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ABSTRACT Deep learning has enabled the rapid expansion of computer vision tasks from image frames to
video segments. This paper focuses on the review of the latest research in the field of computer vision tasks
in general and on object localization and identification of their associated pixels in video frames in particular.
After performing a systematic analysis of the existing methods, the challenges related to computer vision
tasks are presented. In order to address the existing challenges, a hybrid framework is proposed, where
deep learning methods are coupled with domain knowledge. An additional feature of this survey is that a
review of the currently existing approaches integrating domain knowledge with deep learning techniques
is presented. Finally, some conclusions on the implementation of hybrid architectures to perform computer
vision tasks are discussed.

INDEX TERMS Computer vision, object detection, deep learning, theory-guided data science

I. INTRODUCTION

JUST as motion perception is essential to our visual
system, allowing us to interpret the world, to detect

the presence of creatures [25], and to avoid danger [34],
video computer vision helps artificial intelligence agents to
decipher their surrounding environment and to synthesize
actionable information. Inspired by the human visual system
and enabled by the latest advancements in deep learning
(DL), novel video processing methods are emerging that
achieve remarkable results and that seek to revolutionize how
computer vision tasks are implemented. Yet, similarly to hu-
man perception, computer vision is quite prone to illusions.

The fast pace of DL breakthroughs in combination with
the improvement in hardware capabilities in terms of com-
putation power, memory capacity, and sensor resolution have
accelerated the spread of data-driven methods over the con-
ventional computer vision techniques. Contrary to classical
techniques, DL reaches human-level accuracy, requires less
expert analysis, and provides superior flexibility including
allowing re-training whenever new data are available [115].

The objective of this work is to investigate the advance-
ments of deep learning techniques for computer vision tasks
in videos as well as their research perspectives to address
their current weaknesses. More specifically, the contributions
of our study are threefold:

• We present an analysis of the existing DL techniques for
detection and segmentation of objects in videos.

• We present an overview of the challenges with the
existing data-driven approaches.

• We outline new directions for research in video process-
ing.

The paper is organized in seven sections. Section II presents
an overview of necessary preliminary knowledge. Section III
gives a comprehensive overview of DL-based video com-
puter vision methods. In Section IV the current challenges
are presented and analyzed. To address these challenges,
Section V presents an overview of approaches that couple
DL methods with domain knowledge. Section VI highlights
the most prominent topics that are expected to draw major
interest from the research community in the following years,
and Section VII gives concluding remarks.

A list of abbreviations mentioned in this paper and their
definitions are presented in Table 1.

II. PRELIMINARIES
In this section, we introduce the most typical tasks of com-
puter vision and we present a brief, comparative analysis
between deep learning and conventional techniques in the
domain of computer vision, as well as an overview of basic
deep learning methods such as convolutional neural net-
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TABLE 1: List of abbreviations

Abbreviation Definition
CNN Convolutional Neural Network
DFF Deep Feature Flow
DL Deep Learning
DM Dynamics Model
FFT Fast Fourier Transform

FGFA Flow-Guided Feature Aggregation
GAN Generative Adversarial Network
GRU Gated Recurrent Unit
IID Independent and Identically Distributed

LSTM Long Short-Term Memory
RBM Restricted Boltzmann Machine

RCNN Region-based Convolutional Neural Network
RNN Recurrent Neural Network
SNN Siamese Neural Network
SSD Single-Shot Detector
VAE Variational Auto-encoder

YOLO You Only Look Once

works, restricted Boltzmann machines, and auto-encoders,
which constitute the core for DL architectures in computer
vision.

A. COMPUTER VISION TASKS
Computer vision tasks can be categorized into 4 major fields:
(1) semantic segmentation, (2) classification & localization,
(3) object detection, and (4) instance segmentation. The task
of semantic segmentation refers to the process of assigning a
class label to every pixel in an image [72]. One of the short-
comings of this task is the fact that semantic segmentation
does not differentiate between instances of the same class. On
the other hand, the classification & localization task aims to
predict the class of a specific object in an image and to draw
a bounding box around the region of the classified object in
an image [126]. This task refers to a single object. However,
most images in real-world settings contain multiple objects of
different shapes and sizes. Therefore, object detection [37]
refers to a more general approach where a varying number
of predicted objects for every input image can be extracted,
since it is unknown how many objects are expected to be
detected in each image.

Object detection systems strive to find every instance of
an object and estimate the spatial extent of each one. Never-
theless, the detected objects are located just with bounding
boxes.

The task of instance segmentation refers to the problem
of detecting all the instances of a category in an image and
marking the pixels that belong to each one of them [39]. Ex-
tending this task to the video domain results in simultaneous
detection, segmentation, and tracking of the instances [121].
The instance segmentation task combines object detection,
where individual objects are classified and localized with a

bounding box, and semantic segmentation, where each pixel
is classified into the given classes.

The task of object classification & localization is in-
cluded in object detection. At the same time, in semantic
segmentation, each pixel of an image is associated with a
class label like a road, tree, pedestrian, etc. In other words,
all objects of an image that belong to the same class are
treated as a single entity. On the other hand, each object
of the same class is treated as a distinct individual instance
with instance segmentation. Hence, instance segmentation
can be considered as a more elaborate implementation of
semantic segmentation. Since all the computer vision tasks
are similar, in this work mainly object detection and instance
segmentation techniques will be examined, as they are the
most dominant techniques required in extensive applications
such as autonomous driving [69], video surveillance [100],
face recognition [108], and robot navigation [120].

B. DEEP LEARNING VS. TRADITIONAL COMPUTER
VISION TECHNIQUES
Traditional computer vision methods are based on hard-
coded, rigid-rule algorithms to apply feature extraction on
images [80]. Several algorithms have been developed to ex-
tract properties such as corners, edges, and regions of inter-
est from images [2], [12], [40], [74], [88]. These algorithms
showcase advantages such as transparency, in terms of al-
lowing to trace back to all steps of how a decision was made,
and performance that is independent of the training dataset.
At the same time, however, they have been criticized to be
inflexible, difficult to improve or adapt, and highly time-
consuming to develop manually for each additional object to
be detected [83]. Moreover, the performance of these meth-
ods significantly deteriorates when the number of classes to
be detected increases. By contrast, DL utilizes massive data
sets and numerous training cycles to learn how an object
looks, following a process during which relevant features
of an object of interest are extracted automatically. The DL
architecture can then be implemented on previously unseen
images and make accurate predictions. DL-based methods
perform remarkably better than traditional methods, albeit
with trade-offs regarding computational requirements and
training time [83]. As a result, they have vastly replaced
traditional computer vision techniques, thanks to their strong
ability to be easily adjusted, to extract complex features in
much more detail, and to be much more efficient in terms
of accuracy and versatility [83]. Tremendous advancements
in research have taken place in this domain, resulting in the
development of numerous methods. The fundamental DL
methods implemented on image computer vision applications
are discussed in section II-C.

C. IMAGE-BASED DEEP LEARNING METHODS
1) Convolutional neural networks
Convolutional neural networks (CNNs) have been widely
used in image processing applications over the past decades
[62], [66], [133]. Their structure consists of a number of
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convolutional and pooling layers, stacked one after another
[5]. The convolutional layer can be visualized as a square
matrix W of weights, called kernel [87]. The kernel slides
over the image looking for patterns and when it distinguishes
a part of an image that is similar with its pattern, it returns a
large positive value, otherwise, it returns a small value. The
input image is represented as a pixel matrix with size length
× width × number of color channels (i.e. an RGB image has
3 color channels).

The convolutional layer is utilized for feature extraction
and the pooling layer to downsample the resolution of the
convolutional layer output. In this way, a dimension reduc-
tion is accomplished, which reduces the number of necessary
parameters in the next layer, resulting in a less complex
architecture. During the training process, the training sam-
ples are fed through the CNN and the error with respect to
the desired output is calculated. The error and its gradient
are then backpropagated through the network layers and the
weights are updated.

CNN-based image object detectors can be separated into
two main categories [105], [127]:

• Two-stage approach: In the two-stage method, the first
stage extracts region proposals and the second stage
classifies those region proposals and determines the
bounding boxes of the classified objects. In the region
proposal part, sliding window techniques such as De-
formable Part Models [20] are adopted. An additional
region proposal technique, employed in region-based
convolutional neural networks (R-CNNs) [27], is selec-
tive search [111]. R-CNNs extract around 2000 region
proposals on each input image, which is a significantly
reduced number of regions needed compared to other
sliding window methods. At the second stage of this
architecture, a CNN is used for object detection over
the region proposals. The size of the proposed regions
is arbitrary, while the CNN requires a fixed size input.
Hence, a major drawback of R-CNNs is due to the fact
that images need to be cropped or resized to accomplish
the requirement for a fixed size input. Spatial pyramid
pooling [31], [42], [64] is a method used in order to
achieve a fixed-size output irrespective of the input
image size. Hence, spatial pyramid pooling networks
can be trained and tested on varying size images, which
reduces overfitting of the model.
Both R-CNNs and spatial pyramid pooling networks are
particularly slow during training. Fast R-CNN [27] tries
to solve this drawback by passing the original image
through the CNN instead of using the region proposals.
As a result, fast R-CNN is faster than R-CNN because
the convolutional operation is implemented only once
on the original image instead of 2000 times on the
region proposals. Fast R-CNNs can train detection net-
works whose architecture involves multiple layers like
VGG-16 [99], as they are 9 times faster compared to R-
CNNs and 3 times faster than spatial pyramid pooling
networks [105]. The drawback of the high time cost has

been further addressed by faster R-CNNs [92]. In faster
R-CNNs the time-consuming selective-search algorithm
is replaced with a fully convolutional network that
learns the region proposals of an image with arbitrary
size. A major additional development of the previous
R-CNNs is achieved by Mask-RCNNs [41]. Mask R-
CNNs extend the previous architectures by labeling the
pixels corresponding to each object instance. The Mask
R-CNN inherits the region proposal network from faster
R-CNNs and employs an additional branch that outputs
a binary mask classifying whether or not a given pixel
is part of an object. Two-stage approaches yield a high
accuracy since each stage performs one specific task.
However, in terms of real-time applications, two-stage
approaches show weaknesses in computational time.

• One-stage approach: One-stage approaches skip the
first stage of region proposal and simply run detection
directly on the input image. This simpler architecture
allows them to have faster inference. Some networks
can achieve a processing speed of up to 150 frames
per second (fps). There is a trade-off, however, in terms
of accuracy. Notable one-stage methods are the “you
only look once” (YOLO) network [91], which extracts
class and bounding boxes predictions directly from an
input image using a CNN and the single-shot detector
(SSD) [71], which takes an input image and passes
it through multiple convolutional layers with different
sizes of filters.

2) Restricted Boltzmann machines

The Restricted Boltzmann Machine (RBM) is a two-
layer undirected graphical model [6] that was introduced in
1986 [46]. It consists of a set of visible nodes and a set of
hidden nodes. RBMs are in essence a variant of Boltzmann
machines, but in RBMs there are no intralayer connections
between the nodes in the visible layer and the hidden layer
(i.e. no visible node is connected to any other visible node
and no hidden node is connected to any other hidden node
respectively). In this way, RBMs are easier to implement and
more efficient in training compared to Boltzmann Machines.
Their visible nodes receive the input, combine it with weights
and a bias, and pass it to the hidden nodes. The value
generated at the hidden nodes is combined accordingly with
weights and a bias and the result is passed to the visible nodes
to reconstruct the input.

If we consider the visible vector V , the hidden vector H ,
and the weight parameters αi, bi, wij , an RBM configuration
can be assigned with an energy E given by [24]:

E(V,H) = −
∑
i

αivi −
∑
j

bjhj −
∑
ij

viwijhj . (1)

Given this energy function, a probability P is assigned to
every pair (V , H):

P (V,H) =
1

Z
e−E(V,H), (2)
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where Z is equal to the sum of the energy of all the pairs of
visible and hidden vectors.

Z =
∑
(V,H)

e−E(V,H). (3)

For a given visible vector V , the probability that is assigned
to the hidden node hj is

P (hj = 1|V ) = σ

(
bj +

∑
i

viwij

)
, (4)

where σ(·) is the logistic sigmoid function [38]. For a hidden
vector H the assigned probability of a visible node vi is
respectively:

P (vi = 1|H) = σ

αi +∑
j

hjwij

 . (5)

The weight parameters are optimized with the aim to maxi-
mize the likelihood of the visible and hidden vectors (V,H).

The intuition behind RBMs is based on the association
of a scalar energy to each combination of the variables of
interest. Learning is achieved, therefore, by calculating the
combination that has the lowest energy.

RBMs are useful for dimensionality reduction, classifica-
tion, regression, and feature learning. However, due to the
fact that RBMs consist of only two layers, the complexity of
the data representation that they can achieve is limited [24].
For this reason, a number of extended, architectures has been
developed. An example of such architecture is the Deep Be-
lief Network [44], which consists of multiple stacked RBMs.
Deep Belief Networks are used for feature extraction in
many computer vision applications. Except for Deep Be-
lief Networks, another RBM-based architecture is the Deep
Boltzmann Machine [95], [96]. Deep Boltzmann Machines
are similar to Deep Belief Networks, although the former
have only undirected connections between their layers, which
makes them more robust to noisy observations, while the
latter have bidirectional connections in the last layer [104].

3) Auto-encoders
Auto-encoders [8], [45] refer to a specific type of neural net-
works that aim to compress the input image data into a lower-
dimension (latent) representation and then reconstruct the
original image from this representation. Their architecture
consists of two main parts, namely, the encoder and the
decoder. The encoder maps an input vector of images X into
a compressed, lower dimensional vectorZ, while the decoder
part maps the latent variableZ to a reconstruction of the input
image. The encoder and decoder mappings ϕ : X → Z and
ψ : Z → X are given by:

(ϕ, ψ) = argmin
(ϕ,ψ)

∥X − (ψ ◦ ϕ)(X)∥2, (6)

where the operator ◦ refers to the composition function:
ψ ◦ ϕ(X) = ψ(ϕ(X)). The autoencoder is trained with the
objective to select the optimal encoder and decoder functions

so that the minimum amount of information is required to
encode the image in order to be regenerated on the decoder
side.

III. DEEP LEARNING METHODS FOR DETECTION AND
SEGMENTATION OF OBJECTS IN VIDEOS
Due to the similarity between video detection and image
detection, some methods of image detection are often used
for video detection. The methods described above can be
extended to the video domain by running detection for
each image in a sequence of frames [7]. In this way, how-
ever, the temporal correlation between frames is not taken
into account. In addition, running a detection algorithm for
each frame results in computational inefficiency since there
might be feature extraction redundancies between sequential
frames. Furthermore, in a video sequence, there might be
poor-quality frames which could lead to low inference ac-
curacy. One obvious reason that this extension is not trivial is
due to the fact that a video sequence introduces an additional
dimension; the temporal one. In other words, instead of being
considered as a sequence of frames, a video should be rather
regarded as a sequence of related frames.

Due to the complexity of video data and the compu-
tation cost for training, research has been limited in this
field. However, more and more video-related research works
have surfaced lately, due to the release of ImageNet VID
[93] and other massive video datasets. Depending on the
architecture, DL-based techniques for video object detection
can be broadly diversified into six categories, namely (1)
optical flow, (2) tracking, (3) long short-term memory, (4)
gated recurrent unit, (5) self-attention mechanism, and (6)
generative learning. In the following subsections a critical
appraisal of these architecture paradigms is presented.

1) Optical flow
One of the most fundamental concepts in video processing is
optical flow. Optical flow was originally introduced in [25]
referring to human perception and the changing pattern of
light that reaches our eyes. In computer vision applications,
optical flow refers to the problem of estimating the displace-
ment vector for each pixel in subsequent image frames [48].

A key assumption in optical flow is brightness constancy.
This practically means that a pixel at the position (x, y) of an
image at time t moves to the position (x + ∆x, y + ∆y) at
time t+∆t and the brightness I(x, y, t) remains constant:

I(x+∆x, y +∆y, t+∆t) ≈ I(x, y, t). (7)

The Taylor series expansion of the left-hand side of (7) is

I(x+∆x, y +∆y, t+∆t) =

I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ · · · ⇒

I(x+∆x, y +∆y, t+∆t)− I(x, y, t) =

Ix∆x+ Iy∆y + It∆t,

(8)

where Ix, Iy , It are the partial derivatives of the intensity
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function I with respect to x, y, and t respectively. Hence, if
we substitute (7) into (8) we can derive:

∇I · vT + It = 0, (9)

where ∇I = (Ix, Iy) and v = (∆x∆t ,
∆y
∆t ) are the components

of the optical flow, and It is the temporal gradient of the
intensity function.

Optical flow can be applied to estimate the motion of
detected objects in video segments by assigning an optical
flow vector to the pixels corresponding to the detected object.

Optical flow can be either “sparse” or “dense”. Sparse
optical flow estimates the flow vectors of some specific
features, such as corners or edges of an object within an
image frame. Dense optical flow, on the other hand, includes
the flow vectors of all the pixels in an image frame. The latter
method achieves higher accuracy than the former, although at
the cost of increased computational requirements.

Recently, modern CNN architectures have been success-
fully used for optical flow estimation applications [18].
CNNs can be trained to run on pairs of images and to predict
the optical flow field. These flow networks are employed in
computer vision tasks for videos according to two different
approaches. In the first approach, one neural network is
responsible for the task of object detection and it is applied
on sparse key frames. The extracted feature maps from these
key frames are then propagated to the next frames with a flow
network. This technique is called Deep Feature Flow (DFF)
[132] and it achieves great computational efficiency due to
the fact that it implements the object detection task only on
key frames.

The second approach involving flow networks is known as
flow-guided feature aggregation (FGFA) [131]. In FGFA, a
feature extraction network is run on all individual frames to
create the respective feature maps per frame. The inference at
a reference frame is enhanced with an optical flow network
that predicts the motion between the neighbor frames and the
adjacent frames. The propagated feature maps from neighbor
frames are aggregated with the feature map from the refer-
ence frame in an adaptive weighting method. FGFA achieves
higher inference accuracy but at a higher computation time
compared to DFF. For this reason, an impression network
[43] is another proposed architecture that combines the two
abovementioned techniques, with the objective to take ad-
vantage of both methods. Sparse key frame feature maps are
then aggregated with other key frames feature maps and at
the same time they are propagated to other non-key frames.
The impression network overcomes DFF both in terms of
accuracy and inference speed. It is also faster than FGFA
although it achieves a slightly lower accuracy level. An al-
ternative architecture, which outperforms FGFA, is proposed
in [17], where a two-stream feature aggregation approach is
integrated into a one-stage detector to achieve video object
detection. In particular, the first stream applies optical flow to
estimate the motion and to aggregate the features along the
motion path, while the second stream predicts the features
of the frame of interest by spatio-temporal sampling and

aggregation of features from the adjacent frames. The final
predictions result from blending the outcomes from the two
streams.

2) Tracking
Visual tracking can be described as the problem of esti-
mating an unknown target trajectory over a sequence of
image frames [78]. Traditional methods employ a variety
of tracking algorithms, such as mean shift algorithm [14],
particle filtering [30], and Kalman filtering [54]. With the
advancements in data science in recent years, novel DL-based
visual trackers have been developed.

Object tracking outperforms optical flow in accuracy
[129]. This can be explained by the fact that tracking uses
shared networks to achieve feature extraction for detection
and tracking. Hence, the requirements in terms of compu-
tational power are limited and at the same time, the fusion
between the two tasks is performed in a more straightforward
way, which achieves higher accuracy compared to optical
flow based models.

CNN is the first architecture that was adopted for DL-
based visual tracking. In [19], a region-based fully convolu-
tional neural network [15] is used for jointly performing de-
tection and tracking in an integrated framework. The model
is fed with a set of two consecutive image frames, from
which the convolutional feature maps are computed. Object
detection is run on each frame and a regressor is employed
to compute the box transformation from one frame to the
other. CNN-based object tracking models showcase some
weaknesses in performance though, due to the scarcity of
labeled data in terms of including sets of two consecutive
frames, which are necessary for their training, as well as their
speed limitations with respect to real-time applications [79].

A baseline approach presented in [121] extends the Mask
R-CNN to include an additional tracking branch with an
external memory for tracking object instances across frames.
The proposed architecture extracts the classification, the
bounding boxes, and the segmentation predictions of Mask
R-CNN, and it takes into account the past frame information
only for tracking. In this way, the task of instance segmenta-
tion is extended to videos. CrossVIS [122] presents a novel,
cross-frame learning approach that uses the features of an
instance in the current frame to segment the same instance
in other frames. Crossover learning is integrated with the
instance segmentation loss as an objective to obtain cross-
frame instance segmentation consistency, achieving a low
computational cost. CrossVIS outperforms MaskTrack R-
CNN [121] in terms of both accuracy and speed [122].

An additional DL-based method for tracking arbitrary
objects involves Siamese Neural Networks (SNNs) [109].
SNNs have been extensively implemented on visual tracking
applications in the past years [4]. An SNN is basically a two-
stream network that takes as input pairs of the target and
search image and outputs a similarity map. In other words,
SNNs learn a function f : (z, x) → f(z, x) which compares
an image z with a candidate image x returning a high score
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when the two images are similar with each other. The position
tracking of an object can thus be determined by checking all
possible locations and selecting the one that corresponds to
an image with the highest similarity to the previous frame.
SNNs can learn the function f from a training video dataset
with labeled object trajectories and they are one of the most
promising methods for object tracking due to their perfor-
mance and efficiency.

Recurrent neural networks (RNNs) [28] are an alternative
architecture employed in visual object tracking applications.
RNNs can be considered to operate on a sequence that
contains vectors x(t) and each vector can describe e.g. an
image frame from a video at time step t. In other words, an
RNN is a neural network that is specialized for processing
a sequence of values x(1), . . . , x(n), where n is the length
of the sequence, in a similar way as a convolutional network
is specialized for processing a tensor representing an image.
The same update rule is applied to each part of the output,
resulting in the sharing of parameters through a deep compu-
tational graph. RNN-based methods can be considered as a
suitable method for visual object tracking since they take into
account both spatial and temporal features of video frames
[124]. The RNN-based methods aim to improve the tracking
performance by utilizing temporal information such as past
states of the target’s position. However, their implementa-
tion is limited because their complex architecture involves a
significant number of parameters that need to be determined
[68].

3) Long short-term memory
Although RNNs are naturally suited to time series data,
like videos, their implementation suffers from various weak-
nesses. First of all, while they take into consideration infor-
mation from the previous time stamp, their performance is
deteriorated, when storing information for a longer time pe-
riod [60]. Sometimes, certain information stored at long past
time step might be required to accurately predict the current
output. RNNs in that cases are incapable of utilizing such
“long-term” dependencies. In addition, RNNs do not have
the possibility to keep part of the past time stamp information
and to discard the rest. An additional challenge in RNNs is
that gradients propagated through the network tend to either
vanish or explode because of the repetition of the weight
matrix over all recurrent units. At the same time, optical flow
techniques make use of temporal information only on two
adjacent frames without using temporal information from
other previous frames. Long short-term memory (LSTM)
[47] is an improved type of RNN that is capable of utilizing
long-term dependencies.

The architecture of an LSTM cell is depicted in Figure 1.
LSTMs are cells consisting of three parts which are known as
gates. The first gate determines what part of the information
coming from past time steps needs to be “remembered” or
can be “forgotten”. The second gate inputs information of
the current time step to the cell. Finally, the third gate passes
the updated information from the current time step to the next

one. The first gate is called forget gate while the second and
the third ones are called input and output gates respectively.

In the following equations f(t), i(t), o(t) represent the
forget, input and output gate vectors respectively, σ is the
sigmoid function, W (j) and b(j) refer to the weights and
biases corresponding to the j-th gate’s neurons, h(t − 1)
refers to the output of the previous cell at time stamp t − 1,
and x(t) represents the input at time t [49].

• Forget gate

f(t) = σ
(
W (f)[h(t− 1), x(t)] + b(f)

)
(10)

• Input gate

i(t) = σ
(
W (i)[h(t− 1), x(t)] + b(i)

)
(11)

• Output gate

o(t) = σ
(
W (o)[h(t− 1), x(t)] + b(o)

)
(12)

Moreover, an additional vector C̄ is used that modifies the
cell’s state C:

C̄(t) = tanh
(
W (c)[h(t− 1), x(t)] + b(c)

)
(13)

C(t) = f(t)⊙ C(t− 1) + i(t)⊙ C̄(t), (14)

where the operator ⊙ corresponds to the elementwise multi-
plication. The hidden state is equal to:

h(t) = o(t)⊙ tanhC(t). (15)

σ

x +

x

x

tanhσ

σ

c
t-1

h
t-1

x
t

h
t

h
t

c
t

tanh

FIGURE 1: LSTM cell structure, adapted from [125]

LSTMs can maintain important information over a long
sequence of data. [33] presents an extensive analysis of
variants of LSTM as well as a review of the impact of the
involved hyperparameters. In [75] an LSTM framework is
developed as an extension to an SSD architecture in order
to associate detected object instances across consecutive
frames. The proposed method outperforms other RNN ar-
chitectures [110] and it can be applied online. However,
the weakness of this approach is that the SSD architecture
involved is pre-trained in advance and thus, the SSD features
do not get updated in response to the output of the LSTMs. In
[70], an approach is suggested where LSTM is used in combi-
nation with interleaving conventional feature extractors with
extremely lightweight ones. The main advantage of this ap-
proach is that minimal computation is required to produce ac-
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curate detection. In other words, an interleaved model frame-
work is proposed, where multiple feature extractors are run
sequentially or concurrently. A memory mechanism is then
proposed to aggregate these frame-level features. A modified
LSTM cell is used in [130] to achieve faster results with
low computational requirements. The proposed architecture
connects fast single-image object detection frameworks in
series with convolutional LSTM layers in order to propagate
frame-level information over time. This architecture inputs
one single frame of the video at a time and it is quite simple.
Hence, it achieves reduced computational cost as well as
enhanced inference speed.

4) Gated recurrent unit

Similarly to LSTMs, gated recurrent units (GRUs) [13] are
another type of RNNs. However, GRUs have fewer parame-
ters than LSTMs, since they only have two gates: the update
gate and the reset gate. As seen in Figure 2, in contrast to
LSTMs, a GRU cell does not have an output gate, as in the
case of LSTMs, and they combine the input and the forget
gate of LSTMs into the update gate. Due to their simplicity,
GRUs are significantly faster rather than LSTMs.

The update and reset gates in a GRU cell are defined as in
equations (16) and (17) respectively. In the following equa-
tions z(t), r(t) represent the update and reset gate vectors
respectively, and W (j), b(j) refer to the weights and biases
corresponding to the j-th gate’s neurons [49].

• Update gate

z(t) = σ
(
W (z)[h(t− 1), x(t)] + b(z)

)
(16)

• Reset gate

r(t) = σ
(
W (r)[h(t− 1), x(t)] + b(r)

)
(17)

The update gate determines the amount of previous time-
step information that passes along the next state, while the
reset gate is responsible for deciding what part of the past
information is neglected. After multiplying the input vector
and the hidden state with the weights of the reset gate as
presented in (17), the element-wise product between the reset
gate and the previous time-step hidden state is calculated.
Then, a non-linear activation function is applied to the result
leading to the candidate hidden state:

h̄(t) = tanh
(
Wh[r(t)⊙ h(t− 1), x(t)] + b(h)

)
. (18)

The hidden state then reads as:

h(t) = (1− z(t))⊙ h(t− 1) + z(t)⊙ h̄(t). (19)
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FIGURE 2: GRU structure, adapted from [125]

In [9] an SSD-based architecture is extended to multi-
frame data. Convolutional GRUs are employed in order to
fuse features across multiple frames and to enhance the
accuracy of object detection. From a mathematical perspec-
tive, this architecture replaces the dot product operator in
the standard gated recurrent unit definition in (16)-(18) with
the convolution operator. As reported in [23], this approach
improves the existing SSD architecture by 2.7 % in terms
of the mean average precision on the KITTI dataset [22].
An additional example is provided in [110], where first a
pseudo-labeler is trained on individual labeled frames. The
pseudo-labeler assigns the labels to all video frames and then
a recurrent architecture with GRUs is trained, which takes
sequences of pseudo-labeled frames as input. The standard
cost function used for the training of the RNN is augmented
with an additional term to ensure the consistency across
consecutive frames. In [112] a human activity recognition
technique is proposed, where skip connections are introduced
among GRU layers to ensure that even in a deep architecture
with multiple layers, there is no vanishing gradient impact on
the performance.

Both LSTM and GRU can ensure that important infor-
mation is maintained along long time-series data. GRU is
faster than LSTM in terms of training speed [123]. Their
performance is comparable, although in small datasets, GRU
slightly outperforms LSTM.

5) Self-attention mechanism
RNNs, LSTMs, and GRUs have been widely adopted in
sequence modeling applications. However, due to the fact
that they process the data in a sequential manner, they do not
allow for parallel computation, which could critically affect
long sequences of frames, due to memory constraints limiting
the batch size of samples during training.

Self-attention mechanism [58] relates different elements
of a sequence to generate a representation of this sequence.
Contrary to the architectures mentioned above, it supports
parallel processing of sequential data. Originally it was pro-
posed for machine translation [113] and then its application
was extended to video data [26].

Three vectors are involved in the self-attention mechanism.
These vectors are used for the representation of features
(key vector), values (value vector), and the values to be
determined (query vector). Let us assume that we have a
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sequence of n elements (x1, x2, . . . , xn) of X ∈ Rn×d, with
d being the embedding dimension for the representation of
each element [57]. We can then define three learnable weight
matrices in order to transform the queries (W q ∈ Rn×dq ),
keys (W k ∈ Rn×dk ) and values vectors (W v ∈ Rn×dv ).
In this way, the input X is first transformed with the weight
matrices and projected onto Q = XW q , K = XW k, and
V = XW v . A similarity function is used to calculate the
similarity between the query and the key vector. The self-
attention layer outputs Z ∈ Rn×dv which is equal to

Z = softmax

(
QKT√
dq

)
V, (20)

where softmax function is defined by

softmax(X)i =
exi∑k
j=1 e

xj

, (21)

for i = 1 . . . k and X = (x1, . . . , xk) ∈ Rk. The self-
attention determines the similarity between the key and the
query vector by computing their dot product. The dot product
is then normalized using softmax so that the sum of all the
scores becomes equal to 1. Each element is then given by the
weighted sum of all elements in the sequence. The weights in
this case correspond to the attention scores. The most well-
known, self-attention architecture is the transformer [113].

In [26] a transformer framework is developed to recognize
and localize human actions in a video. A person feature is
represented as the query (Q) and the features from adjacent
video frames correspond to the key (K) and the values
(V). A video instance segmentation architecture built upon
transformers is proposed in [116]. Four modules are included
in the developed architecture: a backbone CNN to extract
features over the video frames, an encoder-decoder trans-
former that determines the similarity of features on pixel and
instance level, an instance-sequence matching, and a segmen-
tation module. The overall performance of this framework is
competitive compared to the single-model approaches tested
on the YouTube-VIS dataset [121], although it is somewhat
lower in comparison to other complex CNN-based models
[3].

In [35] a constrained self-attention architecture is pro-
posed for video object detection that captures motion cues
under the assumption that moving objects follow a contin-
uous trajectory. An additional, self-attention based architec-
ture is proposed in [36], which is applied in the temporal-
spatial domain towards aligning two feature maps of consec-
utive frames. The proposed method features a low amount of
parameters, while it achieves higher accuracy in comparison
to optical flow-based methods such as DFF and FGFA. A
related, efficient, and simplified architecture for video object
detection via aggregating semantic features across frames
is presented in [118]. Cosine similarity is implemented to
compute the semantic similarities of the extracted proposals
across frames, which are then aggregated accordingly. In [16]
an object relation module is employed as part of a multi-

stage architecture, in order to extract object relations in
both spatial and temporal context. The relations are then
further distilled with refined supportive object proposals and
propagated across frames. Finally, in [98] an attention-based
module is developed to learn long-range temporal relations
between objects, in order to propagate the extracted features.
The proposed architectures in [16], [118], and [98] outper-
form optical flow-based approaches in accuracy.

6) Generative learning
The objective of generative learning is to approximate a com-
plex, high-dimensional probabilistic distribution that gener-
ates a class of data, in order to generate similar data. Develop-
ing generative architectures to understand complicated data
distributions has been a long-standing research problem [84].
Recent works in this area [29], [59] have provided a new set
of generative algorithms that can efficiently generate video
segments or extract features from them. The most outstand-
ing generative algorithms are the variational autoencoders
(VAEs) and generative adversarial networks (GANs).

• Variational auto-encoders: Their architecture resem-
bles an auto-encoder, with the difference that their latent
variable distribution is regularized during the training.
VAEs stemmed from the limitation of auto-encoders to
generate new, unseen data, due to the fact that the dis-
tribution of the latent variable is unknown. To alleviate
this issue, VAEs are trained to learn the distribution of
the latent variable, assuming that it follows a Gaussian
distribution with a mean µ and variance σ2 [50]. One
example of a VAE-based architecture for video object
detection is presented in [67], where a modified VAE
architecture, built on top of a Mask R-CNN is proposed,
in order to detect and to segment multiple instances in
diverse videos. The proposed architecture outperforms
MaskTrack R-CNN [121], because the MaskTrack R-
CNN architecture depends entirely on the Mask R-CNN
to perform predictions, resulting in difficulties to handle
false negative proposals of the Mask R-CNN in highly
diverse videos with occlusions, deformations, and pose
variations of objects. By contrast, the architecture pro-
posed in [67] merges a VAE with a Mask R-CNN
network in a topology consisting of one encoder and
three decoders. This results in three parallel branches
that provide strong complements for predictions about
bounding boxes and mask features, and they signifi-
cantly reduce the number of false negatives in the Mask
R-CNN module.

• Generative adversarial networks: Generative adver-
sarial networks are built on the basis of a two-player,
min-max game. The generator network G and the dis-
criminator network D correspond to the first and the
second player respectively. The generator’s objective
is to mislead the discriminator by generating natural-
looking data (e.g. images, videos, etc.) from a random,
latent vector z. The discriminator on the other hand,
tries to distinguish whether the data are real or fake
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(generated). The game is modeled as the following
optimization problem:

min
G

max
D

(G,D) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z))].
(22)

A generative adversarial approach is developed in [102],
to randomly generate masks that correspond to object
appearance variations in time. The masks are then ap-
plied to reduce overfitting via adaptively dropping out
input features. The developed architecture identifies the
mask that maintains the most robust features of the
target objects over a long period of time. In [106] a GAN
is trained on color and depth information in order to
generate similar backgrounds to the test samples. The
generated background samples are then subtracted from
the given test samples to detect foreground moving ob-
jects. Finally, in [11] the encoder-decoder architecture
of [82], which is limited to process information between
only two adjacent frames, is extended with a GAN, to
enforce temporal and spatial coherence of the generated
object masks and to exploit information within a longer
temporal window. The developed architecture exhibits
similar accuracy as other state-of-the-art computer vi-
sion methods, while it is almost four times faster.

IV. CHALLENGES IN DEEP-LEARNING-BASED
COMPUTER VISION
Despite the tremendous advances in deep learning and the
fast pace of its breakthroughs over the last years, there are
still challenges that prevent it from reaching its full potential.
This section illustrates a set of major challenges related to
computer vision tasks on video analysis with DL techniques.

DL-based methods have succeeded in achieving even
human-level performance in complex, computer vision tasks.
However, this is possible only when massive datasets are
available for training. Data are the core of any DL-based
process and hence their shortage is often responsible for poor
performance. Large-scale amounts of data are not available
for all video applications though.

The impact of data scarcity is further escalated by the
stand-alone approach of DL. A typical workflow for develop-
ing a DL module consists of creating a training set of inputs
associated with outputs and learning the relations between
them. In this way, however, the architecture becomes free-
standing and isolated from prior, useful knowledge. Hence,
the DL performance is highly determined by the existence
of big-volume datasets while at the same time, applications
that are more related to common sense reasoning and less to
categorization, cannot be sufficiently targeted with purely DL
methods [76].

Generalizability is an additional major challenge con-
cerning the performance of a data-driven model trained on
one dataset when applied to other datasets. When training
deep neural networks with high complexity and numerous
parameters, the cost function might have multiple minima,

which minimize the training error but may not generalize
well to unseen data. The presence of noise and outliers in
the training dataset is an additional reason for poor gener-
alizability. Generalizability is also deteriorated due to the
weakness of DL methods to deal with hierarchical structures,
since DL modules tend to fail when generalization depends
on compositional processes [63].

At the same time, although correlation does not imply
causation, they do not seem to be distinguishable for DL. Nu-
merous neural network architectures have surfaced over the
last decades that are highly capable of discovering complex
correlations in data, yet they lack in reasoning about cause-
effect relations or environment changes.

Finally, deep learning has delivered new, highly perform-
ing approaches in computer vision tasks, whose dominance,
however, remains inversely proportional to their explanatory
power. Rationalizing the output of data-driven techniques is
a critical issue since more and more data-driven systems are
adopted in safety-critical and high impact applications.

V. INTEGRATING DEEP LEARNING WITH DOMAIN
KNOWLEDGE
A. MOTIVATION
A prudent approach to address the abovementioned chal-
lenges is to expand the current methods and to merge them
with principles that govern the dynamic behavior of sys-
tems over the time, enabling an adaptation to new, unseen
scenarios. Combining DL-based techniques with equation-
based dynamic models (DMs) in a complementary way, or
in other words, integrating common sense understanding
into artificial intelligence constitutes a particularly interesting
challenge for computer vision systems.

Enabling data-driven vision systems to understand the
principles that govern the behavior of objects is essential
for the development of autonomous systems that understand
observed scenarios and have the ability to adopt these princi-
ples to a never seen situation. Leveraging domain knowledge
to identify equation-based models that describe how the
properties of objects and entities change over time and em-
bedding them into DL techniques can lead to novel, highly
robust, and performing architectures. Such models could be
developed for instance from well-known first principles in
order to describe how an object moves and they could be
coupled with DL methods forming a hybrid computer vision
architecture. It is straightforward to conclude that hybrid
architectures are more efficient compared to purely data-
driven or model-based techniques as they harness the benefits
of both disciplines. Hybrid methods that combine scientific
domain knowledge with data-driven models allow for ac-
curate inference even with imperfect models and limited
amounts of data.

The integration of the two disciplines in a hybrid architec-
ture can be realized either by infusing mathematical rules to
a DL architecture or by combining the operation of the two
separate modules in a complementary manner. An advantage
of this second version of a hybrid architecture is the fact that
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an easy and straightforward recalibration of the DM module
is feasible if a bidirectional interaction between the two mod-
ules is enabled. More specifically, the DL module, which can
be re-trained incrementally when new data become available,
can also enable the recalibration of the DM module. This
results in a hybrid architecture which is highly flexible and
easily adaptable to different scenarios.

Hybrid architectures merging data-driven techniques with
domain knowledge, such as from physics have been recently
developed, introducing a novel research field which is still
in its infancy [55], [90]. As a result, their applications are
limited mainly to topics related to climate science and geol-
ogy. Their expansion to other disciplines like computer vision
tasks remains a challenging research topic but would un-
doubtedly contribute towards addressing the abovementioned
impediments in purely data-driven methods.

Sensor data

Neural network

Dynamic model

FIGURE 3: Hybrid architecture. The dynamic model could
refer to a first-principle model or any other mathematical
or computer model that is derived from domain knowledge
and that describes how the properties of objects and entities
change over time.

B. HYBRID ARCHITECTURES
A taxonomy of four general classes for integrated data-
driven and model-based techniques can be derived. This
classification is based on the level at which the integration
takes place [55], [90]. More specifically, the four classes
are: (1) preprocessing level, (2) initialization, (3) design of
architecture, and (4) regularization. This section presents an
analysis of these different methodologies.

1) Data prepossessing level
Data preprocessing is essential in all data-driven techniques
before passing the data through the DL module. The reason is
straightforward: the quality of data determines the informa-
tion that can be extracted and hence, it directly influences the
learning process of the DL algorithm. As a result, it is vital
that we apply a preprocessing technique before passing the
data through the DL model.

The concept of data preprocessing is a major area in the
field of deep learning. There are three main steps involved
in data preprocessing, that is: (1) data cleaning, (2) data
transformation, and (3) data reduction. Data cleaning refers
to the handling of missing data as well as, to noise removal.
Data transformation may include normalization of the data,
band-pass filtering, downsampling, and feature selection.
When the input involves time-series signals, the data can

be converted to the frequency domain via the fast Fourier
transform (FFT). This implementation can be implemented
in anomaly detection such as e.g. in the bearings of a rotating
machine [94]. Finally, reducing the dimension of the feature
set is another technique widely applied when preprocessing
the data. A thorough analysis of the data preprocessing
techniques is presented in [21].

2) Initialization
One important design choice when building a neural network
architecture, is related to the parameter initialization [117].
Iterative optimization algorithms such as gradient descent
are used during the process of training a neural network in
order to estimate the network’s parameters. In this process,
an initial value for the parameters is required as a first step to
start the optimization process. Quite often the initialization
of the parameters is done based on a random distribution.
Random initialization though can make the optimization
algorithm that is employed for the calculation of the network
weights to converge to local minima or saddle points.

An approach towards this issue would be to use a technique
called transfer learning [85]. The basic idea of transfer learn-
ing is based on pretraining a neural network on a simpler,
related problem. This pretraining task takes place under the
assumption that a big quantity of data is available. This pre-
trained neural network can then be implemented as the initial
state for the training of the original problem as it is closer
to the optimal parameters value than random initialization.
Transfer learning is a widely used technique in complex
DL applications such as natural language processing and
computer vision. However, the performance of this technique
is highly dependent on the availability of big-scale data. An
alternative approach is to employ domain-specific knowledge
to assist the selection of the initial values of the parameters
involved [55]. In this way, first-principle models can be used
to generate approximate simulations for the initialization of
the parameters of the neural network. Domain knowledge
can ensure a reliable initialization of the parameters, which
can assist in achieving generalizable, interpretable, and phys-
ically consistent architectures.

3) Design of architecture
Data-driven techniques have made a major impact at real-
izing highly performing systems for solving hard problems
related to pattern recognition, prediction, etc. However, a
major impediment in their wide adoption in critical applica-
tions is their “black box” nature since our understanding of
their complexity is limited. Hence, domain knowledge can be
infused in a DL architecture to ensure its interpretability.

One possible approach for this integration is to infuse the
output of the equation-based model fDM as input to the DL
module fDL, i.e. fhybrid : (X,PDM, PDL) → Y where X is
the input, Y is the output, PDM, PDL the parameters of the
dynamic model and the DL model respectively, and fhybrid
the composition of the two functions, fhybrid = fDL ◦ fDM

[90].
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Two main categories of architectures can result from merg-
ing DL with dynamic models, founded on prior domain
knowledge. In the first category, the output of the model is
fed through the DL module at the first or at an additional
layer. In the second category, the model is embedded into
the DL module. Many architectures with respect to the first
class have surfaced lately in the field of climate and ge-
ology applications. In [52], [56], the output of a physics-
based model is provided as an additional input feature to
the DL module in an application related to predicting the
temperature of a lake based on the depth. In [86], a physics-
based neural network architecture is used in order to simulate
broadband earthquake ground motions. The DL module is
used to predict the ground motion in the short term, including
transient effects, which are particularly complex to model
mathematically. The DM module is then used to simulate the
response in a long-term period.

In the second class, the DM module is embedded into
the DL module architecture. An example of this class is a
physics-based model with an RNN including LSTMs [101]
where the sensor data as well as the DM generated output are
ingested as input to the RNN architecture.

4) Regularization

Deep neural networks can involve numerous parameters.
However, when no large amounts of data are available, deep
neural networks tend to overfit or, in other words, they fail to
discover the underlying relationship described by the training
data and hence they cannot extrapolate to observed data
outside the training set. One way to handle this issue is to
apply physical constraints on the loss function of the neural
network. Several regularization techniques have been devel-
oped in this way, to prevent neural networks from overfitting.
This is achieved by applying penalties to layer parameters,
and by integrating these penalties in the loss function that is
minimized during training. The loss function in that case will
be of the following form [117]:

fLoss = fTrn(Y, Ŷ ) + λR(W ) + γfPhy(Ŷ ), (23)

where fTrn corresponds to a function that represents the
error between the predicted value Ŷ and the true value Y .
This function can be for example the mean squared error
or cross entropy. In addition, λ represents a hyperparameter
determining the weight of the regularization term R(W ).
The first two terms of (23) describe the standard loss func-
tion used when training a neural network. The additional
term fPhy corresponds to the physics-based constraint and
it aims to ensure the consistency of the trained system with
first-principle laws or dynamic models. The weight of this
function is represented by the hyperparameter γ. Given the
true value Y , the following is considered as the general
optimization problem to solve for (23):

argmin
w

fTrn(Y, Ŷ ) + λR(W ) + γfPhy(Ŷ ). (24)

By introducing model-based constraints in the loss func-
tion for the train of DL modules, scientific consistency is
achieved, which is essential for training generalizable mod-
els. In addition, the physics-based loss function fPhy requires
no labeled data which allows the training of the DL module to
be expanded to non-labeled data. A plethora of implementa-
tions that impose physics-based constraints on the training of
DL modes has surfaced recently [81], [103], [107]. In [56]
a physics-based loss function is used for the training of a
temperature lake predictor. The loss function encompasses
a constraint resulting from the relationship between the tem-
perature, the density, and the depth of the lake water. In this
way, the trained predictor achieves enhanced generalizability
while at the same time consistency with first-principle laws
is ensured for the results. In [51], the application of lake tem-
perature prediction is extended to include temporal physical
processes. More specifically, a physics-based RNN is devel-
oped that involves energy conservation constraints. Standard
LSTM models store specific information at each time step,
which feeds to the next time step. However, when the models
are trained on data from specific seasons or from multiple
years, it is difficult to generalize to data from different time
periods since the time profiles vary significantly between
each other. By including the energy flux changes, however,
which determine the temperature changes, the architecture
can successfully predict the lake temperature, even on unseen
data. Another example is given in [53], where the data-
driven model is penalized with the equation describing the
time evolution of waves in order to identify the location of
underwater obstacles from acoustic measurements. In this
way, the accuracy of the model outside the training dataset
is enhanced. Finally, [10] presents a case where multiple
physics-based terms are present in a loss function. These
might be competing loss terms with multiple local minima
and correspond to different physics equations that need to be
minimized together. Hence, an approach is presented where
the contribution of each term is adaptively tuned during the
training phase in order to improve the generalizability of the
developed architecture.

C. HYBRID ARCHITECTURE IMPLEMENTATION IN
COMPUTER VISION
Integrating useful domain knowledge into DL-based com-
puter vision tasks is essential to build robust, generalizable
systems and to compensate for the lack of large-volume
training data. An example of such a hybrid architecture is
proposed in [103], where the height of a free-falling object
is estimated on each frame of a video by training a CNN
to detect and track objects obeying to free-falling laws of
physics. The training of this CNN is based on a loss function
in which first-principle laws are encoded. In [1], physics are
blended with DL in the framework of a two-stage encoder
with the aim to recover the shape of an object based on polar-
ized photos. In [61] an LSTM architecture is combined with
a dynamics model in order to acquire a proposal distribution
over an object’s state. Finally, in [119], a generative vision
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system is proposed for estimating physical features of objects
by integrating the output of a multi-physics simulation engine
in the loop.

Integrating DL techniques with domain knowledge is a re-
cently introduced research topic [55], [90]. As a result, using
domain knowledge to derive first-principle models or on a
broader perspective, any dynamic mathematical or computer
model [73] that describes how the properties of objects and
entities change over time (Figure 3), and merging them with
existing DL architectures constitute an especially promising
research task to address the challenges of DL in computer
vision.

VI. OUTLOOK: FUTURE DIRECTIONS IN DEEP
LEARNING FOR OBJECT DETECTION AND
SEGMENTATION IN VIDEOS
Deep learning has brought a catalytic effect in the field of
computer vision for video analysis. Although nobody knows
with certainty how DL will evolve over the coming decades,
it is expected that much of the future research will revolve
around the following critical areas [32], [77], [114]:

• Out-of-distribution generalization: Future computer
vision systems should be able to make accurate predic-
tions not only in a known context but also for data with
different distributions than the ones learned from the
training samples. The main reason behind the difficulty
of DL systems to accurately generalize and predict on
unseen data is caused by the fundamental assumption
that training and test data are independent and iden-
tically distributed (IID) [97], [128]. In many real-life
cases however, the IID assumption is hardly satisfied.
The ability to generalize under distribution shifts is
of critical significance, and hence, the investigation of
out-of-distribution generalization is expected to attract
enormous research interest in the academic field.

• Deep learning systems with causal structures:
Causality is expected to be a central strand of DL
research in the coming years [89]. Developing DL sys-
tems that can represent causal relationships can increase
their safety and reliability, and introducing a causal
understanding of basic concepts in DL methods could
certainly be the key to achieve robustness in complex
real-world environments.

• Effective representation learning with few or no la-
beled data: While techniques for representation learn-
ing when massive labeled datasets are available have
become remarkably powerful, various challenges re-
main in the case of limited labeled data. Developing
approaches for addressing the issue of labeled data
scarcity is an emerging popular direction of research.

• Adaptation in time-varying environments: Adapt-
ing to time-varying environments and other dynamic-
behavior-related problems has been under examination
for many years and it is expected to gain massive at-
tention by the DL research community over the coming
years. Allowing integration of new knowledge online

and at the same time being capable of preserving the
knowledge learned during previous interactions are only
a few of the desirable features of future vision mecha-
nisms.

• Multi-modal learning: Ultimately, major emphasis in
research is expected to be placed upon developing meth-
ods that can process and link information combining
modalities from various architectures [65], [76], since
unimodal DL methods seem to fail to fulfill all the
desirable future DL capabilities. In particular, combined
architectures that integrate DL modules with domain
knowledge could provide a suitable answer to most
research questions arising from the DL directions listed
above.

VII. CONCLUSIONS
In this paper a study is presented about detection and seg-
mentation of objects applied to video segments. A review
of the currently existing techniques has been presented as
well as the major challenges that data-driven techniques face.
Then an extension of the data-driven techniques to a hybrid
architecture that fuses data-driven techniques with equation-
based models describing the dynamic behavior of objects and
entities over time has been proposed in order to address issues
like data scarcity, generalizability, and interpretability of the
purely data-driven architectures. Finally, a survey of the cur-
rent developments in hybrid architectures has been presented.
We hope that this work will assist in better understanding the
current status of DL in computer vision for video analysis as
well as in presenting interesting directions as guidelines for
future work.
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