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Influence of Hydrogen on Grid Investments for Smart
Microgrids

Emiel Aurelius Bartels, Tomas Pippia, and Bart De Schutter

Abstract

Electrification of the heat network in buildings together with a rise in pop-
ularity of Electric Vehicles (EVs) will result in a need to make investments
in the electrical energy infrastructure in order to prevent congestion. This
paper discusses the influence of hydrogen in future smart microgrids on
these investments. Moreover, smart control strategies, i.e., EV management
and demand response programs are used in this paper to lower the peak
of electrical energy demand resulting in the reduction of these investments.
Performances of microgrid with different levels of hydrogen penetration are
discussed. It is shown that an increase in the level of hydrogen in the micro-
grid will reduce the electric grid investments costs but is not economically
more beneficial than using ‘green’ gas due to the higher total economic costs.

Keywords: Demand response, Electric vehicles, Hydrogen, Microgrid,
Model predictive control

1. Introduction

1.1. Literature background

In 2015, 195 governments signed an agreement for a long-term goal of
keeping the increase of the global average temperature this century below
two degrees and aiming for an increase of a maximum of one and a half de-
grees, the Paris agreement [1]. To prevent exceeding this maximum of two
degrees increase of the global average temperature, scientists have deter-
mined that human society needs to reduce the amount of electricity produced
by burning fossil fuels from 70% in 2010 to 20% in 2050 [2]. Therefore, more
energy needs to be produced by renewable energy sources, because they have
no emission of greenhouse gases. However, due to the intermittent nature of
these renewable energy resources, there is a rise of complexity for the energy
management [3] and a need for more flexibility in the energy grid [4].

The implementation of microgrids seems to be a possible solution to
increase the integration of these renewable energy resources in the energy
grid due to their ability to reduce peak demand and energy costs [5]. Mi-
crogrids consist of interconnected loads, distributed energy resources, and
energy storage systems. These microgrids can be seen as a miniature version
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of the larger utility grid that can exchange energy with the utility grid [6].
Microgrids can provide many benefits, including improved reliability, power
quality, and reduced distribution losses are realised [7, 8].

Furthermore, changes are happening in the transportation sector as well
to reduce the emission of greenhouse gases by replacing internal combus-
tion engine vehicles with Electric Vehicles (EVs). The increased use of EVs
has a strong effect on the demand of energy in the microgrid due to their
relatively high consumption of energy [8]. This increase in energy demand
in the microgrid results in the need for economic investments in the infras-
tructure of the microgrid since during peak consumption hours the current
infrastructure will not be able to cope with the rising energy demand [9].
Therefore, in future microgrids, the focus for economic profit should be on
the peak of electrical energy transfer between the microgrid and utility grid.

The impact of the increasing energy demand by the addition of EVs in
the microgrid can be reduced by using smart charging strategies where the
EVs can be charged when there is an abundance, or less shortage, of energy
in the microgrid. Moreover, EVs can contribute to mitigate the problem
of energy distribution in the microgrid by using them as a power plant or
energy storage system to provide energy at times of high energy demand
in the microgrid [8, 10, 11, 12]. Another strategy is the use of Demand
Response (DR) programs where the consumption pattern of the consumers
in the microgrid is altered [13, 14]. Instead of changing the energy supply
one changes the demand within the microgrid to satisfy the balance of energy
supply and consumption. The use of DR programs has proven to generate
more flexibility in the grid and to reduce the electrical energy peak transfer
[7, 15].

At the same time, a new source of energy is emerging in both the energy
and transportation sector, namely hydrogen [16, 17]. The popularity of hy-
drogen is expected to increase in the next years due to its storage capabilities
and cheap transport of energy. Furthermore, it can be produced without the
emission of greenhouse gases [18]. Hydrogen offers a great solution to the
distribution of generated renewable energy, e.g., when energy is generated
on offshore wind farms and has to be transported to the consumers onshore.
Fuel cell EVs are emerging due to some beneficial specifications compared
to the nowadays more used battery EVs, e.g., larger range and faster re-
fuelling [16, 19, 20]. The introduction of hydrogen in the microgrid can
alter the behaviour of the microgrid, altering the peak of electrical energy
transfer between the microgrid and utility grid. In this paper, future mi-
crogrids are considered based on the year 2050 in the Netherlands where it
is assumed that hydrogen has widely emerged in the energy infrastructure.
Different levels of penetration of hydrogen in the microgrid are compared to
investigate the effect on required electrical grid investments.

The microgrids considered in this paper will be controlled with the Model
Predictive Control (MPC) framework, which has proven to provide good
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performance for the energy management of a microgrid [10, 21, 22, 23, 24,
25, 26]. Furthermore, a Mixed Logical Dynamical (MLD) framework [27] is
used to describe the dynamics of the model of the microgrid, resulting in a
mixed-integer linear programming problem.

1.2. Contributions

The contribution of this paper is twofold. First, a realistic future residen-
tial hydrogen-based energy infrastructure and advanced forecasting models
for the stochastic processes are constructed. It is showed how different
components of the microgrid can cooperate with each other to manage the
energy flow and supply different sources of energy within a future microgrid.
Secondly, this paper aims to provide a primary indication of the difference
in the economic costs and reduction of the peak of electrical energy transfer
of the microgrid when hydrogen is introduced. The influence of hydrogen in
a microgrid is simulated and discussed. In this paper, new research topics
are included, such as:

• Including and evaluating different levels of hydrogen penetration in a
microgrid.

• Making a comparison between performance in the microgrid including
both battery and fuel cell EVs.

• Modelling energy flow in a future-based fully renewable microgrid.

To the best of the authors’ knowledge this paper is the first to indicate the
performance difference while injecting hydrogen in a microgrid containing
both battery and fuel cell EVs. With this paper, the foundation is set to
build upon to investigate what the differences are when injecting hydrogen
to a microgrid and how we can use this to mitigate energy management
problems in an urban microgrid.

1.3. Outline

The remainder of this paper is organised as follows. In Section 2 the
key features of the microgrid and its model are presented. In Section 3,
the different forecasting models that are used to forecast the stochastic pro-
cesses in the microgrid are discussed. In Section 4, the control objective
and the MPC framework are presented. Scenarios with different levels of
hydrogen penetration are compared and discussed. Some final conclusions
and suggestions for future work are given in Section 6.

2. Microgrid modelling

In this section, we describe the key features of the microgrid, which com-
prises discrete-time dynamics of the distributed energy resources and energy
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flows. We remark that a constant ratio between energy and power per time
step is assumed due to the constant sampling time ∆T = T (k + 1)− T (k).
A future microgrid is constructed based on predictions in the Dutch energy
infrastructure in 2050 [28]. In this future microgrid, a level of penetra-
tion of hydrogen can be considered, resulting in a relatively vast share of
hydrogen-based components in the microgrid. Therefore, an electrolyser
with hydrogen storage tank and fuel cell EVs are assumed to be present as
seen in Figure 1. Since there will be a scenario considered without hydro-
gen in the microgrid, as will be explained in Section 5, ’green’ gas can flow
through the gas infrastructure instead of hydrogen as well. Furthermore,
a microgrid with residential and small commercial consumers is considered
with a high usage of Photovoltaic (PV) panels. The remainder of this sec-
tion will elaborate on the working principle, models, and energy balances in
this microgrid.
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Based CHP
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Figure 1: Visualisation of the scenarios considered in the case studies, with Electric Ve-
hicles (EVs), Photovoltaic (PV) power, Heat Pumps (HP), and micro-Combined Heat
and Power (µ-CHPs) plants. The white boxes are included in each scenario. The electric
scenario is constructed by adding the red and green parts, the mixed scenario by adding
the blue part and green parts, and the hydrogen scenario by only including the blue part.

2.1. Components in the microgrid

For the different components in the microgrid, the working principle and
the models of the different components in the microgrid are described.
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2.1.1. Battery

The battery serves as energy storage system where energy can be tem-
porarily stored or consumed from to compensate for the discrepancies in the
supply and demand of energy in the microgrid. The dynamics that describe
the stored energy in a battery xbat at the next time step k + 1 depend on
the mode the battery is in, i.e., charging or discharging mode. A binary
variable is introduced such that δbat(k) = 1 if the battery is charging and
δbat(k) = 0 if the battery is discharging at time step k. It is necessary to
model the battery using this binary variable due to the difference in charging
and discharging efficiency. Therefore, the dynamics of the battery are being
described as:

xbat(k + 1) =

®
xbat(k) + ηcubat(k), if δbat(k) = 1
xbat(k) +

1
ηd
ubat(k), if δbat(k) = 0

,

where ubat is the exchanged electrical energy, ηc the charging efficiency, and
ηd the discharging efficiency. The state of the battery and the electrical
energy exchanged to or from the battery cannot exceed their minimal and
maximal bounds. Therefore, the constraints xbat ≤ xbat(k) ≤ xbat and
ubat ≤ ubat(k) ≤ ubat apply. Moreover, an extra constraint on the energy
transfer is set to distinguish whether energy is coming in or leaving the bat-
tery, i.e., whether the battery is in charging or discharging mode. Therefore,
δbat(k) = 1 ⇐⇒ ubat(k) ≥ 0.

2.1.2. Hydrogen storage tank

Remaining hydrogen in the microgrid can be temporarily stored in the
hydrogen storage tank to be used at a later time. The amount of hydrogen
stored in the tank xhst at time step k + 1 is proposed to be modelled as

xhst(k + 1) = xhst(k) + uhst(k),

where uhst(k) is the hydrogen exchanged at time step k. Similarly to the bat-
tery case, bounds are set on the amount of stored and exchanged hydrogen,
i.e., xhst ≤ xhst(k) ≤ xhst and uhst ≤ uhst(k) ≤ uhst.

2.1.3. Electrolyser

The electrolyser converts the consumed electrical energy uelc into hy-
drogen Helc when the system is on (uelc(k) = 1). When the system is off
(uelc(k) = 0), the electrolyser will not produce any hydrogen. Therefore,
the microgrid can generate its own hydrogen when needed when there is
a redundancy of electrical energy instead of importing hydrogen from the
utility grid. The electrolyser can be written as

Helc(k) = αelcuelc(k),
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where αelc is a model parameter related to the specifications of the system
as proposed in [10]. The amount of electrical energy that is consumed is
constrained by 0 ≤ uelc(k) ≤ uelc.

2.1.4. PV Power

The power coming from the PV panels is calculated as a function of the
solar irradiance and ambient temperature following [29] as

PPV(k) = PSTC
Gc(k)

GSTC
[1 + α (Tc(k)− TSTC)] , with

Tc(k) = Tamb(k) + (TNOCT − 20)
Gc(k)

800
.

(1)

The nominal power PSTC, the global irradiance GSTC, and the cell tem-
perature TSTC are determined under standard test conditions of (1000W/m2, 25◦C).
The air mass coefficient that is commonly used to characterise the perfor-
mance of solar cells under the standardised conditions (PSTC) is assumed to
be AM1.5. This is almost universal when characterising terrestrial PV pan-
els [30]. Furthermore, α is the negative power temperature coefficient, and
TNOCT the nominal operating cell temperature. These values are commonly
given by the manufacturers of the PV panels. The global irradiance Gc(k)
and ambient temperature Tamb(k) at time step k are estimated to calculate
the cell temperature Tc(k) and generated PV power PPV(k).

2.1.5. Hybrid Heat Pump

The hybrid heat pump can produce thermal energy QHP by consuming
electrical energy uelHP or gas uthHP. When the outside temperature is high
enough, the built-in heat pump will retrieve the outside air to warm up the
house. Otherwise, gas is burned to heating the house, which is less energy
efficient. Therefore, two logic binary variables are introduced to represent
whether at time step k the hybrid heat pump is running on electrical en-
ergy

(
δelHP(k) = 1

)
, on thermal energy

(
δthHP(k) = 1

)
, or if the system is off(

δelHP(k) = δthHP(k) = 0
)
. Therefore, the hybrid heat pump is being modelled

in this paper as

QHP(k) =


ηelHPu

el
HP(k), if δelHP(k) = 1 and δthHP(k) = 0

ηthHPu
th
HP(k), if δelHP(k) = 0 and δthHP(k) = 1

0, if δelHP(k) = δthHP(k) = 0

where ηelHP is the electrical efficiency and ηthHP the efficiency of burning hy-
drogen. The maximal consumed energy is constrained by the equations
0 ≤ uelHP(k) ≤ uelHP and 0 ≤ uthHP(k) ≤ uthHP. The consumption of energy,
either electrical or gas, will be zero if that mode is off, i.e., δelHP(k) = 0 ⇐⇒
uelHP(k) = 0 and δthHP(k) = 0 ⇐⇒ uthHP(k) = 0. Since the hybrid heat pump
will not consume electrical energy and use the boiler at the same time, a
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constraint is added such that the logical binary variables cannot both be
equal to one at time step k, i.e., δelHP(k) + δthHP(k) ≤ 1.

2.1.6. Micro-combined heat and power plant

The micro-Combined Heat and Power (µ-CHP) plant generates electrical
PCHP energy and also saves the otherwise wasted thermal energy QCHP

during the generation by water or air heating simultaneously. Moreover,
a thermal storage unit is included where energy can be stored xCHP. The
production of energy depends on the amount of consumed gas uCHP. This
concludes to the dynamics of a µ-CHP plant being described as

PCHP(k) = ηelCHPuCHP(k)

xCHP(k + 1) = xCHP(k) + ηthCHPuCHP(k)−QCHP(k),

where ηelCHP and ηthCHP are the electrical and thermal efficiency of the plant.
The consumed energy and stored energy are bounded by 0 ≤ uCHP(k) ≤
uCHP and xCHP ≤ xCHP(k) ≤ xCHP. The minimum stored thermal energy
needs to be higher than a determined threshold xCHP > 0.

2.2. Electric vehicles

Smart EV management can be implemented in a microgrid where smart
charging or refuelling of the EV is done and the EV can be used as an energy
storage system or power plant when parked. Due to these strategies, a
microgrid can be more flexible and self-sustainable, i.e., less power exchange
with the utility grid will be needed [10, 31, 32, 33]. Moreover, the EV can
provide energy in times of large demand for energy, reducing the peak of
electrical energy demand [31]. In this study, vehicle-to-grid is chosen since a
microgrid with a large number of EVs is considered and it is assumed that
in a future scenario, such an implementation will be possible. Moreover,
this strategy can provide the most reduction in the peak of electrical energy
demand [33, 32].

2.2.1. Battery EV

The battery EV dynamics are based on the dynamics of the battery
but they include more modes since the EV can be in transportation. The
EV can be refilled with electrical energy, provide electrical energy to the
microgrid, be in transportation, or arrive after its trip. The amount of
electrical energy stored in the battery EV xBEV is based on the electrical
energy uBEV transferred and the energy costs of a trip hBEV. The model of
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the battery EV, derived from [10], can be written down as

xbev(k + 1) =



xbev(k) + ηcbevubev(k), if refilling
xbev(k), if no generation
xbev(k) +

1
ηdbev

ubev(k), if generation

xbev(k), if transportation
xbev(k)− hbev(k), if arrival

where ηcbev and ηdbev are the charging and discharging efficiencies, respec-
tively. Constraints are set on the total energy storage of the battery xbev ≤
xbev(k) ≤ xbev as well as on the transferred energy ubev ≤ ubev(k) ≤ ubev.
The value of the transferred energy is managed in a similar way as in the
battery: ubev(k) ≥ 0 ⇐⇒ refilling mode, and ubev(k) < 0 ⇐⇒ generation
mode.

2.2.2. Fuel cell EV

The fuel cell EV is modelled in a similar way as the battery EV to
estimate the amount of hydrogen xfev in the tank. However, a difference
is that the refilled energy uhydfev and trip cost hfev are expressed in amounts
of hydrogen, while in generation mode electrical energy uelfev is produced.
Furthermore, the dynamics of the battery in the battery EV are replaced
by the dynamics of a fuel cell to get the model for a fuel cell EV [10]:

xfev(k + 1) =



xfev(k) + uhydfev (k), if refilling
xfev(k), if no generation
xfev(k) if generation−
(
αfevu

el
fev(k) + βfev

)
,

xfev(k), if transportation
xfev(k)− hfev(k), if arrival

where αfev and βfev are the model parameters of the fuel cell in the EV.
These model parameters are based on the specifications of the fuel stack
in the EV as described in [34, 10]. Constraints are set on the hydrogen
storage, transferred hydrogen, and the electrical energy transferred, i.e.,
xfev ≤ xfev(k) ≤ xfev, 0 ≤ uhydfev (k) ≤ uhydfev , and 0 ≤ uelfev(k) ≤ uelfev, respec-
tively. The maximum generated electrical energy is based on the fact the
fuel cell will operate at partial load when in generation mode.

2.2.3. Trip characteristics

A stochastic part for the EV modelling is the trip pattern as well as
the fuel costs of these trips. Assumptions need to be made to model these
stochastic processes. A data set with real data on the arrival and departure
times of EVs and on charging patterns of EVs in the Netherlands from
ElaadNL [35] has been obtained. These charging sessions can be clustered
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into three groups by the method described in [36]: charge-near-home, park-
to-charge, and charge-near work. In this method, the charging sessions
are clustered based on the duration of charging and the time of the day.
Furthermore, it is shown in [36] that the arrivals are earlier in summer and
spring than in autumn and winter. Moreover, people stay out of home longer
during weekends resulting in later arrival times compared to the weekdays.
The obtained data set is clustered and only the charge-near-home data are
used to describe different arrival and departure time patterns for the EVs
in the microgrid.

The energy cost per trip is calculated based on the average number of
kilometres driven per year. It is assumed that the driving behaviour will
not change when switching from internal combustion engine vehicles to EVs,
and that the average number of kilometres driven per trip is 35.57 in the
Netherlands. From [36], it is estimated that 54.4% of the charging sessions
are charge-near-home sessions. Therefore, not all the energy for the EV will
be refilled in the microgrid, but also at work or in public charging poles
elsewhere. It is assumed that 19.35 kilometres worth of fuel is the average
energy cost per trip for the EVs in the microgrid. Since different vehicles will
have different driving patterns, a multivariate random Gaussian sampling
with a mean of 1 and standard deviation of 0.5 is used to obtain different
trip costs for different EVs.

2.3. Demand response

Direct load control is implemented in the microgrid as a DR program
since it can provide good performance in lowering the peak of electrical en-
ergy transfer and is suitable for the low-consumption consumers considered
in the microgrid. It is assumed that only residential consumers are willing
to participate in the DR program.

2.3.1. Curtailable load

Curtailable load Dc can temporarily be lowered or switched off. The
decision variable βc(k) with 0 ≤ βc(k) ≤ 1 expresses the percentage of pre-
ferred power level to be curtailed at time step k. Thus, if no curtailment
is allowed, βc(k) = 0 at time step k [22]. Only the thermal energy is con-
sidered to be applicable for curtailment against some discomfort costs, i.e.,
the temperature in the building becomes lower than preferred (or higher
in hot climates). Note that only a fraction of the thermal energy demand
will be considered to be available for curtailment. The curtailed load Qc is
expressed by

Qc(k) = βc(k)Dc(k).

2.3.2. Reschedulable load

Reschedulable loads Dr can be shifted in time, but in contrast to the cur-
tailable loads, there corresponding energy demand has to be consumed be-
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fore a certain time. These loads are divided into two different subcategories:
uninterruptible and interruptible loads. In this paper, only uninterrupt-
ible loads are considered since no data of large consumption interruptible
household devices were available. However, the smart charging of EVs due
to the implementation of the EV management strategies can be considered
as an interruptible load in the microgrid. The approach for interruptible
load is similar to that of uninterruptible load despite from the fact that no
constraint needs to be added to ensure the corresponding energy demand is
consumed in one go.

Both fractions of the electrical and thermal energy are considered to be
reschedulable. The only electric devices that are considered to be reschedu-
lable are dishwashers. These devices are chosen due to their regular con-
sumption pattern and their time of use. Dishwashers are used in the evening
where, in general, large peaks of electrical energy demand are visible. Simi-
lar to the curtailable load, a variable βr(k) with 0 ≤ βr(k) ≤ 1 is introduced
to indicate the percentage of preferred level to be rescheduled at time step
k. This results in the following equation of rescheduled load for electrical
and thermal demand:

Pr(k) = βel
r (k)D

el
r (k)

Qr(k) = βth
r (k)Dth

r (k)
,

where Pr andQr are the rescheduled electrical and thermal load, respectively.
The energy demands of the rescheduled loads have to be consumed at other
time steps. Since these loads are uninterruptible ones, they have to be
satisfied in consecutive time steps. The amount of energy that is consumed
at each time step is a constant denoted as Del

rc or Dth
rc for the electrical

and thermal energy, respectively. A binary variable δrc is introduced to
determine whether the rescheduled energy demand is consumed (δrc(k) = 1)
or not (δrc(k) = 0) at time step k. This leads to the following constraint on
the consumed rescheduled energy per time step:

Prc(k) = Del
rcδ

el
rc(k)

Qrc(k) = Dth
rc δ

th
rc (k)

,

where Prc(k) and Qrc(k) are the consumed electrical and thermal energy at
time step k. The following constraints assure that the energy is consumed
without interruption:

δelrc(k)− δelrc(k − 1) ≤ δelrc(τ), for τ = k + 1, . . . , k + T el
cr − 1

δthrc (k)− δthrc (k − 1) ≤ δthrc (τ), for τ = k + 1, . . . , k + T th
cr − 1

where T el
cr and T th

cr are the time needed for the unsatisfied rescheduled electri-
cal lelr and thermal energy demand lthr to be fully consumed, respectively. To
estimate how much electrical and thermal energy still needs to be consumed
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at time step k, the values are updated as follows:

lelr (k) = lelr (k − 1) + Pr(k − 1)− Prc(k)

lthr (k) = lthr (k) +Qr(k − 1)−Qrc(k)
.

The rescheduled energy demand has to be consumed before reaching a
predefined time step F . For example, a dishwasher can be rescheduled in
the evening to a later time step, but one wants that the program is done
by the coming morning. Therefore, no unsatisfied load should be present at
that time step, i.e., lelr (Fel) = 0 and lthr (Fth) = 0.

2.4. Connection to utility grid

The microgrid remains connected to the utility grid at all times. There-
fore, it is able to import or export electrical energy, hydrogen, or ‘green’ gas
at a certain price. To model the utility grid, a binary logic variable δUG

is introduced to determine whether energy uUG is bought (δUG(k) = 1) or
sold (δUG(k) = 0) to the utility grid at time step k with uUG(k) ≥ 0 ⇐⇒
δUG(k) = 1. The economic cost CUG for the microgrid, due the import and
export of energy with the utility grid, is modelled as

CUG(k) =

ß
cP(k)uUG(k), if δUG(k) = 1
cS(k)uUG(k), if δUG(k) = 0

,

where cP(k) and cS(k) are the purchase and sale price of energy at time
step k, respectively. The transferred energy is constrained by the maxi-
mum allowed energy transfer between the microgrid and the utility grid,
i.e., uUG ≤ uUG(k) ≤ uUG.

For the purchase and sale price of electricity, a time-of-use price is com-
puted. The electrical energy price varies greatly throughout the day and
shows strong weekly patterns. Therefore, an import price is computed for
every time step during the week based on the national data of the Nether-
lands. A 20% increase in this price is added due to rising electrical energy
price till the year 2050 [28]. The purchasing price of hydrogen and ‘green’
gas is fixed throughout the day based on the data of [28]. The sale price of
energy is assumed to be equal to the net import price, i.e., excluding taxes
and transportation costs.

2.5. Operational constraints

Multiple operational constraints are presented in this section.

2.5.1. Degradation

To tackle the problem of degradation for multiple components in the
microgrid, a constraint is added as introduced in [22]. A constraint is set
on the minimum time the system is turned on or off, i.e., TON and TOFF,
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respectively. In this constraint, the introduced binary logic variables are
used to define whether the system is on (δ(k) = 1) or off (δ(k) = 0). Note
that in the previous section, these modes were respectively the charging and
discharging mode of the battery and battery EV. The constraint is expressed
without resorting to any additional variable as

δ(k)− δ(k − 1) ≤ δ(τ), for τ = k + 1, . . . , k + TON − 1

δ(k − 1)− δ(k) ≤ 1− δ(τ), for τ = k + 1, . . . , k + TOFF − 1

The first line in this equation ensures the system satisfies the minimal ‘on
time’ and the second line the minimal ‘off time’. This constraint is used to
prevent fast switching between modes in the battery, electrolyser, µ−CHP,
hybrid heat pump, and both types of EVs. For the hybrid heat pumps, both
for thermal energy generated by electrical energy consumption and by gas,
the constraint is added. Moreover, for the EVs, this constraint is introduced
for both the modes refilling and generation.

2.5.2. Range anxiety

The use of EV management strategies may result in fear of the users that
the EV will not be sufficiently charged upon departure, i.e., range anxiety
[11]. In the model, it is chosen that it is not necessary that the EV should
be fully charged upon departure since this will lead to conservative results
and the exact departure time is generally not known in advance in real life.
However, the following constraint is introduced to ensure a certain state of
charge xtEV is reached when the vehicle turns into transportation mode δtEV:

xEV(k) ≥ xtEVδ
t
EV(k),

where xEV(k) is the fuel storage of the EV at time step k. Since not all trips
are known beforehand, one wants to ensure as well that enough fuel is in the
EV before the EV will be generating electricity to the microgrid. Therefore,
another constraint is added that ensures a minimal state of charge xgEV in
the EV is set before the EV can be in generation mode δgEV:

xEV(k) ≥ xgEVδ
g
EV(k),

where xgEV < xtEV.

2.5.3. Power balance

The different types of energy sources in the microgrid have to be balanced
at every time step. In the microgrid, different types of energy sources are
considered: electrical energy, thermal energy, hydrogen, and ‘green’ gas.
The power balances are given using the variables introduced in the previous
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section:
uelUG(k) + PPV(k) + PCHP(k) + uelfev(k) = Pres(k)

+ Pcom(k) + Prc(k)− Pr(k)

+ ubat(k) + ubev(k) + uelc(k) + uelHP(k)

QCHP(k) +QHP(k) = Qres(k) +Qcom(k) +Qrc(k)

−Qr(k)−Qc(k)

ugasUG(k) = ugasCHP(k) + ugasHP(k)

uhydUG(k) +Helc(k) = uhydCHP(k) + uhydHP (k) + uhydfev (k).

In the above equations, (·)el, (·)gas, and (·)hyd represent the energy that is
generated or consumed as electricity, ’green’ gas, and hydrogen, respectively.
For almost all the power balances a connection to the utility grid that can
act as an infinite buffer is present. The net imbalance of the microgrid can be
compensated by importing or exporting (only for electricity) energy from the
utility grid. The thermal power balance does not have this connection since
no thermal infrastructure is present between the microgrid and utility grid.
However, since the generation of thermal energy is more of a conversion of
other types of energy to thermal energy, the connections to the utility grid in
the other power balances act indirectly as an infinity buffer for the thermal
power balance.

3. Stochastic processes

The different stochastic processes in the microgrid, i.e., PV power, elec-
trical and thermal energy demand of residential buildings, and electrical
and thermal energy demand of commercial buildings, need to be forecast to
control the model described in the previous section.

This section comprises an overview of the different point forecasting mod-
els for each stochastic process. Real data is used based on meteorological
measurements and energy consumption patterns in the Netherlands.

3.1. Literature background

A brief description of the two forecasting models used in this paper
is presented: autoregressive moving average and long short-term memory
recurrent Artificial Neural Network (ANN). These models were chosen due
to their good performance in the literature [37, 38, 39].

3.1.1. Autoregressive moving average

The first forecasting model used in this paper is the autoregressive mov-
ing average model based on the Box-Jenkins method [40]. This model shows
reliable predictions when there exists an underlying linear correlation struc-
ture in the time series while considering the unobserved errors of previous
time steps. Furthermore, a favourable aspect of the model is its flexibility
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since it can represent multiple types of time series by using different orders
[41]. With the autoregressive moving average model, one assumes that the
data do not show any characteristics of non-stationarity [37]. When non-
stationary data are considered, a generalisation of the model can be used
by creating an autoregressive integrated moving average model. Inherent
seasonal effects of the data can be added to the model by adding seasonal-
ity to the model. Lastly, exogenous inputs with a high correlation to the
forecasting data can be added to improve the performance of the model.
A mathematical description of the difference autoregressive moving average
models is shown in [41].

3.1.2. Artificial neural network

The second forecasting model used in this paper is the ANN. An ANN
consists of multiple hidden layers making the connection from the input
to the output. Each layer is composed of one or more neurons where an
activation function in the neurons determines the nonlinear mapping char-
acteristics across the ANN [42]. This approach is widely used since it does
not require mathematical expressions, it is self-learning, easy to implement,
short online computation time is needed, and it is able to detect complex
nonlinear relations between the input and output [38]. However, drawbacks
of the model are that it needs a significant amount of historical data to be
properly trained and overfitting may occur [37].

In this paper, a long short-term memory recurrent ANN, as first intro-
duced in [43], is used. A recurrent ANN is used since it considers the tem-
poral correlation between previous information and current circumstances,
resulting in that previous decisions influence the predictions in future time
steps [44]. Due to the gradient vanishing or exploring in the training of the
ANN by using the popular back-propagation algorithm, long-range depen-
dencies are difficult to learn. This can be overcome by using long short-term
recurrent ANNs that use a memory cell to capture these long-range depen-
dencies, as mathematically shown in [43, 44].

3.2. PV power

For the PV power, two stochastic processes need to be forecast as de-
termined from (1), i.e., the solar irradiance and ambient temperature. Both
stochastic processes are forecast in similar time steps as the available train
data of one hour.

3.2.1. Solar irradiance

A clear-sky model is used since it has proven to deal with the stochastic
influence of cloud covering well [45, 46]. In the clear-sky model, the global
horizontal solar irradiance is computed as if it was a clear-sky day Gcs

c , i.e.,
without any clouds. Therefore, the stochastic component is excluded and a
clear-sky global horizontal solar irradiance can be obtained for every hour
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in the year. With these values, the clear-sky index θ can be computed as
the normalisation of the measured solar irradiance Gc(k):

θ(k) =
Gc(k)

Gcs
c (k)

.

The clear-sky model is obtained from the available data, and missing
data are computed using a statistical smoothing technique based on weighted
quantile regressions as in [45]. In general, a limiting factor of developing
clear-sky data is the absence or quality of the data [47], i.e., in the winter
there are not many clear-sky observations to train the model and this in-
creases the error of the quantile regression. This problem is partly solved
by using data of the past 20 years.

It is decided from the autocorrelation of the clear-sky index that the
prediction models will use data of one hour and 24 hours before. Different
exogenous inputs can be considered based on the geographical location [37,
48] and from the data it is concluded the highest correlation coefficients for
the solar irradiance are obtained with the temperature, presence of snow,
and humidity. With these exogenous inputs, it is concluded that an ANN
model provides the smallest root mean square error.

3.2.2. Ambient temperature

The autocorrelation is analysed and it is chosen to use the data from 1,
2, 3, 4, 5, and 24 hours before for the forecasting. It is concluded that solar
irradiance and humidity have the strongest correlation for temperature, but
are still low. Using a seasonal autoregressive integrated moving average
model provided the smallest root mean square error.

3.3. Residential energy demand

The energy demand of residential consumers is characterised by the dis-
tinctive pattern during the day, having a peak consumption in the early
evening. This peak often determines the general peak in the microgrid
where the electrical energy grid investments are based upon. In this section,
both the electrical and thermal energy demand are forecast in the sampling
time corresponding to the available data of 15 minutes and one hour, respec-
tively. Since data of only one year is available and used, the ANN did not
have enough training data to construct a proper model and autoregressive
moving average models are used.

3.3.1. Electrical energy demand

From the autocorrelation, it is chosen that for the electrical energy de-
mand, data of the previous 45 minutes and of 23:45, 24:00, and 24:15 hours
before is used. Exogenous inputs did not improve the models of the residen-
tial electrical energy demand. A seasonal autoregressive integrated moving
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average obtained the smallest root mean square error and is used in this
study.

3.3.2. Thermal energy demand

Time series data of 1, 2, 23, 24, 25 hours before is used, as concluded
from the autocorrelation. A high correlation coefficient between the thermal
energy demand and the ambient temperature is found, and the temperature
is used as an exogenous input in the forecasting models. The smallest error is
obtained using the seasonal autoregressive integrated moving average model.

3.4. Commercial energy demand

The commercial energy demand shows large differences in the consump-
tion pattern between weekdays and the weekend. This is based on the
opening hours of the small stores. In this section, both the electrical and
thermal energy demand are forecast in the sampling time corresponding to
the available data of 15 minutes and one hour, respectively.

3.4.1. Electrical energy demand

From an analysis of the autocorrelation, it is chosen that for the electrical
energy demand, data of the previous 30 minutes and of 168 hours before,
i.e., one week ago, is used. Exogenous inputs did not improve the models
of the commercial electrical energy demand. The ANN obtained the best
performance, i.e., smallest root mean square error in the point forecasts.

3.4.2. Thermal energy demand

Time series data of 1, 23, 24, and 25 hours before is used, as concluded
from the autocorrelation. A high correlation coefficient between the thermal
energy demand and the ambient temperature is found, and the temperature
is used as an exogenous input in the forecasting models. The smallest root
mean square error is obtained using the ANN model.

4. Control

This section discusses the objective function of the optimisation problem
in the microgrid and the MPC strategy used.

4.1. Objective function

The objective function considers the economic profitability of lowering
the peak of electrical energy demand (Jgd) as well as the energy import costs
(Jeco). Discomfort penalties (Jdis) and the durability of the EVs (Jdur) are
included as well, resulting in a multi-objective function as

J = αJeco + βJdis + γJdur + λJgd,

with α, β, γ, and λ being predefined weights.
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4.1.1. Economic objective

The economic objective is based on the import costs of the different
energy sources from the utility grid in the prediction horizon Np, i.e., elec-

tricity (Cel
UG), ‘green’ gas Cgas

UG, and hydrogen Chyd
UG . Operational costs due

to the increase in maintenance and startup and shut-down costs as in [22]
are not considered due to the difficult assumptions that need to be made to
approximate these costs in the future microgrid. Therefore, the economic
objective is written as

Jeco =

Np∑
k=1

Ä
Cel
UG(k) + Cgas

UG(k) + Chyd
UG (k)

ä
.

4.1.2. Discomfort objective

The discomfort for the consumers in the microgrid will mainly be in-
fluenced by the usage of DR. Furthermore, the range anxiety is included
by penalising a lower state of charge of an EV. Another low discomfort is
placed on the amount of energy in the battery and hydrogen storage tank.
This is penalised in a similar way as for the state of charge of the EVs. The
discomfort objective can be written as

Jdis =

Np∑
k=1

(
ρcβc(k) + ρelr β

el
r (k) + ρthr βth

r (k)

+
ρEV
NEV

(
Nbev∑
i=1

xbev,i − xbev,i(k)

xbev,i

+

Nfev∑
i=1

xfev,i − xfev,i(k)

xfev,i

)

+ ρbat
xbat(k)− xbat

xbat
+ ρhst

xhst − xhst(k)

xhst

)
.

where ρc, ρ
el
r , and ρthr are the penalty weights for curtailment and reschedul-

ing of the electrical and thermal energy, respectively. The parameters ρEV,
ρbat, and ρhst are the penalty weights given for the state of charge of the
total number of EVs (NEV), the battery, and the hydrogen storage tank,
respectively.

4.1.3. Durability objective

Frequent use of the EVs in vehicle-to-grid will result in faster degradation
of the batteries and fuel cells in the EVs. Although the degradation is
tackled up to a certain degree using the operation constraints, a penalty is
still applied to the usage of the EVs in vehicle-to-grid for giving energy to
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the microgrid to increase its durability as

Jdur =
1

NEV

Np∑
k=1

(
Nbev∑
i=1

zgbev,i(k)

zgbev,i
+

Nfev∑
i=1

uelfev,i(k)

uelfev,i

)
,

where zgbev(k) = δgbev(k)ubev(k) is introduced by the mixed logical dynam-
ical modelling [27], where δgbev(k) indicates whether the battery EV is in
generation mode at time step k.

4.1.4. Grid demand objective

The maximum value of the electrical energy exchange per time step is
penalised since we want to reduce the increase in energy infrastructure.
Therefore, the absolute maximum energy transfer of the electricity needs to
be minimised using a weight ρGD. An auxiliary variable ζelug(k) is introduced

to obtain a linear objective function using the auxiliary variable zelUG(k) =
δelUG(k)u

el
UG(k) as introduced for the mixed logical dynamical modelling. This

results in the objective as

Jgd = ρGD ·max
k

|uelUG(k)| = ρGD · ζelug(k), with

ζelug(k) ≥ 2zelUG(k)− uelUG(k), k = 1, . . . , Np,

where the lower equation ensures that the value of ζelug(k) remains positive
for both the import and export of energy.

4.2. Model predictive control

There has been a vast amount of literature on MPC for discrete-time sys-
tems where the observable states x and inputs u are constrained, described
as

x(k + 1) = f (x(k), u(k)) , y(k) = h(x(k)),x ∈ X, u ∈ U,
f ∈ Rn × Rm → Rn, y ∈ Rb, and h ∈ Rn,

(2)

with x representing the state and y the output of the system. In this paper,
the state is assumed to be observable. At each time step, an optimal control
problem is solved while simulating the future states in a receding horizon
fashion. For the length of this finite-horizon window, i.e., the prediction
horizon, an optimal control sequence is computed. This optimal control
sequence calculates an optimal control input at each time step in the con-
trol horizon window, where the control horizon is always equal or smaller
than the prediction horizon. The first control of the computed sequence is
implemented in the system and the process is repeated for the next time
step.

The main advantage for using MPC, compared to more conventional
rule-based control methods, is that this controller is optimisation based.
Therefore, a determined cost function can be optimised and better results are

18



obtained. Furthermore, MPC considers the future evolution of the system
when determining the optimal control input as well, strengthening the ability
to gain an even better performance. Increasing the control horizon can
improve the performance of the closed-loop controlled system, but it also
increases the computation time.

In this paper, the considered MLD model will result in an mixed-integer
linear programming problem. The main drawback of a MLD model using
MPC is the computational burden due to the introduction of the binary vari-
ables in the optimisation. Such a problem is NP-hard and, loosely speaking,
the overall worst-case complexity of mixed-integer problems is exponential
in the number of binary optimisation variables [49].

In general, no constraints satisfaction nor recursive feasibility can be
guaranteed by using MPC due to the errors in the point forecasts, i.e.,
violations of the constraints can occur [50]. A low-level controller is therefore
implemented in the microgrid to compensate for the discrepancies in the
microgrid during the optimisation. The low-level controller imports extra
’green’ gas, hydrogen, or electrical energy during a shortage of energy and
activates the hybrid heat pumps to generate thermal energy. During an
abundance of energy, similar steps are taken, with the difference that the
abundance in ’green’ gas, hydrogen, or electrical energy is subtracted from
the imported quantity. Feasibility is assumed to be ensured since there
are no constraints on the imported energy and the hybrid heat pumps can
provide more thermal energy than the maximum thermal demand measured
in the historic data.

4.3. Control of uncertainty

Extensions on the nominal MPC are possible to deal with the uncer-
tainties of the point forecasts for the stochastic processes better and obtain
an improved overall performance of the microgrid. Different robust and
stochastic MPC methods that can deal with the nonlinearities of the mixed-
integer linear programming problem are briefly elaborated upon for future
research.

In robust MPC, the uncertainty is assumed to be bounded and for all
required realisations of the disturbances w = {w(0), w(1), . . . , w(N − 1)} ∈
WN the control constraints need to be satisfied [50]. This guarantees feasi-
bility for the bounded disturbances but results in a conservative solution. To
decrease the conservatism of the results, stochastic MPC can be used where
the constraints are assumed to be stochastic. In this method, the constraints
are softened, i.e., the constraints do not need to be satisfied for all possible
realisations of the disturbances [50]. In the optimisation of stochastic MPC,
a trade-off should be made between the control performance and the proba-
bility of state constraint violation [51]. Two stochastic MPC strategies that
can be adapted with the nonlinearities of the mixed-integer linear program-
ming problem are [52]: scenario-based and tree-based MPC. These control
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strategies should be investigated in future work to improve the performance
of the microgrid.

5. Case study

In this section, simulations are performed for different case studies.
Three scenarios that consider different levels of penetration of hydrogen
in the microgrid are defined. From these results, the question of how hy-
drogen influences the peak of electrical energy transfer of the microgrid and
the required gird investments is answered.

5.1. Setup

The number of distributed energy resources and their specifications are
based on realistic future investments and calculated ratios as will be pre-
sented in following paragraphs.

Buildings. To estimate the energy demand of the microgrid, the number
of buildings in the microgrid is chosen. A ratio of 42:1 for residential to
small commercial buildings is calculated based on data in Amsterdam, The
Netherlands [53]. Therefore, it is chosen to construct a microgrid with 42
residential buildings and one small commercial building. It is chosen not to
include more buildings since this will increase the computation time due to
an increase of decision variables.

Demand response. In each residential building, a dishwasher, which has an
energy consumption of 0.78 kWh and which is used five times a week, is
chosen to participate in the DR program as reschedulable load. Further-
more, we assume that 10% of the real consumed thermal energy demand in
residential buildings can be rescheduled and another 10% curtailed.

Electric distributed energy resources. PV panels are installed on each build-
ing with an average power of 3.34 kW, estimated from the research done
in [28]. This yields a 143.62 kW maximum power of solar panels in the
microgrid. A district battery with a maximum storage capacity of 500 kWh
and a maximum power of 150 kW is considered. It is assumed that the
battery does not discharge below 10% of its maximum capacity and has a
charging and discharging efficiency of 90%. An electrolyser is used with a
maximum power consumption of 25 kW containing an integrated hydrogen
storage system with a storage capacity of 500 kg. It is assumed that the
storage level does not drop below 5% of the maximum storage. Since an
efficiency of the electrolyser of 70% and a heating value of hydrogen of 39.4
kWh/kg [10] are assumed, the model parameter αelc is estimated to be 0.02
kg/kWh.
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Thermal distributed energy resources. A hybrid heat pump is installed with
a maximum power of 20 kW. The efficiency for the electric part is 400%
due to heat obtained from the ground or air. The boiler in the hybrid
heat pump that burns gas has an efficiency of 90% for both ‘green’ gas and
hydrogen. Furthermore, a 5 kW µ-CHP plant is installed with a thermal
storage capacity of 70 kWh. The efficiency for the electrical energy and
thermal energy are 22.5% and 67.5% for the µ−CHP plant with an internal
combustion engine, respectively, and both 45% for the µ−CHP plant with
a fuel cell.

Electric vehicles. A single EV per household is considered. Battery EVs
with a charging and discharging efficiency of 90% and a maximum battery
storage capacity of 100 kWh are used. Their charging or discharging power
is set to be a maximum of 16 kW. The fuel cell EVs in the microgrid have a
fuel storage capacity of 7 kg of hydrogen with a refilling rate of 2 kg/h. Since
this EV operates on partial load in the microgrid, the maximum power is
set to be at 15 kW. The model parameters αFEV and βFEV for the fuel cell
EVs are based on the model of fuel cell stacks in [34] and are determined to
be 0.06 kg/kWh and 0.11 kg/h, respectively [10].

5.2. Scenarios

Three scenarios with different levels of penetration of hydrogen in the
microgrid are considered. The energy and thermal demand is similar for
each scenario. Therefore, a fair comparison can be made about how the in-
troduction of hydrogen in the microgrid will influence the performance. The
following three scenarios are considered, schematically visualised in Figure
1, as:

1. Electric: In this scenario, no hydrogen is present in the microgrid.
Therefore, no electrolyser with an integrated hydrogen storage tank
and fuel cell EVs are present. The hybrid heat pumps and µ-CHP
plant can run on ‘green’ gas that is imported from the utility grid.

2. Mixed: This scenario is based on the expected microgrid in the
Netherlands in 2050 [28]. Both electric and hydrogen-based compo-
nents are present in the microgrid. However, no ‘green’ gas is consid-
ered since hydrogen will be using the current natural gas infrastruc-
ture. Using both gases would lead to an extra gas network which is
preferred to be avoided since the extra investments needed will prob-
ably overrule the potential profit. Therefore, the hybrid heat pumps
and µ-CHP plant will contain fuel cells that run on hydrogen instead
of the ‘green’ gas. Furthermore, the electrolyser with an integrated
hydrogen storage tank is included in the microgrid. Both types of
EVs are present and a ratio of 1.5:1 for the number of battery EVs to
the number of fuel cell EVs is used [28].
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3. Hydrogen: In this scenario, a hydrogen-based microgrid is consid-
ered. The microgrid consists of almost the same distributed energy
resources as in the mixed scenario, with the only difference that the
battery is excluded from the microgrid. Furthermore, all the battery
EVs are replaced by fuel cell EVs.

5.3. Performance indices

The performance of the energy management of the microgrid is measured
by economic and generic performance indices. In the economic performance
indices, the performance is measured in terms of economic costs. The generic
performance indices are estimated as a value between 0 and 1, yielding a
better performance with a higher value. An overview of these different
performance indices based on the number of time steps during the simulation
T are:

Economic performance indices

• Electrical grid investment: The peak of electrical energy transfer
is translated to variable economic investments needed to be paid by
the energy suppliers following the prices in the Netherlands. Hence,
economic costs are based on the peak of electrical energy transfer, i.e.,
e 2.4147 per month per maximum transferred energy in kW [54]. This
results in the equation for the electrical grid investment, with Tm as
the number of time steps in a month, as

EGI = 2.4147 · T

Tm

T∑
k=1

Ä
ζelug(k)

ä
.

• Energy import costs: The netted economic costs of the microgrid
by purchasing and selling energy is calculated as

EIC =
T∑

k=1

Ä
Cel
UG(k) + Cgas

UG(k) + Chyd
UG (k)

ä
.

Generic performance indices

• Comfort level: The discomfort costs in the microgrid are rewritten
as a normalised comfort level for the consumers. This comfort level is
estimated by considering the comfort decrease due to participation in
DR, the influence of range anxiety, and battery state of charge. The
comfort level is calculated as the discomfort objective divided by its
weights as

CL = 1− Jdis
ρc + ρelr + ρthr + ρEV + ρbat + ρhst

.
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• Durability of EV: The durability of the EVs is influenced by the
possible intensive usage in vehicle-to-grid and is also penalised in the
objective function. A durability ratio for the EVs is calculated that
identifies the ratio of vehicle-to-grid used when not on transportation(
δt(k) = 0

)
. The durability ratio for the EVs is calculated as

DEVn =
T∑

k=1

(
Nbev∑
i=1

(
1− δti (k)

) zgbev,i(k)
zgbev,i

+

Nfev∑
i=1

(
1− δti (k)

) uelfev,i(k)
uelfev,i

)
,

DEV = 1− DEVn∑T
k=1

∑NEV
i=1 (1− δti (k))

.

• Electric self-supply: A microgrid can be rated by the ability to
use the generated energy in the microgrid as proposed in [55, 56, 57],
i.e., not selling the energy if there is an abundance. The electric self-
supply performance index calculates the ratio between the exported
and generated electrical energy in the microgrid as

ESS = 1−
∑T

k=1

(
zelUG(k)− uelUG(k)

)∑T
k=1 (PPV(k) + PCHP(k))

.

• Energy independence: The energy independence of a microgrid can
be rated by calculating the ratio of imported energy to the consumed
energy [55, 58, 56, 59]. The energy independence is a measure for self-
reliance of a microgrid. It explains the ability of a microgrid to deal
with unexpected excessive demand. The energy independence of the
microgrid is calculated as

EId =

T∑
k=1

(
Pres(k) + Pcom(k) +Qres(k) +Qcom(k)

+

Nbev∑
k=1

(hbev,i(k)) +

Nfev∑
k=1

(hfev,i(k))

)
,

EI = 1−
∑T

k=1

(
zelUG(k) + zthUG(k)

)
EId

,

where zthUG presents the imported gas in kWh and the trip costs hbev
and hfev are calculated in kWh as well.
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Table 1: The results on the performance indices for the scenarios in the different weeks.
Week Scenario EGI [e ] EIC [e ] Total costs [e ] CL DEV [103] ESS EI Total objective costs

Summer
Electric 271 53 324 0.8826 0.6795 0.7973 0.7073 14
Mixed 173 211 384 0.7432 0.6349 0.8007 0.3831 22

Hydrogen 34 511 545 0.8258 0.8031 0.8034 0.1347 39

Winter
Electric 338 409 747 0.6379 0.7554 0.8448 0.5956 47
Mixed 239 711 950 0.5873 0.6230 0.8414 0.5171 67

Hydrogen 48 1 115 1 163 0.6320 0.7424 0.8660 0.4075 92

Extreme conditions
Electric 345 548 893 0.4537 0.7648 0.9478 0.6760 60
Mixed 286 850 1 136 0.4306 0.6450 0.9402 0.6081 82

Hydrogen 64 1 257 1 321 0.4624 0.7497 0.9618 0.5406 106

5.4. Simulation weeks

A strong difference for the energy demand and PV power generation
throughout the year is observed from the analysis of the stochastic pro-
cesses. Therefore, it is chosen to simulate a typical winter week and a typical
summer week for the Netherlands. These two weeks are analysed, and it is
concluded that in an extreme winter week the most energy transfer between
the microgrid and utility grid is expected. Hence, a week with extremely
cold temperatures is simulated as well to determine the minimum electrical
energy grid investments needed to guarantee the reliability of the microgrid.
A high thermal energy demand and low PV power, due to the low solar
irradiance in the winter, is present this week. From these different weeks,
an overview of the average costs during the year can be derived based on
the summer and winter case study. Furthermore, the minimum electrical
energy grid investments can be determined based on the week with extreme
conditions.

Each simulation in the different microgrids consists of eight consecutive
days where the first day is only used for initialisation to create a more real-
istic initial values for the energy stored in the distributed energy resources.
Thus, the results are based on the last seven days of the simulation. The
simulation starts on a Monday and ends on the next Monday. It is chosen to
use this order to include the influence of the weekend on the first weekday.
In Figure 2, the energy transfer between the microgrid and utility grid is
shown as example.

The mixed-integer linear programming problem for the MLD-MPC opti-
misation is solved in the Matlab R2020a environment using Gurobi [60]. An
HP EliteBook 8570w with a 2.3 GHz Intel Core i7 processor and 4 GB of
RAM is used for the simulations. Different computation times are obtained
for the controllers in each case study and scenario. In general, the compu-
tation time increases with a higher energy demand in the case study. The
computation time for the week with extreme conditions is approximately 3
hours.

5.5. Results

Figure 2 shows the energy transfer between the microgrid and utility grid
during the simulations. In Table 1, the system performance for the different

24



24 48 72 96 120 144 168

Hour in week

0

200

400

600

E
le

c
tr

ic
 e

n
e
rg

y
 [
k
W

]

Electrical energy imported - Electric scenario

24 48 72 96 120 144 168

Hour in week

0

2

4

6

8

N
a
tu

ra
l 
g
a
s
 [
m

3
]

Natural gas imported - Electric scenario

24 48 72 96 120 144 168

Hour in week

0

200

400

600

E
le

c
tr

ic
 e

n
e
rg

y
 [
k
W

]

Electrical energy imported - Mixed scenario

24 48 72 96 120 144 168

Hour in week

0

2

4

6

8

H
y
d
ro

g
e
n
 [
k
g
]

Hydrogen imported - Mixed scenario

24 48 72 96 120 144 168

Hour in week

0

200

400

600

E
le

c
tr

ic
 e

n
e
rg

y
 [
k
W

]

Electrical energy imported - Hydrogen scenario

24 48 72 96 120 144 168

Hour in week

0

2

4

6

8

H
y
d
ro

g
e
n
 [
k
g
]

Hydrogen imported - Hydrogen scenario

Figure 2: Energy transfer between the microgrid and utility grid in the different scenarios
for the extreme conditions case study.

scenarios in these simulations is presented. It is shown that a general trend
is present for each week between the scenarios. A higher level of hydrogen
penetration in the microgrid reduces the peak of electrical energy transfer
of the microgrid, as shown in the costs of EGI and Figure 2. However, the
total economic costs increase due to the higher energy import costs, as seen
in the Total costs column. These higher energy import costs are mainly
due to the more expensive fuel costs for fuel cell EVs compared to battery
EVs. The fuel costs are more expensive due to the higher import price of
hydrogen compared to electrical energy and the low efficiency in the fuel
cells. It must be noted that the expected hydrogen price and low efficiency
of the fuel cells influence the results of the optimisation substantially and
future research should focus on improving hydrogen technology such that
the efficiency grows and the price drops.

The electrical energy grid investments are based on the week with ex-
treme conditions. The energy import costs are calculated by averaging the
costs in the typical winter and summer weeks, representing an approxima-
tion of the mean costs throughout the year. It is concluded that a reduction
in the electrical grid investments of 16.90% and 81.29% is achieved for the
mixed and hydrogen scenario as seen in Table 1 in the column presenting
the costs of EGI, respectively. However, the total economic costs are in-
creased for the mixed and hydrogen scenario, respectively by 29.92% and
52.38% as seen in the column ’Total costs’. Therefore, despite reducing the
grid investment costs, introducing hydrogen to the microgrid will still lead
to more economic costs.

The introduction of hydrogen results in a lower energy independence
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of the microgrid, decreasing the self-reliance of the microgrid. This is due
to the lower efficiency of the fuel cell compared to the battery and more
devices running on hydrogen, which is mainly imported. Another trend is
that for the mixed scenario including both battery and fuel cell EVs, more
degradation will occur on the battery and fuel cells of the EVs due to the
higher use of the EVs in vehicle-to-grid operations. Furthermore, in the
mixed scenario, a lower comfort level is obtained due to the lower state of
charge of the EVs. No clear differences are concluded for the self-supply of
the microgrids since different trends are seen for the ESS in Table 1 between
the levels of hydrogen penetration in the different weeks.

6. Conclusions

In this paper, the influence of hydrogen on the electrical grid investments
costs has been analysed. A simulation-based case study has been performed
where scenarios with different levels of hydrogen have been compared. It
is shown that the introduction of hydrogen in the microgrid reduces the
electrical grid investments costs for the mixed and hydrogen scenario with
16.90% and 81.29% while yielding higher energy import costs, increasing
the total economic costs by 29.92% and 52.38%, respectively. Furthermore,
the introduction of hydrogen in the microgrid shows a clear decrease in
the energy independency of the microgrid. In a microgrid containing both
battery and fuel cell EVs, it is concluded that more vehicle-to-grid operations
are used compared to the microgrids including only one type of EV. In
conclusion, an increase in the level of hydrogen in the microgrid will reduce
the electric grid investments costs but is not economically more beneficial
than using ’green’ gas.

As future work, unknown departure times need to be considered, i.e.,
forecasting models need to be developed to predict the behaviour of the
arrival and departure times of the EVs instead of assuming them to be
known beforehand.

Furthermore, stochastic MPC methods that can deal with the nonlinear-
ities of the mixed-integer linear programming problem (e.g., scenario- and
tree-based MPC) can be evaluated to see if better performance of the mi-
crogrid can be reached. With these methods, it is possible to include the
uncertainties in the point forecasting in the control of the microgrid.

Another aspect is that scaling the size of the microgrid could influence
the performance of the microgrid. Therefore, the influence of hydrogen
on smaller and larger microgrids should be evaluated. Since the computa-
tional complexity rises when increasing the size of the microgrid, alternative
techniques as distributed MPC [61] or parameterised MPC [62] could be
considered to decrease the number of decision variables and, therefore, the
computational complexity and computation time needed.
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Lastly, the results of the experiments can be strengthened by using sta-
tistical tests to evaluate the results and including reliability parameters in
the optimisation of the microgrid. These aspects contribute to be able to
construct a complete picture of the influences of hydrogen in the microgrid.
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