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Combined MPC and reinforcement learning for traffic signal control in
urban traffic networks*

Willemijn Remmerswaal1, Dingshan Sun1,∗∗, Anahita Jamshidnejad2 and Bart De Schutter,1 Fellow, IEEE

Abstract— In general, the performance of model-based con-
trollers cannot be guaranteed under model uncertainties or
disturbances, while learning-based controllers require an exten-
sively sufficient training process to perform well. These issues
especially hold for large-scale nonlinear systems such as urban
traffic networks. In this paper, a new framework is proposed by
combining model predictive control (MPC) and reinforcement
learning (RL) to provide desired performance for urban traffic
networks even during the learning process, despite model uncer-
tainties and disturbances. MPC and RL complement each other
very well, since MPC provides a sub-optimal and constraint-
satisfying control input while RL provides adaptive control laws
and can handle uncertainties and disturbances. The resulting
combined framework is applied for traffic signal control (TSC)
of an urban traffic network. A case study is carried out to
compare the performance of the proposed framework and other
baseline controllers. Results show that the proposed combined
framework outperforms conventional control methods under
system uncertainties, in terms of reducing traffic congestion.

I. INTRODUCTION

Traffic congestion has a negative impact in terms of
environmental, economic, and societal effects. Through con-
gestion, the emission of greenhouse gasses increases, as cars
will spend more time on the road and often have non-smooth
deceleration and acceleration patterns [1]. This last issue is
especially appearing in urban areas where cars are regularly
slowed down by traffic lights. In 2019, 19% of the emission
of greenhouse gasses in the Netherlands was due to road
traffic [2]. In the EU, 40% of the CO2 emission and 70%
of other pollutants caused by road traffic are due to traffic
in urban areas [3]. These issues can majorly be resolved by
efficient traffic management strategies [1].

In order to minimize traffic congestion and thus its negative
effects, proper control strategies should be designed and
utilized for optimal use of the available infrastructure. The
most used control measure for urban traffic is via traffic
signal control (TSC) [4]. Nowadays with the increasing traffic
demands, the inappropriate utilization of traffic signals may
cause urban traffic congestion [5]. The earlier controllers
for urban traffic signal control are fixed-time, i.e. their
control strategy is determined offline based on historical data.
More efficient strategies include traffic-responsive controllers,
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which are able to react to traffic situations as they use real-
time data. Traffic-responsive controllers also include model-
based controllers, one of which is MPC [6].

MPC controllers have been used for TSC by De Schutter
and De Moor [7], where they are shown to be very effective,
due to their flexible nature and their capability of handling
constraints explicitly. However, model-based control methods
heavily rely on the accuracy of the nominal model, and this
also holds for MPC. The performance of MPC deteriorates if
model uncertainties or external disturbances are present. This
issue can be relieved by using a more accurate model, or by
using robust or stochastic MPC. However, this significantly
increases the online computational complexity, and can make
the problem of controlling traffic networks intractable in
real time [8], [9]. In recent years the use of data-driven
reinforcement learning (RL) for urban traffic control has
gained lots of interest [10]. While model-free RL algorithms
do not need a model to obtain a well-performing control
law, they are adaptive, i.e., they change the control inputs
according to changing traffic situations. This makes RL-
algorithms capable of dealing with disturbances. However,
RL algorithms require a sufficiently extensive training pro-
cess, and they lack performance guarantees, especially during
the learning process.

Based on these facts, this paper contributes to the state-of-
the-art by: 1) for the first time proposing a combined MPC-
RL framework such that the advantages of both methods
are exploited; 2) improving the performance of MPC under
model uncertainty or external disturbances; 3) sustainably
giving acceptable performance compared with the standalone
RL-based controller, even during the learning process.

The paper is organized as follows. Section II introduces the
relevant background knowledge, including MPC-based and
RL-based TSC. The proposed control method that combines
MPC and RL in one overall framework is presented in Section
III, followed by a case study in Section IV. Finally, Section
V concludes and closes the paper.

II. BACKGROUND

In this section, we introduce MPC and RL-based signal
control for urban traffic networks, as well as the model-
reference framework that has inspired the authors.

A. MPC for urban traffic signal control

In the current paper, MPC is used as a baseline controller
to provide the essential control inputs. The control sampling
time Tc of MPC is considered to be the cycle time Tcyc of
the intersections in the traffic network, which, for the sake
of simplicity are assumed to be identical and fixed to 1 min.
The mathematical model for urban traffic networks used in
this paper as the MPC prediction model is the BLX model



[11]. Note that the proposed framework in this paper also
applies to other traffic models.

The control inputs determined by MPC are the green
time percentages πgreen,d, expressed as a percentage of the
cycle time for all intersections d ∈ J where J is the set
of all the controlled intersections in the network. As the
network considered in this paper for illustration purposes uses
a two-phased cycle, the green time percentage consists of
one variable per cycle per intersection. The cycle counter is
denoted as kc ∈ {1, ..., Ncyc}, where Ncyc is the total number
of cycles within the simulation window. An optimization
problem is solved by MPC at every controller time step kc
over a prediction window of length Np (called the prediction
horizon) to determine the optimal control inputs. We have

min
uNp (kc)

Np−1∑
k=0

∑
(u,d)∈L

TTS(u,d)(kc + k + 1), (1)

s.t. x(kc + k + 1) = f(x(kc + k), u(kc + k)), (2)
umin(kc) ≤ uNp(kc) ≤ umax, (3)

where uNp(kc) = [u⊤(kc), . . . ,u
⊤(kc+Np−1)]⊤, and where

u(kc) contains the green time percentage πgreen,d for each in-
tersection d ∈ J at controller time step kc. The function f(·)
is the prediction model of the MPC controller, e.g., the BLX
model. The stage objective function,

∑
(u,d)∈L TTS(u,d)(kc)

is the total time spent (TTS) of all vehicles on all links of
the traffic network during the kth

c control cycle, with L the
set of all the links. The decision variables of the optimization
problem have an upper and a lower bound, where umax and
umin are vectors with the maximum and minimum green time
percentage of appropriate size, respectively. The inequalities
in (3) are defined element-wise.

B. RL for urban traffic signal control

To implement RL in urban traffic signal control, a Markov
decision process (MDP) should be utilized to describe the
model [12], [13]. In the context of MDP, states, actions, as
well as rewards need to be defined for the traffic network.
Initially, conventional Q-learning algorithm was proposed for
a single-intersection traffic network [14]. The queue length
is one of the most common state definitions used in RL-
based TSC [10]. As for the actions, the RL-based controller
for each traffic light can choose to either remain with the
current phase or change to another phase. In RL-based TSC,
cost functions used in MPC-TSC are usually taken as reward
functions, such as TTS, average junction waiting time, fuel
conservation, or average number of trip stops [10].

Due to the curse of dimensionality, standard RL algorithms
such as Q-learning cannot handle large state and action
spaces. With the advancements in deep RL algorithms, it is
nowadays possible to apply RL on larger traffic networks.
Haydari and Yilmaz in [15] present an extensive survey on
deep RL for TSC. For more information, the interested reader
is referred to that paper and the references therein.

C. Model reference framework

The combined MPC-RL framework for TSC proposed
in the current paper is inspired by a control framework
that combines model-reference control with model-free deep
RL and was proposed in [16] for control of autonomous

TABLE I
COMPARISON OF RL AND MPC CHARACTERISTICS

MPC RL
Model needed Yes No

Mature stability theory Yes No
Mature feasibility theory Yes No

Constraints handling Yes No
Adaptivity No Yes

Online computational complexity High Low
Offline computation time Low High

surface vehicles. Thus we briefly explain that framework
first. As shown in Figure 1, baseline control laws of two
conventional controllers are injected into the real system
and a nominal model of the system. The nominal model
generates a reference trajectory that the vehicle should follow;
meanwhile the output of the nominal model and the output
of the real vehicle are compared, the error of which is fed to
the RL controller.

Fig. 1. Model-reference RL control block diagram for control of au-
tonomous surface vehicles [16]

The objective is to steer the vehicle to the desired reference
trajectory. The overall control input of the vehicle is the
combination of the baseline control ub and the RL control ul
as denoted in the figure, where ub is employed to ensure some
basic performance, (i.e., local stability), and ul is introduced
to compensate for the system uncertainties or disturbances.
With the real states x and the desired state x̂ and control input
ub fed into the RL control block, the RL controller can be
trained to minimize the error between x and x̂ by designing
a proper reward function.

III. COMBINED MPC-RL CONTROL FRAMEWORK FOR
TRAFFIC NETWORKS

MPC and RL methods exceptionally complement each
other (see Table I). Therefore, we propose a framework
that combines MPC and RL inspired by [16], in which the
advantages of both methods are exploited.

A. Combined MPC-RL control framework

In Figure 2 the combined MPC-RL control framework
is illustrated. This framework can potentially mitigate the
drawbacks of both MPC and RL control. The adaptive
framework reduces the negative effects that uncertainties
have on the performance of MPC. Furthermore, the adaptive
RL controller also reduces the computational complexity
in comparison to conventional MPC. With this combined
framework, reduction in the performance of the MPC module,
e.g. by premature termination of the optimization process or



Fig. 2. The combined MPC-RL control framework.

by considering a less accurate model, is affordable since the
adaptive control inputs by the RL module are potentially able
to compensate for the performance loss. Note that although
reduction of the online computation time with the proposed
combined control framework compared to conventional MPC
is an added benefit of the proposed combined control frame-
work, it is not investigated in the case study of this paper.
More specifically, improvement of the control performance
in presence of uncertainties is the most important aspect of
the proposed control framework compared to regular MPC
controllers for urban traffic signal control.

Compared to conventional RL controllers, in the proposed
combined framework the MPC offers a baseline control law
that sustainably provides acceptable performance during the
training process of the RL module. This also makes the
framework more sample-efficient, because the RL controller
has a relatively smaller action and state space, and the
baseline MPC input provide high-quality initial data points
for the RL controller to start with. Compared to the model-
reference RL control scheme in [16], only one baseline
controller (i.e., the MPC module) is used in our proposed
framework. Thus the same baseline control input is injected
into both the nominal and the real system at every control
time step. In addition, the real state x is also fed to the
nominal system to update the desired state x̂ every cycle.
Therefore, the error between the real and desired states varies
within a certain range, which makes the learning easier for
the RL controller.

As shown in Figure 2 the control law for the urban traffic
network (i.e., the real system) is given by:

u = ub + url, (4)

where ub is the baseline control input that is the first element
of uNp(kc) for every cycle kc as described in Section II-A,
and url is the control input generated by the deep RL adaptive
control law. In order to cooperate with each other, the MPC
and the RL controllers are synchronized and have the same
control sampling time. The design of the MPC controller for
the computation of the baseline control law is identical to the
one introduced in Section II-A. Next we will discuss how to
obtain the adaptive RL control law.

B. RL-based control module
To obtain the RL-based adaptive law, the urban traffic

network is represented as a Markov decision process (MDP)
denoted by tuple ⟨S,A,R, T ⟩. The state s(kc) ∈ S, the
action url(kc) ∈ A, and the immediate reward R(kc) =
R(s(kc), url(kc)) are defined in this section, with kc the cycle
counter.

1) State: The state-space of the RL controller contains a
vector with the difference between the state of the reference
model (xm) and that of the real system (x) at the current time
step. This is the difference in the number of vehicles on each
link of the network. The elements of the state vector of the
RL controller at control time step kc are given by:

δn(kc) = n̂u,d(kc)− nu,d(kc) ∀(u, d) ∈ L, (5)

where n̂u,d(kc) and nu,d(kc) denote the desired and the real
number of vehicles on each link1, respectively. Furthermore,
the control input of the baseline controller is also provided
to the controller. Thus, the state s(kc) ∈ S is defined as:

s(kc) = [δ⊤n (kc), u
⊤
b (kc)]

⊤. (6)

2) Action: The RL-based adaptive law should adapt the
control input that is computed by the MPC controller ac-
cording to the disturbances and uncertainties. The control
input includes the time length value to extend or reduce
the green time during the current cycle. For simplicity, the
action ad(kc) for intersection d will be an integer value
between some chosen bounds, where the set of actions is
not necessarily evenly distributed over the range. The Deep
Q-network (DQN) [17], [18] is used as the RL algorithm,
since it uses a discrete action space and a continuous state
space, which suit our case. The action space A consists of
all possible combinations of actions for all intersections in
the network. The action url(kc) for the RL-based controller
at control time step kc is defined as:

url(kc) = [a1(kc) . . . ad(kc) . . . aNd
(kc)]

⊤,

ad(kc) ∈ Z, amin,≤ ad(kc) ≤ amax, ∀d ∈ J,
(7)

where amin and amax are the minimum and maximum value
for the action, J is the set of all intersections, and NJ is the
size of set J .

3) Reward: Within the combined MPC-RL control frame-
work, it is the goal of the RL controller to follow the
desired state determined by the MPC controller. Thus, the
reward is determined based on tracking the predicted number
of vehicles n̂u,d in the network. As it is not possible to
model constraints for the RL controller explicitly, input
constraints can be added implicitly in the reward function.
More specifically, whenever an infeasible action is chosen
by the RL controller, a reward of Rc = −10 is added to the
immediate reward R(kc), which is:

R(kc) =
∑

(u,d)∈L

−K|nu,d(kc)− n̂u,d(kc)|+Rc, (8)

where K is a positive gain on the state error, and L is the
set of all links in the network. No extra reward is considered
when the terminal state is reached.

4) Training: Deep Q-network (DQN) [17], [18] is a deep
RL algorithm that has many successful applications, due to
the following two key characteristics: experience replay and
a target network. A target network is updated periodically,
while experience replay destroys the correlations among the
data points, which can deal with the instability issue of
traditional RL algorithms. The training process of DQN

1For simplicity, only the number of vehicles on each link is taken into
account in the state definition of the RL-based control module.



is illustrated in Figure 3. At each time step the sample
(s(kc), url(kc), R(kc), s(kc + 1)) is obtained and stored in
the replay buffer. These samples are randomly sampled in
a mini-batch to train the Q-network. The target network
(Q̂(θ)) is updated every Ttarg controller time steps. The

Fig. 3. The training process of the deep reinforcement learning using DQN.

training algorithm including the MPC module is presented
in Algorithm 1. The ϵ-greedy parameter ϵ is reduced with a
decay rate δϵ by:

ϵ(kc + 1) = ϵ(kc)(1− δϵ). (9)

The Q-network is chosen to be a fully connected multi-
ple layer perceptron with rectified linear unit (ReLU) non-
linearities as activation functions, since hidden layers com-
posed of ReLU typically train faster than the ones composed
of other activation functions, such as a sigmoid function [19].

IV. CASE STUDY

In this section, a simulation-based case study is conducted
on an urban traffic network to validate the effectiveness of the
proposed combined framework. The control performances are
measured by the TTS of the vehicles in the network within
the simulation window. Several traffic demand scenarios
are considered to test the performance of different control
methods.

A. Network setup

1) Traffic network structure: In order to analyze the per-
formance of the combined MPC-RL model-reference frame-
work, compared to the standalone MPC controller and RL-
based controller, a small grid-based urban traffic network is
considered. The layout of the network is shown in Figure
4, which consists of two intersections with controllable
traffic signals, each with four connected two-way roads. The
network is mathematically described using the BLX model
[11]. There are seven two-way roads in total, where each road
has three lanes dedicated to right, straight, and left directions.
The traffic network has 6 source and 6 sink nodes. All roads
have a length of 500 m with the exception of road numbers 7
and 8, which have a length of 550 m. Note that we consider
a small traffic network, which is sufficient to gain insight
on the performance of the proposed control framework and
to evaluate its performance. The small size of the network
allows for using discrete actions for the RL-based controller,

Algorithm 1 The combined MPC-RL control algorithm
1: procedure TRAIN
2: Initialize experience buffer
3: Initialize network Q with random parameters ϕ
4: Initialize target network Q̂ with ϕ̂← ϕ
5: Initialize ϵ← 1
6: loop
7: s← s0
8: t← 0
9: while t < tend do

10: MPC: Solve optimization problem (1)-(3) to
find πgreen,d

11: Chose action a using ϵ-greedy
12: if Action is infeasible then
13: Add penalty to reward
14: Change action accordingly
15: end if
16: Take action a, observe next state s′ and reward

r
17: Store (s, a, r, s′) in experience buffer
18: Select random data points (s, a, r, s′) from

experience buffer with the size of a mini-batch
19: Train network Q by the selected samples

experience
20: if t = k · Ttarg, k ∈ N then
21: Update target network Q̂← Q
22: end if
23: Update ϵ based on (9)
24: s← s′

25: t← t+ 1
26: MPC: update active constraints and environ-

ment states
27: end while
28: end loop
29: end procedure

implementing DQN, as well as centralized MPC with little
computational effort.

The free-flow speed of the vehicles in the traffic network is
13.9 m/s and the average length of each vehicle is 7 m. The
vehicles enter the network via the source links 1, 3, 6, 9, 12
and 14. Each intersection has a controllable traffic signal with
a fixed traffic cycle. Each traffic cycle consists of two phases
as shown in Figure 5. The first phase has green light for all
traffic arriving from the north or south directions, and in the
other phase there is a green light for all traffic arriving from
the east and west directions. The yellow time at the beginning
of each phase is 5 s for all situations and controller types.

2) Predicted demand: The amount of traffic on each
road and link in the traffic network is determined by two
components: (1) the number of vehicles entering the network
on the six entering roads (namely, link 1, 3, 6, 9, 12, and
14), and (2) the turn ratio of each link. For each link, the
turn ratios of its three roads sum up to one. The values of the
turn ratios for each road are given in Table II. Three demand
patterns are designed: one with constant high demand and two
with fluctuating demands. The demand profiles of different
lanes under the three scenarios are depicted in Figure 6.



Fig. 4. The studied grid-based traffic network. The numbers present in
the network are the link IDs, the arrows in each line represent the driving
direction.

Fig. 5. The two traffic phases for the controller. In phase 1 all traffic
arriving from the east and the west direction has right of way, in phase 2
all traffic arriving from north and south direction has right of way.

Before each simulation or training episode, the states of
the traffic network are initialized by inserting a low traffic
into the traffic network for 300 seconds considering fixed-
time traffic signal control for the interactions (see Section
IV-B for details).

3) Real demand: The combined MPC-RL control frame-
work is expected to improve the control performance in the
presence of uncertainties. Therefore in this case study, we
consider disturbances in the predicted traffic demand that
enters via source links 1, 3, 6, 9, 12, and 14 (see Figure 4).
The demand is disturbed with a sinusoidal wave as shown in
Figure 7.

B. Controllers

The proposed combined control framework will be com-
pared to a fixed-time controller, a standalone MPC controller,
and a standalone RL-based controller. In this section, the
design of the benchmark controllers is discussed, and the
parameters for the RL controller are given.

1) Fixed-time controller: For the fixed-time controller, the
cycle time is fixed to 60 s and the green time percentage is
set to the mean green time percentage of the intersection (i.e.
50% for the two-phased network). With a yellow time length
of 5 s for each phase, this means that each phase has 25 s
of green time.

2) Standalone MPC controller: The standalone MPC con-
troller used to compare the performance of the framework is
the same as the one used within the framework. The design
of the controller is identical to the one in Section II-A.
Moreover, the prediction horizon of the MPC controller in the
framework and the standalone MPC controller is Np = 3 (i.e.
3 cycles), which provides enough time for a vehicle to leave

TABLE II
TURN RATIOS FOR ALL ORIGIN LINKS OF THE NETWORK

Direction β1 β3 β6 β7 β8 β9 β12 β14

Right 0.12 0.44 0.44 0.35 0.35 0.12 0.35 0.12
Straight 0.50 0.44 0.44 0.35 0.35 0.48 0.35 0.44
Left 0.38 0.12 0.12 0.30 0.30 0.40 0.30 0.44
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Fig. 6. The demand profiles for different scenarios. Left-hand side plot
called demand A: the high-demand case, the middle plot called fluctuating
demand B, and the right-hand side plot called fluctuating demand C.

the traffic network, whichever route is chosen. The control
horizon is equal to the prediction horizon.

3) Standalone RL-based controller: The RL-based con-
troller is designed based on [20], which also utilizes the
DQN algorithm and shares similar parameters and structure
as the RL-based control module in the proposed combined
framework. Note that the control sampling time of the RL-
based controller is 1 s, and the cycle time is not necessarily
fixed.

4) Combined MPC-RL controller: The parameters used
for the deep RL algorithm (see Figure 3) are given here.
The neural network consists of five fully connected layers:
an input layer, three inner layers, and an output layer. The
number of neurons in the inner layers are 256, 128 and 64,
respectively. The number of neurons in the input layer is the
number of states and the number of neurons in output layer
is the number of actions. The parameters that are used by
the DQN algorithm in the framework are presented in Table
III, where α is the learning rate of the critic network (the
agent network in Figure 3), γ is the discount factor used for
computation of the return, ϵ0 is the starting value of ϵ in the ϵ-
greedy method for balancing exploration and exploitation, δϵ
is the ϵ decay rate and ϵmin is the minimum value of ϵ during
training. The other information given in Table III include the
experience replay batch size, the optimization method, the
activation function of all the neurons, the maximum size of
the experience replay buffer and all the dimensions of the
network layers. For the actions per intersection, we have:

ad(kc) ∈ {−10,−5,−3,−1, 0, 1, 3, 8, 10} ∀d ∈ J. (10)

Thus, there are nine actions per intersection, which means
that the RL-based controller can choose from a total of 9Nd

action combination, where Nd is the number of intersections
in the traffic network. In this case study two intersections are
considered (see Figure 4), which means an action space of
size 81.

C. RL training process

The combined MPC-RL framework will be compared to
the standalone RL-based controller as regards their per-
formance during the learning process. As by design these



TABLE III
SETTINGS FOR THE DQN ALGORITHM USED FOR THE MODEL-REFERENCE FRAMEWORK

Episodes α [-] γ [-] ϵo [-] δϵ [-] ϵmin [-] Ttarg
1000 0.01 0.95 1 0.001 0.01 10

Batch size Optimizer Act. func. Buffer size Input dims. Output dims. No. layers
256 Adam ReLU 1 · 106 14 81 5
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Fig. 7. The disturbance on the traffic demand for different source links
in the traffic network. The blue and red curves represent, respectively, the
disturbance for the demand on source links 1, 3, 12 and 14 and on source
links 6 and 9.

controllers have different reward functions, it is not possible
to directly compare the values of their reward function during
training. To accomplish a fair comparison, the TTS of the
vehicles in the system is documented during the training
process and these values are compared. A total of 11 training
demand sets are created, all with a length of one hour (3600
s). The training episode terminates when t = 3600 s. The
system is initialized by inserting a low traffic into the traffic
network for 300 s with fixed-time control signal input. Both
RL-based controllers are trained using the same demand sets.
The training lasts for a sufficient number of episodes until the
RL-based controller converges to an optimal policy. In this
case, the number of episode is 1000.

In Figure 8 the training process of the standalone RL-
based controller is presented. Figure 9 shows the training
process for the RL module of the proposed combined MPC-
RL controller. The red curves in these figures represent the
moving average of the last ten episodes. Note that due to the
use of different demand sets during training, the reward value
of both learning curves does not converge to a specific value,
but will always fluctuate in all stages of the learning process.
Despite this fluctuation, the episode rewards show that the
RL policy converges to an optimum. The RL algorithm of
the standalone RL-based controller learns a well-performing
policy after approximately 200 episodes. After approximately
220 episodes the reward function deteriorates again, which
is likely to be caused by a combination of catastrophic
forgetting and overfitting of the neural network. This issue
can be avoided by an early stop of the training process, and
the best-performing RL-based controller during the training
process is selected for comparison in the next section. The
fact that the standalone RL-based controller converges faster
than the combined MPC-RL framework can be explained by
that the RL agent has a faster control sampling time, i.e., the
RL-agent takes 3600 actions during one episode while the
framework agent only takes 60 actions per episode.

0 200 400 600 800 1000

Episodes

-6000

-5000

-4000

-3000

-2000

-1000

0

E
p
is

o
d
e
 r

e
w

a
rd

Reward

Average reward

Fig. 8. The learning curve for the standalone RL-based controller
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Fig. 9. The learning curve for the adaptive RL module of combined MPC-
RL framework

Figure 10 shows the performances as regards TTS of the
standalone RL-based controller and the combined MPC-RL
controller during training over all episodes. The TTS curve
shows that the combined MPC-RL framework performs well
in all training episodes, already from the first episode when
the TTS is low. This happens because the performance of the
combined MPC-RL control framework is mainly dependent
on the performance of the baseline MPC controller, which
provides a well-performing input from the start of the learn-
ing process. The standalone RL-based controller, however,
does not perform well up until around the 160th episode.
This is because that the RL-based controller has to learn the
entire policy from scratch.

D. Post-training simulation results

After training the RL module of the combined MPC-
RL controller and the standalone RL-based controller, the
performance of these controllers is simulated and compared.
The simulations are done with the demand pattern described
in Section IV-A. Note that the value of ϵ in the exploration
method is set to zero for both RL algorithms to achieve a
deterministic policy.

All four controllers are simulated with all three demand
data sets. In Table IV, V and VI the system performance in
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Fig. 10. The system performance is expressed in TTS during training for
the standalone RL-based controller and the combined MPC-RL controller

terms of TTS and relative TTS of the different controllers
for all three demand scenarios are shown and compared.
The relative TTS is taken with respect to the fixed-time
controller. In all three demand cases, the MPC controller, the
RL-based controller, and the combined MPC-RL controller
reduce the TTS with respect to the fixed-time controller. In
the first two demand cases, the proposed combined control
framework results in the lowest TTS; in the last demand
case the RL-based controller performs the best. In general,
the combined MPC-RL control framework performs better
than the MPC controller in all cases. The TTS is reduced
by 7.0%, 4.1% and 3.3% compared to the standalone MPC
controller for the three demand profiles respectively. This
performance improvement compared to the MPC controller is
caused by the addition of the RL adaptive control law, which
is designed to reject the disturbances in the traffic network.
The standalone RL-based controller has a better performance
than the MPC controller in all the demand cases and than
the combined control framework in the third demand case.
The fact that the RL-based controller performs better can be
explained by the flexibility of the control input. For the MPC
controller and the combined control framework the cycle
time is set to 60 s. The RL-based controller, however, can
adjust the phase length freely. By doing this, the controller
has the potential to create a cycle offset between the two
intersections, which can benefit the system performance.

V. CONCLUSIONS AND TOPICS FOR FUTURE WORK

In this paper, we proposed a new combined control frame-
work that exploits the benefits of model predictive con-
trol (MPC) and reinforcement learning (RL). The proposed
combined controller was applied for signal control of an
urban traffic network. In the presence of model uncertainties
or disturbances, the proposed combined MPC-RL control
framework outperforms standalone MPC, and has compa-
rable performance with well-trained standalone RL-based
controllers that have a higher control frequency and require
lengthy training procedures before they perform well.

In the future, a more extensive comparison between the
proposed combined controller and standalone RL-based con-
troller will be carried out, by using the same control sampling
time and flexible traffic cycle setting. Moreover, a more ex-
tensive assessment based on simulations with a more realistic
traffic simulator such as SUMO [21] will be performed. In

TABLE IV
THE SYSTEM PERFORMANCE IN TERMS OF TTS AND RELATIVE TTS FOR

THE DIFFERENT CONTROLLERS FOR DEMAND A

Controller TTS [veh·h] Relative TTS [%]
Fixed-time control 137.6 -
MPC 125.2 -8.5
RL-based control 122.5 -10.9
Combined MPC-RL control 117.1 -14.9

TABLE V
THE SYSTEM PERFORMANCE IN TERMS OF TTS AND RELATIVE TTS FOR

THE DIFFERENT CONTROLLERS FOR DEMAND B

Controller TTS [veh·h] Relative TTS [%]
Fixed-time control 141.3 -
MPC 123.2 -12.8
RL-based control 121.6 -13.9
Combined MPC-RL control 118.1 -16.4

TABLE VI
THE SYSTEM PERFORMANCE IN TERMS OF TTS AND RELATIVE TTS FOR

THE DIFFERENT CONTROLLERS FOR DEMAND C

Controller TTS [veh·h] Relative TTS [%]
Fixed-time control 157.0 -
MPC 145.1 -7.6
RL-based control 138.2 -12.0
Combined MPC-RL control 140.3 -10.7

addition, the online computation of MPC in the framework
can be further reduced by using parameterized MPC or a
simplified traffic model. Thus the computational efficiency
can be improved without compromise of performance.
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