 19203 48135
SBMPC-Lin-20 8810 13556 22498 51368
SBMPC-Lin-30 11477 11485 23472 49714
SBMPC-Lin-40 8485 12957 30431 33807

Table 3: Total closed-loop costs for all the controllers considered in the case study.

α = 50 α = 100 α = 200 α = 500
PIMPC 80.9% | 19.1% 74.8% | 25.2% 65.7% | 35.3% 49.8% | 50.2%

DetMPC-Lin 31.0% | 69.0% 20.0% | 80.0% 11.7% | 88.3% 05.2% | 94.8%
DetMPC-Mod 66.0% | 34.0% 58.1% | 41.9% 47.6% | 52.4% 31.1% | 68.9%

SBMPC-Mod-10 72.1% | 27.9% 66.0% | 34.0% 51.3% | 48.7% 35.5% | 64.5%
SBMPC-Mod-20 70.2% | 29.8% 66.1% | 33.9% 52.4% | 47.6% 34.5% | 65.5%
SBMPC-Mod-30 71.2% | 28.8% 62.7% | 37.3% 53.9% | 46.1% 34.7% | 65.3%
SBMPC-Mod-40 66.5% | 33.5% 59.9% | 40.1% 51.4% | 48.6% 36.6% | 63.4%
SBMPC-Lin-10 36.4% | 63.6% 22.3% | 77.7% 15.2% | 84.8% 06.8% | 93.2%
SBMPC-Lin-20 36.1% | 63.9% 23.6% | 76.4% 14.0% | 86.0% 06.6% | 93.4%
SBMPC-Lin-30 31.9% | 68.1% 26.0% | 74.0% 13.9% | 86.1% 06.7% | 93.3%
SBMPC-Lin-40 31.4% | 68.6% 23.7% | 76.3% 10.6% | 89.4% 08.3% | 91.7%

Table 4: Contribution of the subcosts Je and αJd to the total closed-loop for all the controllers considered in the case study. The
first number represents the percentage of the energy cost Je in the total cost, while the second number represents the percentage
of the discomfort cost multiplied by α, i.e. αJd. This table is also depicted as a stacked bar plot in Figure 4.

26◦C during the non-occupation hours, as shown in Figure
5. Furthermore, the building occupancy profile follows the
temperature comfort bounds, i.e. the occupancy is set to
1 when the comfort bounds are tight and 0 when they are
loose. The solver and software tools used to solve the op-
timization problem are as explained in Section 2.4. Lastly,
the parameters of the building presented in Section 3 are
shown in Table 2.

For what concerns the SBMPC controllers, we choose 4
different number of scenarios: 10, 20, 30, and 40. More-
over, we perform the same simulations varying the pa-
rameter α in Section 3, choosing the values in the set
{50, 100, 200, 500}; recall that a higher α means a higher
focus on the comfort of the occupants rather than on the
economical cost. We indicate respectively by SBMPC-
Mod-ns and by SBMPC-Lin-ns, ns ∈ {10, 20, 30, 40},
the SBMPC controller with the Modelica model and the
SBMPC controller with the linear model, considering ns

scenarios.

5.2. Results and discussion

We focus our attention on four different aspects:

1. an analysis for the performance of the controller with
different values of α.

2. A comparison between the nonlinear Modelica model
and the linear model.

3. A comparison between SBMPC strategies and
DetMPC strategies.

4. A comparison between the SBMPC strategies with
different numbers of scenarios.

Lastly, we pick a single representative optimization result
and discuss it in more detail.

We show the results of the simulations in Figures 4, 6–9
and Tables 3–5. In Table 3, we show the total closed-loop
costs for each strategy and each different α. In Table 4, we
show the percentage of each subcost with respect to the
total closed-loop cost for each strategy and each different
α, i.e. we show Je

Je+αJd
and αJd

Je+αJd
. In Table 5 we show the

total amount of discomfort using the unit measure K · h,
as standard in the literature [13, 15, 17, 25], i.e. we show
the integral of the comfort bounds violation. Figure 4
reports the results presented in Table 4 in a graphic way;
the same holds for Figure 6 and Table 5. Lastly, Figures 7–
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α = 50 α = 100 α = 200 α = 500
PIMPC 49.2 36.7 29.6 25.4

DetMPC-Lin 156.8 146.4 140.5 137.2
DetMPC-Mod 93.3 74.9 62.7 53.7

SBMPC-Mod-10 69.0 58.0 51.6 41.9
SBMPC-Mod-20 79.7 53.2 49.4 43.5
SBMPC-Mod-30 71.7 60.8 50.0 42.4
SBMPC-Mod-40 90.8 67.2 50.6 41.7
SBMPC-Lin-10 115.6 129.9 90.9 105.9
SBMPC-Lin-20 100.8 114.7 103.3 112.9
SBMPC-Lin-30 147.7 98.8 115.3 111.6
SBMPC-Lin-40 124.2 105.2 113.7 83.4

Table 5: Total amount of discomfort measured in Kh.

9 show respectively the temperature evolution, the heating
power, and the temperature and irradiance profiles for the
representative simulation.

5.2.1. Performance with different values of α

In this section, we analyze how the different values of
α alters the performance of the controllers in terms of en-
ergy cost and discomfort. This analysis should always be
carried out when considering a case study as the one pre-
sented here, in order to understand which is the range of
values for α that provide the best trade-off between com-
fort and energy cost reduction.

From Tables 3-5 we can notice that the larger the α, the
larger, in general, the total costs and the lower the discom-
fort. This is as expected, since the role of α is to penalize
the discomfort and a larger value means that we aim for
a lower discomfort. We have noticed through simulations
that, for this specific case study, a value of α lower than
50 yields a very high and unacceptable discomfort cost,
while for values larger than 500, the energy costs increase
highly without yielding a high reduction in the discomfort
costs. Therefore, we focus our analysis on α in the range
[50, 500].

We can observe that for α = 50 the discomfort cost is
high and that the comfort could be improved by increasing
α. For α ≥ 100, the discomfort reaches more acceptable
levels and this happens by consuming a larger quantity
of energy in heating and thus increasing the total costs.
However, the small decrease in the discomfort between the
case α = 500 and α ∈ {100, 200} does not seem to justify
the large increase in the total cost observed for α = 500.
Therefore, we can claim that, for this case study, the op-
timal values for α are in the range [100, 200]. Note also
that from Figure 4 and Table 4 we can notice how the two
costs, i.e. energy and comfort, compose the total cost. As
α increases, we notice an increase in the αJd cost with
respect to the Je, as a higher α penalizes more even the
small deviations from the comfort bounds. Therefore, we
should not wrongly conclude that less energy is consumed

for higher values of α, but rather that small deviations are
penalized more.

5.2.2. Comparison between the nonlinear Modelica model
and the linear model

Recalling Remarks 4-5, we present here a comparison
between the controllers that use the Modelica model with
respect to the ones that use the linear model. While using
the Modelica model in the closed-loop for computing the
evolution of the system results in a bias towards the non-
linear controllers, it is nevertheless of interest analyzing
how good the linear controllers are compared to the ones
using the Modelica model.

From Table 3, we can see that all the controllers that use
Modelica perform better than their linear counterparts for
all the values of α ≥ 100. For α = 50, instead, the linear
model yields a lower total cost than the one of Modelica in
3 out of 5 cases. Nevertheless, the linear model might seem
to work better, i.e. to have a lower total cost, for a lower
value of α because it always allows a large discomfort cost
and it cannot manage well to keep the temperature within
or close to the comfort bounds. The total cost can there-
fore be lower than for the Modelica-based controllers, but
this occurs because the energy cost is low and the discom-
fort cost, although high, does not have a large impact on
the total cost for a small α. This also explains why for a
large α, i.e. for α ≥ 100, the total cost of the linear model
controllers can become much higher than the one of the
controllers that use Modelica. Indeed, the discomfort cost
is always high, but the larger penalization, i.e. the larger
α, makes the total cost much higher. This fact can also be
observed from Table 5, where we observe a much higher
discomfort for all the controllers with the linear models.
The same conclusions can be drawn by analyzing Figure
6, which displays the results of Table 5. Moreover, from
Figure 4 we can notice how for all the values of α the
controllers that use the linear model have a much higher
comfort cost component than an energy cost component.
The linear model does not employ more energy to reduce
the comfort, which in turn results in high comfort viola-
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Figure 4: Contribution of the subcosts Je and Jd to the total closed-loop for all the controllers considered in the case study, for
each different controller and value of α. The data used for this plot is shown in Table 4.

tions. This concept will be discussed also in Section 5.2.5.
We can therefore conclude that, independently of the bias
mentioned in Remark 4, the linear model in this case fails
to provide satisfactory performance in terms of comfort for
the occupants of the building.

5.2.3. Comparison between SBMPC strategies and
DetMPC strategies

By checking again Table 3 we can compare the SBMPC
strategies to the DetMPC ones. It can be noted from
the table that, for all the values of α, the SBMPC con-

trollers perform almost always better than their determin-
istic counterpart, both for the linear and the nonlinear
Modelica model. Note that the reduction, although not
very large, is still consistent and it ranges from a minimum
of 1.98% to a maximum of 14.03% for the controllers that
use the Modelica model. Furthermore, by checking Table
5 and Figure 6, we can notice that the SBMPC strategies
perform better than the DetMPC ones also in terms of
comfort. Therefore, the SBMPC controllers can improve
the overall performance, both in terms of total costs and
discomfort, with respect to their DetMPC counterparts.
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5.2.4. Comparison between the SBMPC strategies with dif-
ferent number of scenarios

By analyzing the results of Table 3, there does not seem
to be a value for the number of scenarios that outperforms
the other values, i.e. the performance does not seem to
increase by increasing the number of scenarios. In 2 out
of 4 columns of Table 3, the SBMPC-Mod-20 achieves the
best performance among the SBMPC-Mod controllers and
in the other two cases, a number of scenarios equal to
respectively 10 and 40 appear to be better than the other
values. Therefore, increasing the number of scenarios does
not seem to directly lead to a decrease in the total cost.
This could be related to the fact that, while increasing
the number of scenarios makes the system more robust
to disturbances, it also makes the problem more complex
to solve. Therefore, it might happen that, the larger the
number of scenarios, more local minima exists, and the
more likely it is that the solver converges to a suboptimal
local minimum. Note that this issue does not affect the
controllers with the linear model, as the problem solved
in that case is a quadratic programming one; thus it is
convex, and does not suffer from local minima issues.
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5.2.5. Representative simulation

In this section, we present a representative simulation,
i.e. one week of simulation of the building, by showing
the temperature evolution, heating power, and external
disturbances for a specific value of α and of the number
of scenarios. While the analysis of the results shown in
this section are related to a specific case, the results can
be generalized and the analysis of a case with a different
α would be similar to what is here presented.

We compare three different control strategies here,
namely SBMPC-Mod, SBMPC-Lin and PIMPC. We show
in Figure 7 the temperature evolution inside the room, in
Figure 8 the heating power, and in Figure 9 the tempera-
ture and irradiance profile, for one week of simulation with
20 scenarios and α = 100. For Figure 7, we also show the
lower comfort bounds.

By analyzing the Figures 7–8, we can note that the
PIMPC manages to keep the temperature within the com-
fort bounds by using properly the heating power, thanks
to the knowledge of the actual values of the future dis-
turbances. For what concerns SBMPC-Mod and SBMPC-
Lin, we can notice in Figure 7 what we have already under-
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1 week of a representative simulation with α = 100 and 20
scenarios for the SBMPC controllers.

lined in Section 5.2.2, i.e. the fact that a controller that
uses a linear model is not able to keep the temperature
within the comfort bounds. We see indeed that, for most
of the time, SBMPC-Lin yields the temperature profile
that has the lowest value. This can also be observed from
Figure 8, where we can notice that SBMPC-Lin heats less
than SBMPC-Mod and it also starts heating later. On
the other hand, SBMPC-Mod is able to maintain a larger
temperature in the room and to be closer to the temper-
ature comfort bounds. It uses more heating power, as
can be seen from Figure 8, which leads to a higher energy
cost compared to SBMPC-Lin, but also leads to an overall
lower total cost and higher comfort from the user, as can
be observed from Tables 3–5.

In the first two days of simulation, which correspond
to the weekend days, the heating power is turned off due
to the low comfort bounds and to the prediction horizon
of 24 h. However, it is possible to observe an increase in
the room temperature, both for the day 16/12/2017 and
17/12/2017; for the latter, the rise in the temperature is
even steeper. This can be explained by looking at Figure
9, where we can observe that the day 17/02/2017 was a
particularly sunny day. Hence, the steep increase in the
temperature is due to large value of the solar irradiance
in that particular day. This shows how important the in-
fluence of the external disturbances on the building can
be, which once again underlines the importance of having
good forecasts and it corroborates our choice of a scenario-
based approach.

Note also that, while a longer prediction horizon could
have been more beneficial and could have led to a higher
performance of the controllers, we chose to focus our anal-

ysis on a horizon of 24 h as it provides a good trade-off be-
tween performance and computation time of all the simula-
tions. The analysis performed here is still valid even when
considering other prediction horizons. Moreover, carrying
out a study on which prediction horizon is more benefi-
cial for the considered building is beyond the scope of this
paper.

5.3. Summary

We can summarize the observations obtained from the
results of the simulations:

• too low values of α, i.e. α < 100, yield a high dis-
comfort and too high values of α, i.e. α ≥ 500 yield
a very large total cost without leading to a large im-
provement of the comfort. A trade-off between the
two costs seems to be well achieved by a value of α
between these two extrema, i.e. α ∈ [100, 200]. More-
over, tuning the parameter α is of great importance
in order not to obtain a very large discomfort for the
occupants of the building.

• For all the values of α, the linear model shows a very
large value of discomfort. In general, the linear model
fails to capture many model dynamics, by heating
much less and thus leading to temperatures that are
well outside the comfort bounds.

• SBMPC can improve the performance with respect to
DetMPC strategies, for both the linear and the Mod-
elica models. This is due to the fact that SBMPC
strategies consider different external disturbances sce-
narios and they have a large impact on the tempera-
ture evolution of the room.

• Increasing the number of scenarios does not seem to
lead to a large decrease in the cost. This can be re-
lated to the fact that increasing the number of sce-
narios also increases the optimization complexity.

Remark 10. Note that all the simulations performed in
this work refer to a single, specific building. However, the
controller designed can be applied to any building, as long
as the model is adapted to the specific building under con-
trol. For instance, a similar controller, using a Modelica
model and a deterministic MPC algorithm, has been ap-
plied to a different building with successful results in [13].
Moreover, the scenario generation method presented here
can also be applied to several disturbances that affect build-
ings. Therefore, while the results presented in this section
refer to a single building, the method can be applied to any
building. The results presented in Tables 3–5 will change
if another building is considered, but we expect in any case
similar results when applying the presented method to other
buildings.
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6. Conclusions

We have presented a stochastic SBMPC controller using
a Modelica nonlinear model that can be applied to build-
ing heating in buildings and that overcomes the limitations
of both deterministic and linear MPC approaches. The
building under control is affected by several external dis-
turbances, e.g. outside temperature, solar irradiance, and
we have proposed a new approach for generating distur-
bance scenarios that, unlike the existing methods from the
literature, satisfies all the important properties of scenario
generation methods for time series data. This proposed
scenario generation method can be used in the SBMPC
controllers.

To analyze and study the control approach, we con-
sidered a real building and performed several simulations
to compare the controller that uses the linearized model
against the controller that uses the Modelica model, dif-
ferent cost weights in the MPC cost function, determinis-
tic MPC against SBMPC, and lastly different number of
scenarios. Based on the results, we showed that SBMPC
controllers outperform the deterministic MPC controllers
both with and without the Modelica model. At the same
time, the linear model has shown not to be able to capture
many model dynamics and this leads to poor performance,
justifying the usage of more advanced models, e.g. Model-
ica ones.

As future work, we will develop a model with e.g. En-
ergyPlus to be used in the closed-loop simulations to im-
prove the comparison performed between the linear and
nonlinear model in Section 5. After such step, we will
also perform experiments in the real building. Moreover,
a quantitative study on different scenario generation meth-
ods can be considered, in order to assess how the perfor-
mance of the controller varies with the different scenario
generation methods, as well as other stochastic MPC al-
gorithms. Furthermore, a thorough comparison could be
performed between our proposed method and other ones
present in the literature of building heating systems, e.g.
H∞, fuzzy control, rule-based control. On top of that, a
distributed or decentralized MPC controller can be devel-
oped to control independently each room, which might be
more beneficial for very large buildings compared to con-
trolling all the rooms with a single centralized controller.
Lastly, it is known that occupancy can largely affect the
energy performance of buildings. Occupancy data was not
available in this study, but we suggest to carry out a char-
acterization study of such disturbance, so that occupancy
scenarios can be generated and the overall performance of
the proposed SBMPC controllers can be further assessed.
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