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Abstract

Prescribed-performance control (PPC) for high-power dynamics with time-varying unknown control coefficients requires to
address two open problems: a) given a Nussbaum function, which properties hold for the power of the Nussbaum function?
b) to avoid high gains, how to design a switching gain that increases only when the tracking error is close to violate the
performance bounds? To address the first problem, we show with a counterexample and a positive example that only some
Nussbaum functions are suited to handle time-varying unknown control coefficients for high-power dynamics. To address the
second problem, we propose a new switching conditional inequality.
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1 Introduction

Over the last decade, high-power nonlinear systems have
been attracting great attention due to two reasons: first,
high-power nonlinear systems generalize strict-feedback
and pure-feedback systems by including more general
odd-integer powers [1, 2, 3] in the dynamics; second,
high-power nonlinear systems have been used to de-
scribe classes of practical systems such as dynamical
boiler-turbine units [4], hydraulic dynamics [5], aircraft
wing dynamics [6], or mechanical systems with cubic
force-deformation relations [1, 2, 3]. The main technique
for control of high-power nonlinear systems is the so-
called adding-one-power-integrator technique, success-
fully used in several stabilization [1, 7] and tracking prob-
lems [2, 3]. However, handling unknown signs of constant
or time-varying control coefficients [8, 9, 10, 11, 12, 13,
14, 15, 16], and guaranteeing transient and steady-state
specifications [17, 18, 19] still pose open problems for
high-power nonlinear systems, as explained hereafter.

The term “sign of the control coefficient” (also called

∗ Corresponding author
1 This research was initiated when the first author was a
PhD student at Delft Center for Systems and Control, TU
Delft. This work was supported by the Young Talent Fund
of Association for Science and Technology in Shaaxi, China
under grant 20220101.

“control direction” in some literature), refers to the
sign of the control gain function. A control law in the
presence of this uncertainty may apply its control ac-
tion with an incorrect sign and destabilize the system
[20, 21]. These signs have been assumed to be known
until the celebrated method of Nussbaum [22], which
proved stability with unknown signs using a special
function (later called Nussbaum function) alternating
its effects in both directions of the sign. Although alter-
native methods have been proposed to tackle unknown
control coefficients, such as logic-based switching [23],
nonlinear proportional-integral control [24], and ex-
tremum seeking [25], the Nussbaum function method is
probably the most studied one. A fundamental tool to
prove closed-loop stability with the Nussbaum function
is the so-called conditional inequality, which consists
in guaranteeing the boundedness of a Lyapunov-like
function when its derivative along the system trajec-
tories is upper bounded by an appropriate expression
depending on the Nussbaum function. As the control
coefficients can be constant or time-varying functions,
three representative conditional inequalities have been
proposed so far [20, 26, 27] to handle these cases. The
first conditional inequality was formulated in [26] to
handle unknown signs of constant control coefficients.
The second conditional inequality in [27] (see also dis-
cussions in [28]) is given in integral form to handle
unknown signs of time-varying control coefficients. Re-
cently, [20] distinguished between type A and type B
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Nussbaum functions, where the former can handle con-
stant control coefficients, but only the latter can handle
time-varying control coefficients. Unfortunately, the ca-
pability to handle time-varying control coefficients was
shown in [20] only for strict-feedback and pure-feedback
systems. At the same time, it can be verified that com-
bining the adding-one-power-integrator technique with
Nussbaum functions [17] requires to take the derivative
of the virtual control laws, which gives rise to negative
fractional terms not well defined when the error crosses
zero. Therefore, handling high-power nonlinear systems
via the Nussbaum method is an open question due
to the presence of positive odd-integer power in their
dynamics.

With respect to guaranteeing transient and steady-
state specifications (e.g. convergence rate, overshoot, or
steady-state error), the prescribed-performance control
(PPC) technique first [29] and low-complexity PPC later
[30] have been successfully applied to strict-feedback
[31, 32] and pure-feedback systems [30] with known
signs of the control coefficients. To handle unknown
signs, a low-complexity control scheme was recently de-
veloped in [33] for strict-feedback dynamics. Although
the combination of the Nussbaum function method and
PPC appears promising, one major challenge of this di-
rection is to avoid high-gain issues, due to the presence
of high powers. With these problems in mind, realiz-
ing Nussbaum PPC for high-power nonlinear dynamics
with unknown signs of time-varying control coefficients
requires to answer two open questions: (i) is the positive
odd-integer power of a type B Nussbaum function still a
type B Nussbaum function? (ii) is it possible to design a
different conditional inequality that may allow the Nuss-
baum gain to stop increasing over some time intervals?

This paper answers these questions as follows:

• A counterexample and a positive example are given
to show that the positive odd-integer-power of a type
B Nussbaum function may not be a type B Nussbaum
function. Only some particular type B Nussbaum func-
tions keep their property even when elevated to a pos-
itive odd-integer power. These latter functions can be
used for handling time-varying unknown control coeffi-
cients in high-power systems.

• A new switching conditional inequality is proposed.
This inequality encompasses existing ones as special
cases: instead of always increasing the Nussbaum gain,
its design is based on increasing the Nussbaum gain
only when the tracking error is close to violate the
performance bounds.

2 Problem Formulation

This paper considers the high-power nonlinear systems:
χ̇i(t) = ϕi(t,χi) + ℓi(t,χi)χ

ri
i+1(t), i = 1, . . . , n− 1,

χ̇n(t) = ϕn(t,χn) + ℓn(t,χn)u
rn(t),

y(t) = χ1(t),
(1)

where χi = [χ1, . . . , χi]
T ∈ Ri, ri, i = 1, . . . , n, are

known positive-odd integers, and u ∈ R is the con-
trol input. The unknown continuous nonlinear functions
ϕi(·, ·) : R+ × Ri → R (referred to as drift coefficients)
and ℓi(·, ·) : R+ × Ri → R, i = 1, . . . , n, (referred to as
control coefficients) satisfy the following assumption.

Assumption 1 [31] There exist unknown, continuous,
and positive functions ϕi(·) : Ri → R+, ℓi(·), and ℓi(·) :
Ri → R+, i = 1, . . . , n, such that for all t

|ϕi(t,χi)| ≤ ϕi(χi), ℓi(χi) ≤ |ℓi(t,χi)| ≤ ℓi(χi). (2)

In line with standard literature on Nussbaum-based con-
trol [34, 35, 36], Assumption 1 allows the control coeffi-
cients ℓi(·, ·) to be unknown but fixed, thus guaranteeing
controllability of dynamics (1). Nussbaum-based defini-
tions follow.

Definition 1 [20, Definition 3.1], [22] A continuous
function N (·) : [0,+∞) → (−∞,+∞) is called a type
A Nussbaum function if it satisfies

lim
y→+∞

sup

∫ y

0
N (s)ds

y
= +∞, lim

y→+∞
inf

∫ y

0
N (s)ds

y
= −∞.

Definition 2 [20, Definition 4.3] A continuous function
N (·) : [0,+∞) → (−∞,+∞) is called a type B Nuss-
baum function if it satisfies

lim
y→+∞

∫ y

0
N+(s)ds

y
= +∞, lim

y→+∞
sup

∫ y

0
N−(s)ds∫ y

0
N+(s)ds

= +∞,

lim
y→+∞

∫ y

0
N−(s)ds

y
= +∞, lim

y→+∞
sup

∫ y

0
N+(s)ds∫ y

0
N−(s)ds

= +∞,

where N+(s) = max
{
0,N (s)

}
and N−(s) = max

{
0,−

N (s)
}
are the positive and negative truncated functions

of N (s).

Remark 1 Note that type B Nussbaum functions are a
special class of type A Nussbaum functions [20]. It was
shown in [20] that type A Nussbaum functions can handle
unknown signs of constant control coefficients, but may
fail to handle unknown signs of time-varying control co-
efficients. Accordingly, type B Nussbaum functions were
proposed to tackle the time-varying scenarios.
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The main problem studied in this paper is stated below.

Prescribed-performance control (PPC) problem:
Consider a bounded reference signal yr(t) with bounded
derivative and a performance function ρ1(t) = (ρ1,0 −
ρ1,∞) exp(−κ1t) + ρ1,∞ for positive constants ρ1,0 >
ρ1,∞ and κ1. The PPC problem aims to design a con-
troller for the system (1) such that the closed-loop sys-
tem satisfies the following two properties:

(P1) The output tracking error e1(t) = y(t) − yr(t)
evolves in the prescribed set Ω =

{
e1(t) ∈

R | |e1(t)| < ρ1(t)
}
for t ≥ 0; and

(P2) The closed-loop signals are bounded on the entire
time domain [0,+∞).

The PPC problem has been well formulated in litera-
ture, e.g., [29, 30]. However, this problem remains un-
solved for the class of dynamics (1) and even the sta-
bility analysis recently proposed in [20] does not apply.
Solving this problem requires to address two open is-
sues: given a Nussbaum function, which properties hold
for the power of the Nussbaum function? To avoid high
gains, how to design a switching gain that increases only
when the tracking error is close to violate the perfor-
mance bounds? These two problems are addressed by
the technical results in the next section.

3 Technical Results

The high-power terms in (1) require that the positive
odd-integer power of a Nussbaum function, denoted by
N r(s), is still a Nussbaum function. However, we show
that the positive odd-integer power of a type B Nuss-
baum function may not always result in a type B Nuss-
baum function. A counterexample and a positive exam-
ple are given in the following two propositions, with the
proofs given in Appendix.

Proposition 1 (Counterexample) Consider the
function

N (s) =
∑

λ∈N+
Nλ(s+ 2− 2λ), (3)

where N+ is the set of positive integers and

Nλ(s) =


2(λ

3+ 1
3 )λ sin

(
sπ
)
, if s ∈

[
0, 1
)

− 2λ
4

sin

(
s− 1

2λ − 1
π

)
, if s ∈

[
1, 2λ

)
0, otherwise.

(4)

Then, N (·) is a type B Nussbaum function, but N r(·)
with r ≥ 3 a positive odd integer is not a type BNussbaum
function.

Proposition 2 (Positive example) Consider the
function

N (s) = exp(µs2) cos
(πs

2

)
, µ > 0. (5)

Then, N r(·) is a type B Nussbaum function for any pos-
itive odd integer r ≥ 1.

Remark 2 The above propositions may eventually lead
to a new class of Nussbaum functions which are those
functions where N r(·) satisfies Definition 2 for any
positive odd integer r. The function (5), popular in
Nussbaum-based control, belongs to such class.

The following lemma is instrumental to constructing a
Nussbaum gain that increases only when the tracking
error is close to violate the performance bounds.

Lemma 1 (Switching conditional inequality) Let
N (·) be a type B Nussbaum function. Consider two con-
tinuous and piecewise differentiable functions V (·) and
s(·) such that

V̇ (t) ≤
[
ℓ(t)N (s(t)) + β

]
ṡ(t), (6)

ṡ(t)

{
≥ 0, if V (t) ≥ ϕ,

= 0, if V (t) < ϕ,
(7)

where ϕ and β are positive constants, V (0) < ϕ, s(0) = 0,
and ℓ(·) is a time-varying unknown function satisfying
ℓ(t) ∈

[
l1, l2

]
, ∀t with either 0 > l2 > l1 or l2 > l1 >

0. Then, V (·) and s(·) are bounded on the entire time
domain [0,+∞).

Figure 1. Illustration of the evolution of V (·).

Proof. For better comprehension, a sketch of the idea
behind (7) is shown in Fig. 1. Let 0 = t0 < t1 ≤ t2 ≤ t3 ≤
. . . be the time sequence satisfying V (tj) = ϕ, V (t) <
ϕ, ∀t ∈ (t2j−2, t2j−1), and V (t) ≥ ϕ, ∀t ∈ [t2j−1, t2j ],
for j = 1, 2, . . .. According to the time sequence above,
we consider the case of t ∈ [t2m−1, t2m] for m ∈ N+.

Integrating V̇ (·) over the time intervals [t0, t1), [t1, t2),
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...., [t2m−2, t2m−1), [t2m−1, t] results in

V (t) ≤
m−1∑
j=1

∫ t2j

t2j−1

[
ℓ(t)N (s(t)) + β

]
ṡ(t)dt+

m∑
i=1

∫ t2j−1

t2j−2

V̇ (t)dt

+ ϕ+

∫ t

t2m−1

[
ℓ(t)N (s(t)) + β

]
ṡ(t)dt

≤ϕ+

m−1∑
j=1

∫ t2j

t2j−1

[
ℓ(t)N (s(t)) + β

]
ṡ(t)dt

+

∫ t

t2m−1

[
ℓ(t)N (s(t)) + β

]
ṡ(t)dt,

where the integral over t ∈ [t2j−2, t2j−1) has been re-
moved by observing that V (t2j−1) = V (t2j−2) = ϕ.
Then, it follows that

V (t) ≤ϕ+

m−1∑
j=1

∫ t2j

t2j−1

[
ℓ(t)N (s(t)) + β

]
ṡ(t)dt

+

m−1∑
j=1

∫ t2j−1

t2j−2

[
ℓ(t)N (s(t)) + β

]
ṡ(t)dt︸ ︷︷ ︸

Θ(s(t))

+

∫ t

t2m−1

[
ℓ(t)N (s(t)) + β

]
ṡ(t)dt

≤ϕ+

∫ t

0

[
ℓ(t)N (s(t)) + β

]
ṡ(t)dt

≤ϕ+ βs(t) + l2

∫ s(t)

0

N+(τ)dτ − l1

∫ s(t)

0

N−(τ)dτ︸ ︷︷ ︸
Ξ(s(t))

,

(8)

by noting the facts that Θ(s(t)) ≡ 0 due to ṡ(t) = 0 for
t ∈ [t2j−2, t2j−1], s(0) = 0, and N (s) = N+(s)−N−(s).
When s(t) = 0, ∀t, the boundedness of s(t) and V (t) can
be trivially obtained according to (8).

When s(t) ̸= 0, it is obtained from (8) that

0 ≤ V (t)

s(t)
≤

∆(s(t))︷ ︸︸ ︷[
Ξ
(
s(t)

)
s(t)

]
+

ϕ

s(t)
+ β︸ ︷︷ ︸

Υ(s(t))

. (9)

In the following, we aim to prove boundedness of s(·) on
[0,+∞) by contradiction. If s(·) is unbounded, one can
calculate the limit behavior of ∆(s) in (9) as s → +∞,
using the Definition 2. In particular, for the case of 0 >

l2 > l1,

lim
s→+∞

inf ∆(s)

= lim
s→+∞

→+∞︷ ︸︸ ︷
1

s

∫ s

0

N−(τ)dτ

→−∞︷ ︸︸ ︷[
− l1 + l2 sup

∫ s

0
N+(τ)dτ∫ s

0
N−(τ)dτ︸ ︷︷ ︸

→−∞

]

=−∞, (10)

and similarly, for the case of l2 > l1 > 0,

lim
s→+∞

inf ∆(s)

= lim
s→+∞

→+∞︷ ︸︸ ︷
1

s

∫ s

0

N+(τ)dτ

→−∞︷ ︸︸ ︷[
l2 −l1 sup

∫ s

0
N−(τ)dτ∫ s

0
N+(τ)dτ︸ ︷︷ ︸

→−∞

]

=−∞. (11)

Note that ‘inf’ in (10) and (11) becomes ‘sup’ due to
l2 < 0 and l1 > 0, respectively. The relations above indi-
cate that an unbounded s leads to a negative unbounded
∆(s). Independently of whether the unboundedness of
∆(s) occurs in finite time or at infinity (this depends
on the behavior of s(·)), the consequence would be that
there exists a time t̄ > 0 such that

Υ
(
s(t̄)

)
≤ −ε

for some positive ε, which contradicts (9). It concludes
that s(·) is bounded over the entire time domain [0,+∞),
so are Ξ(s(·)) and hence V (·) from (8).

Finally, let us now consider the case of t ∈ (t2m, t2m+1).
The boundedness of s(·) and V (·) is guaranteed by the
above argument for t = t2m and the facts that V (t) < ϕ
and ṡ(t) = 0 for t ∈ (t2m, t2m+1). ■

Remark 3 Lemma 1 encompasses [20, Lemma 4.3] as
special case when ṡ(t) = 0 in (7) is never active (e.g.
when ϕ is sufficiently small). Also, while existing condi-
tional inequalities [27, Lemma 2], [9, Lemma 1], and [11,
Lemma 2] guarantee boundedness on a finite time inter-
val [0, tδ) with tδ < +∞ (cf. discussion in [28, Remark
1]), the proposed Lemma 1 can ensure boundedness on
the entire time domain [0,+∞). This is due to the prop-
erties of type B Nussbaum functions used in the proof by
contradiction (cf. (10)-(11)).

4 Nussbaum Gain Adaptive PPC Design

The development of this section starts with the perfor-
mance functions ρi(t) = (ρi,0 − ρi,∞) exp(−κit) + ρi,∞
for positive constants ρi,0 > ρi,∞ and κi, i = 1, . . . , n.
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In line with [29, 30, 31, 32], the initial conditions ei(0)
should satisfy the initial feasibility |ei(0)| < ρi(0), i =
1, . . . , n, i.e. start inside the prescribed performance. Let
α1(t) = yr(t), αi+1(t), i = 1, . . . , n, be the virtual con-
trol laws to be designed, and u(t) = αn+1(t) be the real
control law.

Next, we introduce the virtual tracking error ei(t) =
χi(t)− αi(t) and the error transformation

Ti(t) =
tan

(
π
2

ei(t)
ρi(t)

)
cos2

(
π
2

ei(t)
ρi(t)

) , i = 1, . . . , n. (12)

The virtual control functions are devised as follows,

αi+1(t) = ϱiN
(
si(t)

)
Ti(t), i = 1, . . . , n, (13)

where ϱi > 0 is a design parameter and N r(·) is a type
B Nussbaum function for any positive odd integer r ≥ 1.
An adaptation law for si(t) is constructed as

ṡi(t) =

{
Tri+1
i (t), if |ei(t)| ≥ δiρi(t)

0, if |ei(t)| < δiρi(t)
(14)

for a constant δi ∈ (0, 1). Similarly to [31, eq. (8)], equa-
tion (14) increases only when tracking error is close to
violate the performance bound: however, the stability
analysis in [31] is for strict-feedback dynamics and can-
not be used to prove stability here. The way to prove
the stability of this mechanism relies on the proposed
Lemma 1. Before moving on, we give a technical lemma
that is similar to [31, Lemma 3] and the proof is thus
omitted. Then, the main result is stated.

Lemma 2 If χi(·), α̇i(·), si(·), Ti(·), and ei+1(·) are
bounded on a time interval [0, tδ)with tδ a strictly positive
time instant, then α̇i+1(·) is bounded on [0, tδ) for i =
1, . . . , n.

Theorem 1 Under Assumption 1 and with N r(·) being
a type B Nussbaum function for any positive odd integer
r ≥ 1, consider the closed-loop system composed of (1),
the control laws (12)-(13), and the adaptation law (14).
In particular, N r(·) is a type B Nussbaum function for
any positive odd integer r ≥ 1. If the initial conditions
ei(0) satisfy |ei(0)| < ρi(0), i = 1, . . . , n, then the PPC
problem is solved in the sense of P1 and P2.

Proof. (Time dependence of the functions ei, αi, α̇i, and
N (si) will be omitted whenever unambiguous). Taking

the time derivative of ei along (1), (12) and (13) yields

ėi = χ̇i − α̇i = ϕi(t,χi) + ℓi(t,χi)(ei+1 + αi+1)
ri − α̇i

= ϕi(t,χi) + ℓi(t,χi)ϑi(ei+1, αi+1)e
ri
i+1 − α̇i

+ ℓi(t,χi)γi(ei+1, αi+1)α
ri
i+1

= Fi(t) + γi(ei+1, αi+1)ℓi(t,χi)ϱ
ri
i N ri(si)T

ri
i (t),

ėn = Fn(t) + ℓn(t,χn)ϱ
rn
n N rn(sn)T

rn
n (t), (15)

where the second equality used the separation lemma
of [37, 38], |ϑi(ei+1, αi+1)| ≤ ϑ̄i with ϑ̄i a positive
constant, γi(ei+1, αi+1) ∈ [1 − ϵ̄i, 1 + ϵ̄i] with an
arbitrary constant ϵ̄i ∈ (0, 1), Fi(t) = ϕi(t,χi) +
ℓi(t,χi)ϑi(ei+1, αi+1)e

ri
i+1 − α̇i, i = 1, . . . , n − 1, and

Fn(t) = ϕn(t,χn)− α̇n.

In what follows, we will prove that |ei(t)| < ρi(t), i =
1, . . . , n, holds for t ≥ 0 using a contradiction. Suppose
there exists an error em such that

|em(tm)| ≥ ρm(tm), ∀m ∈ {1, . . . , n}. (16)

Let tδ = min{tm} be the time instant when (16) is vio-
lated for the first time. Then, due to the continuity of ei
and the fact that |ei(0)| < ρi(0), i = 1, . . . , n, it follows
that

|ei(t)| < ρi(t), ∀t ∈ [0, tδ), (17)

and that there exists an error eδ satisfying

limt→t−
δ
|eδ(t)| = limt→t−

δ
|ρδ(t)|, δ ∈ {1, . . . , n}, (18)

where t−δ denotes the left limit of tδ.

To seek a contradiction, the analysis given below is con-
ducted on a finite time interval [0, tδ).

Step 1: Consider the Lyapunov function candidate

V1(t) =
1

2
tan2

(
π

2

e1(t)

ρ1(t)

)
, ∀t ∈ [0, tδ). (19)

When |e1(t)| < δ1ρ1(t), it immediately follows that

V1(t) <
1

2
tan2

(
πδ1
2

)
≜ ψ1. (20)

From (14), we further have

ṡ1(t) = 0, when V1(t) < ψ1. (21)

When |e1(t)| ≥ δ1ρ1(t), V1(t) ≥ ψ1 holds. Taking the
time derivative of V1(t) along (15) yields

V̇1(t) =
π

2

T1(t)

ρ21(t)

[
ė1(t)ρ1(t)− e1(t)ρ̇1(t)

]
= T1(t)F1f (t) + g1f (t)N

r1(s1)T
r1+1
1 (t), (22)

5



where

F1f (t) =
π

2

(
F1(t)

ρ1(t)
− e1(t)ρ̇1(t)

ρ21(t)

)
,

g1f (t) =
π

2

1

ρ1(t)
γ1(e2, α2)ℓ1(t, χ1)ϱ

r1
1 .

According to the boundedness of yr and its derivative,
α1(·) and α̇1(·) are bounded on [0, tδ), which, together
with (17), yields the boundedness of χ1(·) on [0, tδ). By
Assumption 1, the boundedness of χ1 and α̇1 results in
that of F1(·) and hence F1f (·) on [0, tδ). Invoking the
boundedness of γ1(e2, α2), ρ1(·), and ℓ1(·, χ1) leads to
the boundedness of g1f (·) on [0, tδ). Then, it follows from
the Extreme Value Theorem that there exist positive
constants F̄1f , g1f , and ḡ1f such that

|F1f (t)| ≤ F̄1f , g1f (t) ∈ [g
1f
, ḡ1f ], 0 /∈ [g

1f
, ḡ1f ]. (23)

Substituting |e1(t)| ≥ δ1ρ1(t) into (12) gives

∣∣Tr1
1 (t)

∣∣ ≥ tanr1
(
π
2 δ1
)

cos2r1
(
π
2 δ1
) ≥ tanr1

(π
2
δ1

)
. (24)

Synthesizing (22)-(24) results in

V̇1(t) ≤
|F1f (t)|
|Tr1

1 (t)|
Tr1+1
1 (t) + g1f (t)N

r1(s1)T
r1+1
1 (t)

≤

[
F̄1f

tanr1
(
π
2 δ1
) + g1f (t)N

r1(s1)

]
ṡ1(t). (25)

It is noted from Proposition 5 that N r1(·) is a type B
Nussbaum function. So, we can apply Lemma 1 to prove
that V1(·) and s1(·) are bounded on [0, tδ). In view of
(19), we can claim that there exists a constant σ̄1 > 0
such that |e1(t)| ≤ ρ1(t)− σ̄1 < ρ1(t), ∀t ∈ [0, tδ) (equiv-
alently to the boundedness of T1(·) on [0, tδ)). This, to-
gether with (12) and the boundedness of N (s1), gives
the boundedness of α2(·) and χ2(·) on [0, tδ) due to
χi = ei +αi, i = 1, 2. By Lemma 2, α̇2(·) is bounded on
[0, tδ).

Step i(i = 2, . . . , n): Boundedness of χi(·) and α̇i(·)
on [0, tδ) was obtained from step i − 1. Consider the
Lyapunov function candidate

Vi(t) =
1

2
tan2

(
π

2

ei(t)

ρi(t)

)
, ∀t ∈ [0, tδ). (26)

When |ei(t)| < δiρi(t), it follows that

Vi(t) <
1

2
tan2

(
πδi
2

)
≜ ψi. (27)

From (14) one has

ṡi(t) = 0, when Vi(t) < ψi. (28)

When |ei(t)| ≥ δiρi(t), it holds that Vi(t) ≥ ψi. Taking
the time derivative of Vi(t) along (14) gives

V̇i(t) =
π

2

Ti(t)

ρ2i (t)

[
ėi(t)ρi(t)− ei(t)ρ̇i(t)

]
= Ti(t)Fif (t) + gif (t)N

ri(si)T
ri+1
i (t), (29)

where

Fif (t) =
π

2

(
Fi(t)

ρi(t)
− ei(t)ρ̇i(t)

ρ2i (t)

)
,

gif (t) =
π

2

1

ρi(t)
γi(ei+1, αi+1)ℓi(t,χi)ϱ

ri
i .

In light of Assumption 1 and the boundedness of χi(·),
α̇i(·) and ei+1(·) on [0, tδ), Fi(·) is bounded on [0, tδ),
which further ensures the boundedness of Fif (·) on
[0, tδ). Recalling Assumption 1 and the boundedness of
γi(ei+1, αi+1) leads to that of gif (·) on [0, tδ). Similar to
Step 1, one can conclude there exist positive constants
F̄if , gif , and ḡif such that

|Fif (t)| ≤ F̄if , gif (t) ∈ [g
if
, ḡif ], 0 /∈ [g

if
, ḡif ]. (30)

Substituting |ei(t)| ≥ δiρi(t) into (12) results in

∣∣Tri
i (t)

∣∣ ≥ tanri
(
π
2 δi
)

cos2ri
(
π
2 δi
) ≥ tanri

(π
2
δi

)
. (31)

Summarizing (29)-(31) leads to

V̇i(t) ≤
|Fif (t)|
|Tri

i (t)|
Tri+1
i (t) + gif (t)N

ri(si)T
ri+1
i (t)

≤

[
F̄if

tanri
(
π
2 δi
) + gif (t)N

ri(si)

]
ṡi(t). (32)

Likewise, N ri(·) is a type B Nussbaum function, so
we apply Lemma 1 to prove that Vi(·) and si(·) are
bounded on [0, tδ). According to (26), there exists a con-
stant σ̄i > 0 such that |ei(t)| ≤ ρi(t) − σ̄i < ρi(t)
∀t ∈ [0, tδ), which, combined with (12) and the bound-
edness of N (si), yields the boundedness of αi+1(·) and
χi+1(·) on [0, tδ) owing to χi+1 = ei+1+αi+1. Therefore,
α̇i+1(·) is bounded on [0, tδ) according to Lemma 2.

In summary, we have proved that |ei(t)| ≤ ρi(t)− σ̄i <
ρi(t), i = 1, . . . , n, for t ∈ [0, tδ). However, this contra-
dicts the assumption made in (18) and implies that tδ
should be extended to +∞. As a result, |ei(t)| < ρi(t),
i = 1, . . . , n, holds for t ∈ [0,+∞). Given that Lemma 1

6



holds true on [0,+∞), the boundedness of closed-loop
signals is guaranteed on [0,+∞). This completes the
proof. ■

5 Simulation Verification

Figure 2. Wing section with leading-edge (LE) and trail-
ing-edge (TE) control surfaces.

To validate the proposed method, a two-degree-of-
freedom wing section with leading-edge (LE) and
trailing-edge (TE) control surfaces as shown in Fig. 2 is
considered. The dynamic of this aeroelastic system can
be described by [6, 39]:[

Iα mwxαb

mwxαb mt

][
α̈

ḧ

]
+

[
ch 0

0 cα(α̇)

][
α̇

ḣ

]

+

[
kα(α) 0

0 kh(h)

][
α

h

]
=

[
M

−L

] (33)

where α and h denote the pitch angle and the plunge
displacement, respectively; Iα is the moment of inertia;
mw = mt +ml is the sum of wing section mass mt and
load section mass ml; xα is the distance between the
center of mass and the elastic axis; b is the semi-chord of
the wing; ch is the plunge damping coefficient. The pitch
damping cα(α̇), the pitch stiffness kα(α), and the plunge

stiffness kh(h) are expressed as cα(α̇) =
∑2

j=0 cαjα̇
j ,

kα(α) =
∑2

j=0 kαjα
j , and kh(h) =

∑2
j=0 khjh

j , where
cαj , kαj , and khj are unknown non-zero constants, so
they cannot be used in control design. In (33),M and L
represent the aerodynamic moment and lift expressed by

M=ρU2b2sp

{
c̄lα

(
α+

ḣ

U
+(0.5−a) b α̇

U

)
+c̄lββ+c̄lγγ

}

L= ρU2bsp

{
clα

(
α+

ḣ

U
+(0.5−a) b α̇

U

)
+clββ+clγγ

}

where c̄lα =
(
1
2 + a

)
clα+2cmα , c̄lβ =

(
1
2 + a

)
clβ+2cmβ

,

c̄lγ =
(
1
2 + a

)
clγ + 2cmγ

, and ρ is the air density; U de-

notes the freestream velocity; clα , clβ and clγ are the lift
derivatives; cmα

, cmβ
and cmγ

are the moment deriva-
tives; sp is the span; a is the nondimensional distance
from midchord to the elastic axis; β and γ are the TE
and LE control surface deflections, respectively. With
the change of coordinates χ1 = α, χ2 = α̇, χ3 = h,
χ4 = ḣ, and u = β + γ, we can rewrite (33) as{

χ̇1 = χ2, χ̇2 = ϕ2 (χ̄2) + ℓ2 (χ̄2)χ
3
3,

χ̇3 = χ4, χ̇4 = ϕ4 (χ̄4) + u,
(34)

where ϕ2 (χ) = cᾱ1
χ1 + cα11

χ3
1 + cα̇1

χ2 + cα̇11
χ3
2 +

cḣ1
χ2 + cβ1

β + cγ1
γ, ϕ4 (χ) = cα2

χ1 + cα21
χ3
1 + cα̇2

χ2 +

cα̇21χ
3
2 + ch21χ

3
3 + cḣ2

χ4, and ℓ2 (χ̄2) = mwxαbkh2
with cᾱ1

= c2mtcmα + c1mtxαbclα, cα11
= −mtkα2

,
cα̇1=c2mtcmα(0.5−a) b

U−cα0mt+c1mtxαbclα (0.5−a) b
U ,

cα̇11
= −mtcα2, cḣ1

= c2mtcmα
1
U + c1mtxαbclα

1
U −

chmtxαb, cβ1
= c2mtcmβ + c1mtxαbclβ , cγ1

=
c1mtxαbclγ + c2mtcmγ , cα2

= −c2mtxαbcmα−c1Iαclα,
cα21 = mtxαbkα2 , cα̇2 = −c2mtxαbcmα (0.5− a) b

U −
c1Iαclα (0.5− a) b

U + cα0mtxαb, cα̇21 = mtxαbcα2,

ch21
= −kh2Iα, cḣ2

= −c2mtxαcmα
b
U −chIα−c1Iαclα 1

U ,
cβ2 = −c2mtxαbcmβ − c1Iαclβ , cγ2 = −c2mtxαbcmγ −
c1Iαclγ , c1 = ρU2bsp, and c2 = ρU2b2sp.

Since the sign of kh2 is unknown, the sign of the control
coefficient ℓ2(·) is unknown and cannot be used in the
control design. Taking the same structural parameters
as [39] gives the values of model parameters used for
simulation in Table I. Let the reference signal be yr(t) =
sin(0.5t) + sin(t). The initial state values are chosen as
χ1(0) = 3.5, χ2(0) = −1.5, χ3(0) = −2.5 and χ4(0) =
−1.5. The design parameters are chosen to be: ϱ1 =
1.25, ϱ2 = 1.75, ϱ3 = ϱ4 = 5, δ1 = 0.75, δ2 = 0.5,
δ3 = 0.35, δ4 = 0.9, ρ1,0 = ρ2,0 = ρ3,0 = ρ4,0 = 5,
ρ1,∞ = 0.1, ρ2,∞ = 0.85, ρ3,∞ = 0.5, ρ4,∞ = 0.75, κ1 =
1.25, κ2 = 0.75, κ3 = κ4 = 0.5. The parameters and
initial conditions of Nussbaum functions are µ = 0.25
and s1(0) = s2(0) = s3(0) = s4(0) = 0, respectively.

The simulation results are shown in Figs. 3 and 4. In
particular, Fig. 3 (a) and (b) show that system output y
tracks the reference signal yr with bounded tracking er-
ror and that the output tracking error e1 evolves within
the prescribed bounds (−ρ1, ρ1) in spite of the unknown
control coefficient ℓ2(·). Fig. 3 (c) and (d) indicate the
boundedness of the control signal u and the state vari-
ables χ2, χ3, and χ4. Fig. 4 (a) and (b) show the bound-
edness of s1, s2, s3, s4, N (s1), N (s2), N (s3), and
N (s4).

To investigate the influence of the parameter δi, i =
1, . . . , 4, on the closed-loop response, we carry out the
simulation based on three different sets of values of δi:
Case 1: δ1 = 0.15, δ2 = 0.2, δ3 = 0.25, δ4 = 0.3; Case 2:
δ1 = 0.25, δ2 = 0.3, δ3 = 0.35, δ4 = 0.4; Case 3: δ1 =
0.35, δ2 = 0.45, δ3 = 0.55, δ4 = 0.6. The trajectories
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Figure 3. (a): Evolution of y and yr; (b): Evolution of the tracking error e1; (c): Evolution of the control input signal u; (d):
Evolution of the state variables χ2, χ3, and χ4.

of the adaptation parameters si are depicted in Fig. 5,
which validate the boundedness of si for different δi,
i = 1, . . . , 4.

Table 1
The values of model parameters

Coefficient Value Coefficient Value

cᾱ1 0.7835 cα11 −1.5616

cα̇11 −7.6423 cḣ1
2.6583

cγ1 0.7256 cα2 −5.8731

cα̇2 −3.2567 cα̇21 1.2548

cḣ2
−8.2431 cα1 0.5717

cα̇1 4.9527 cβ1
0.5394

cα21 2.2495 ch21
−0.6724

cα0 -1.0395 cα2 6.7242

kh0
2.3985 kh1

−4.7592

kh2
3.6937 kα0 −2.0593
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5
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-5

0

5

Figure 4. (a): Evolution of s1, s2, s3, and s4; (b): Evolution
of N (s1), N (s2), N (s3), and N (s4).

To show the advantages of the proposed method in han-
dling time-varying unknown control directions, two situ-
ations are considered: the proposed method with a type
A Nussbaum function N (s) = sin(3πs)s2 and with a
type B Nussbaum function N (s) = cos

(
πs
2

)
exp(0.25s).

The simulation results for a type B Nussbaum func-
tion have been already shown in Fig. 4, while the
simulation results for a type A Nussbaum function
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Figure 5. Evolution of s1, s2, s3, and s4 under three cases.
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Figure 6. Evolution of N (s1), N (s2), N (s3), and N (s4)
for a type A Nussbaum function.

are shown in Fig. 6, from which it can be seen that
type A Nussbaum function (thought for fixed control
coefficients) may fail to stabilize the system if the coef-
ficients are not fixed anymore. In addition, the values
of controller gains of two situations are quantified via
several performance indices: integral absolute value

(IAV)
[ ∫ T

0

∑4
i=1 |N ′

i (t)|dt
]
, integral time absolute

value (ITAV)
[ ∫ T

0

∑4
i=1 t|N ′

i (t)|dt
]
, and root mean

square value (RMSV)
[
1
T

∫ T

0

∑4
i=1 N ′2

i (t)dt
] 1

2 , where
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Table 2
Performance indices with two types of Nuss-
baum functions.

Type B Type A

IAV 110.71 → ∞
ITAV 1296.74 → ∞
RMSV 4.38 → ∞

N ′
i = ϱiN (si(·))Ti(·), i = 1, . . . , 4 represents the value

of controller gain. The calculation results are summa-
rized in Table 2, which validates the advantages of our
proposed method.

6 Conclusions

In the context of prescribed-performance control (PPC)
for high-power dynamics with time-varying unknown
control coefficients, this work has shown that only some
particular type B Nussbaum functions can be used for
handling time-varying unknown control coefficients in
high-power systems. Then, a novel switching Nussbaum
conditional inequality was designed to avoid high gains,
by letting the switching gain increases only when the
tracking error is close to violating the performance
bounds. An interesting topic deserving future investiga-
tion is PPC with time-varying unknown control coeffi-
cients and positive-odd rational powers, which contains
positive-odd integer powers as a special case.
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7 Appendix

Proof of Proposition 1: We first define some quantities as
follows,

pλ,r =

∫ 1

0

[
2(λ

3+ 1
3 )λ sin

(
sπ

)]r
ds

= 2r(λ
3+ 1

3 )λ
∫ 1

0

sinr (sπ)ds = 2r(λ
4+ 1

3
λ)αr

and

qλ,r =

2λ∫
1

[
2λ

4

sin

(
s− 1

2λ − 1
π

)]r

ds = 2rλ
4

2λ∫
1

sinr

(
s− 1

2λ − 1
π

)
ds

= 2rλ
4

(2λ − 1)

∫ 1

0

sinr (sπ) ds = 2rλ
4

(2λ − 1)αr

for αr =
∫ 1

0
sinr

(
sπ

)
ds. In accordance with Definition 2, the

proof is divided into three parts.

(i) For any y ≥ 0, there exists λ ∈ N+ such that y ∈ [2λ −
2, 2λ+1 − 2). As a result, it holds that

1

y

∫ y

0

N−(s)ds ≥ 1

2λ+1 − 2

∫ 2λ−1

0

N−(s)ds

=

λ−1∑
k=1

qk,1

2λ+1 − 2
=

λ−1∑
k=1

2k
4

(2k − 1)α1

2λ+1 − 2
≥ 2λα1

for λ ≥ 3. The fact that λ → +∞ as y → +∞ implies
limy→+∞

1
y

∫ y

0
N−(s)ds = +∞.

(ii) Note the following calculation, with y = 2λ − 1,∫ y

0
N+(s)ds∫ y

0
N−(s)ds

=

∑λ
k=1 pk,1∑λ−1
k=1 qk,1

=

∑λ
k=1 2

k4+ 1
3
k∑λ−1

k=1 2
k4
(
2k − 1

) . (35)

It follows from the Stolz-Cesaro Theorem [40, Sect. 3.17, pp.
85, Theorem 1.22] that

lim
λ→+∞

∑λ
k=1 2

k4+ 1
3
k∑λ−1

k=1 2
k4
(
2k − 1

) = lim
λ→+∞

2λ
4+ 1

3
λ

2(λ−1)4+λ−1
= +∞

which, together with (35), implies lim
y→+∞

sup
∫ y
0 N+(s)ds∫ y
0 N−(s)ds

=

+∞.

The results lim
y→+∞

1
y

y∫
0

N+(s)ds = +∞ and lim
y→+∞

sup

y∫
0

N−(s)ds

y∫
0

N+(s)ds

= +∞ can be proved in a similar way and are omitted.
According to Definition 2, N (·) is a type B Nussbaum
function.

(iii) For any y ≥ 0, there exists λ ∈ N+ such that y ∈
[2λ−2, 2λ+1−2). According to the definition of N r, we have

∫ y

0
N r

− (s)ds∫ y

0
N r

+ (s)ds
≤

∫ 2λ−2

0
N r

− (s)ds∫ 2λ−2

0
N r

+ (s)ds
or

∫ 2λ+1−2

0
N r

− (s)ds∫ 2λ+1−2

0
N r

+ (s)ds
.

The following calculation

lim
y→+∞

sup

∫ y

0
N r

− (s)ds∫ y

0
N r

+ (s)ds
≤ lim

λ→+∞

∫ 2λ+1−2

0
N r

− (s)ds∫ 2λ+1−2

0
N r

+ (s)ds
=

≤ lim
λ→+∞

∑λ
k=1 qk,r∑λ−1
k=1 pk,r

= lim
λ→+∞

∑λ
k=1 2

rk4(
2k − 1

)
∑λ

k=1 2
r
(
k4+ 1

3
k
)

= lim
λ→+∞

(
2λ−

rλ
3 − 2−

rλ
3

)
=


+∞, r = 1;

1, r = 3;

0, r > 3.

shows the violation of Definition 2. Thus, one can conclude
that N r(·) is not a type B Nussbaum function. This com-
pletes the proof. ■

Proof of Proposition 2: According to [20], N r(s) is a type
B Nussbaum function for r = 1. So the remaining task is to
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show that statement still holds for r ≥ 3. By the Darboux-
Stieltjes integral property [40, Sect. 6.12, pp. 257, Theorem
1.7, (h)], one has, for any a ≥ 0, it holds that

exp
(
rµa2)αr ≤

∫ a+1

a

exp
(
rµs2

) ∣∣∣cosr (πs
2

)∣∣∣ ds
= exp

(
rµs̄2

) ∫ a+1

a

∣∣∣cosr (πs
2

)∣∣∣ ds ≤ exp
(
rµ(a+ 1)2

)
αr

(36)

for some s̄ ∈ (a, a + 1) and αr =
∫ 1

0
cosr

(
πs
2

)
ds, which is

used in the remaining proof. In accordance with Definition 2,
the proof is divided into two parts.

(i) For any y ≥ 0, there exists λ ∈ N such that y ∈ [4λ −
3, 4λ+1), where N is the set of integers. As a result, one has

1

y

∫ y

0

N r
+ (s)ds >

1

4λ+ 1

∫ 4λ−1

0

N r
+ (s)ds

>
1

4λ+ 1

λ−1∑
k=1

∫ 4k+1

4k−1

exp
(
rµs2

)
cosr

(πs
2

)
ds.

By (36), we can arrive at∫ 4k+1

4k−1

exp
(
rµs2

)
cosr

(πs
2

)
ds ≥ 2αr exp

(
rµ(4k − 1)2

)
and hence

lim
y→+∞

1

y

y∫
0

N r
+ (s)ds ≥ lim

λ→+∞

2αr

λ−1∑
k=1

exp
(
rµ(4k − 1)2

)
4λ+ 1

= +∞.

(ii) Note the following calculation, with y = 4λ+ 3,∫ y

0
N r

− (s)ds∫ y

0
N r

+ (s)ds
=

∫ 4λ+3

0
N r

− (s)ds∫ 4λ+3

0
N r

+ (s)ds

>

∑λ
k=0

∫ 4k+3

4k+1
exp

(
rµs2

) ∣∣∣cosr (πs
2

)∣∣∣ ds∑λ
k=0

∫ 4k+1

4k−1
exp

(
rµs2

)
cosr

(
πs
2

)
ds

≥
∑λ

k=0

[
exp

(
rµ(4k + 1)2

)
+ exp

(
rµ(4k + 2)2

)]
αr∑λ

k=0

[
exp

(
rµ(4k)2

)
+ exp

(
rµ(4k + 1)2

)]
αr

.

It follows from Stolz-Cesaro Theorem [40] that

lim
λ→+∞

∫ 4λ+3

0
N r

− (s)ds∫ 4λ+3

0
N r

+ (s)ds
≥ lim

λ→+∞

exp
(
rµ(4λ+ 2)2

)
exp

(
rµ(4λ+ 1)2

) = +∞,

which implies lim
y→+∞

sup
∫ y
0 N r

−(s)ds∫ y
0 N r

+ (s)ds
= +∞.

The results lim
y→+∞

1
y

∫ y

0
N r

− (s)ds = +∞ and lim
y→+∞

sup
∫ y
0 N r

+ (s)ds∫ y
0 N r

−(s)ds

= +∞ can be proved similarly. According to Definition 2,
N r(·) is a type B Nussbaum function. ■
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