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Timetable Scheduling for Passenger-Centric Urban Rail Networks:

Model Predictive Control based on a Novel Absorption Model

Xiaoyu Liu, Azita Dabiri, and Bart De Schutter, Fellow, IEEE

Abstract— Timetable scheduling plays a key role in daily
operations of urban rail transit systems, as it determines
the quality of service provided to passengers. In order to
develop efficient timetable scheduling methods, it is necessary
to develop a proper model to integrate timetable-related and
passenger-related factors in urban rail network efficiently. In
this paper, a novel passenger absorption model for passenger-
centric urban rail networks is established. The model explicitly
integrates time-varying passenger origin-destination demands
and the departure frequency of each line for real-time timetable
scheduling. Then, a model predictive control (MPC) method
for the timetable scheduling problem is proposed based on
the developed model. The resulting MPC optimization problem
can be formulated as a mixed-integer programming (MILP)
problem, which can be solved efficiently by using the existing
MILP solvers. The effectiveness of the absorption model and
the corresponding MILP-based MPC approach is illustrated
through the case study based on two Beijing subway lines.

I. INTRODUCTION

Urban rail transit has become one of the most important

public transportation modes in big cities (e.g., Beijing,

London, New York) because of its safety, stability, high

efficiency, and sustainability. The main goal of the urban

rail transit systems is to provide satisfactory service to

passengers. Timetable scheduling is regarded as an effective

way to improve the quality of service and to reduce the

operation costs under the infrastructure limitations. With

the rapidly growing passenger demands in recent years, it

has become increasingly challenging to generate a high-

quality passenger-centric timetable where both passenger-

related factors and operator-related factors in urban rail

networks are jointly taken into account.

Many studies in railway timetable scheduling focus on

optimizing arrival and departure times of trains at each

platform in the railway network, with the aim of minimizing

objectives such as passenger travel times [1], passenger

waiting times [2], station crowdedness [3], deviation from

the planned timetable [4], or a combination of them. In the

railway network, passenger demands are often represented

as several time-varying origin-destination (OD) pairs, which

can be obtained according to entering and exiting flows

of stations or historical data of automatic fare collection

systems. Passenger OD demands would largely influence the

performance of a timetable. An efficient passenger-centric
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timetable should properly take passenger OD demands into

account [5], [3], [6].

The departure frequency (i.e., how many trains depart from

a platform during a certain period) significantly influences

the quality of service, as it determines an upper bound

on the transport capacity. As passenger demands are time-

varying, the departure frequency in railway networks varies

throughout a day, e.g., the departure frequency of metro

networks in peak hours is usually higher than in off-peak

hours so as to transport more passengers. Passengers prefer

high-frequency lines so that they have a better chance of

boarding trains without large waiting times. On the other

hand, higher departure frequencies will lead to higher oper-

ational costs. In this context, optimizing departure frequen-

cies for each platform is more important than determining

specific departure and arrival times for attending passenger

demands and improving the quality of service of railway

transportation systems [7]. Once the departure frequency has

been determined, the detailed departure and arrival times

can be determined at the lower level with a more detailed

train operation model and/or passenger flow model, which is

however not in the scope of this paper.

Most research related to optimizing transit frequencies is

conducted in the context of urban transit networks, e.g., bus

networks [8], [9]. However, the urban rail transit system

has its own characteristics, i.e., train braking distances are

relatively long, and trains operate with strict constraints of

signaling systems. An efficient departure frequency control

method is required for urban rail networks to meet the

time-varying passenger demands while considering operation

costs and infrastructure constraints. De-Los-Santos et al. [10]

used an exact algorithm and a heuristic approach to design

line frequencies and train capacities to maximize the profit

of metro networks. Canca et al. [6] developed a mixed-

integer nonlinear programming approach to optimize line

frequencies and train capacities in dense railway rapid transit

networks. However, these studies do not consider the detailed

number of passengers accurately, leaving an open gap of

further improving the passenger satisfaction.

Formulating the timetable scheduling problem generally

leads to a constrained control problem. Model predictive con-

trol (MPC) is a well recognized effective real-time method

to control constrained systems [11], [12]. In [13], a real-

time timetable scheduling approach was developed based

on the switching max-plus-linear models to minimize the

operational costs and train delays. An MPC method was

designed to deal with train rescheduling problems in the

complex station areas in [14]. In [15], a state space model



was developed to describe the passenger load of trains and

the evolution of departure time, and an MPC approach is

then proposed. By adjusting timetables and passenger loads,

the headway and timetable deviations of a metro line is op-

timized. In [16], MPC was also used for railway disruptions,

and the MPC optimization problem was transformed into

an MILP problem to reduce the computational complexity.

The successful application of MPC in the above studies

has inspired us to develop an efficient MPC approach for

timetable scheduling of urban rail transit networks. This

also implies the development of a novel model is crucial

for the application of MPC approach in real-time timetable

scheduling.

The main contributions of this paper are as follows:

1) A novel passenger absorption model that can explic-

itly handle time-varying passenger origin-destination

demands in urban rail networks is proposed.

2) In contrast to most of the existing models, the absorp-

tion model deals with passenger flows by involving

departure frequencies. So the transport capacity of the

network can be optimized while keeping a balanced

trade-off between model accuracy and computational

efficiency.

3) An MPC-based approach is developed for the timetable

scheduling problem based on the proposed model

where the MPC optimization problem can be trans-

formed into a mixed-integer linear programming

(MILP) problem, which can be solved efficiently by

existing MILP solvers.

The remainder of the paper is organized as follows. In

Section II, a novel passenger absorption model is proposed

for urban rail network. In Section III, a model predictive

control scheme is used for determining the number of trains

departing at each platform, and the MPC optimization prob-

lem is transformed into MILP problem. Section IV provides

a case study based on two Beijing subway lines. Finally, Sec-

tion V summarizes the paper and provides recommendations

for future research.

II. PASSENGER ABSORPTION MODEL

Passenger demands are generally represented by time-

varying origin-destination matrices. Incorporating time-

varying passenger demands is a challenging task in timetable

scheduling problems, as it would greatly increase the compu-

tational burden. Passenger demands usually change gradually

throughout the day without sudden changes. Therefore, we

discretize the planning time span into several periods of

length T , where passenger demands in each period are

assumed to be constant. The number of trains departing at

each platform during each period is the decision variable in

this model. Fig. 1 provides a typical time-varying passenger

arrival rate and the approximate profile of the arrival rate for

the passenger absorption model. In real life, the passenger

flow data are typically collected periodically, e.g., the total

flows over each half hour are recorded and stored in Beijing

Subway. Therefore, the piecewise constant approximation is

consistent with the utilization of practical passenger flow

data.
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Fig. 1. Illustration of piecewise constant approximation of passenger arrival
rates.

In urban rail transit systems, the line indicates the route

of one specific type of train services with the same stopping

platforms/stations. Generally, different lines use different

tracks and platforms in urban rail transit systems.

In the passenger absorption model, the number of passen-

gers remaining at a platform at each period can be updated

as follows:

np,m (k + 1) =np,m (k) + λp,m (k)T

+ narrive,transp,m (k)− nabsorbp,m (k) ,
(1)

where np,m (k) is the number of passengers waiting at

platform p with station m as their destination at the beginning

of period k; λp,m (k) denotes the passenger arrival rate

at platform p with station m as their destination during

period k; nabsorbp,m (k) represents the number of passengers

at platform p with station m as their destination absorbed by

trains during period k, and narrive,transp,m (k) is the number of

transferring passengers arriving at platform p during period

k with station m as their destination.

The number of passengers nwait
p (k) waiting at platform p

for boarding trains during period k is

nwait
p (k) = np (k) + λp (k)T + narrive,transp (k) , (2)

where np(k) =
∑

m∈S

np,m(k), λp(k) =
∑

m∈S

λp,m(k), and

narrive,transp (k) =
∑

m∈S

narrive,transp,m (k), with S the set of all

stations in the urban rail network.

Then, the total number of passengers nabsorbp (k) absorbed

by trains at platform p during period k can be calculated by

nabsorbp (k) = min
(

nwait
p (k) , Cp (k)

)

, (3)

where Cp(k) is the total remaining capacity of trains visiting

platform p during period k.

The number of passengers nabsorbp,m (k) absorbed by trains

at platform p with station m as their destination during period

k can be approximated by

nabsorbp,m (k) =
λp,m (k)

λp (k)
nabsorbp (k) , (4)



which means the proportion of absorbed passengers with

different destinations is assumed to be equal to the proportion

of passengers arriving in the current period. As λp,m(k)
and λp(k) are known constants that can calculated based on

historical data, (4) corresponds to a linear relation between

nabsorbp,m (k) and nabsorbp (k).

The total capacity provided by trains visiting platform p
during period k can be computed by

Cp (k) = fp(k) · Cmax −
∑

m∈S

ntrainp,m (k) +
∑

m∈S

nalightp,m (k),

(5)

where fp(k) represents the number of trains visiting platform

p during period k, Cmax is the maximum capacity of a train,

ntrainp,m (k) is the number of passengers on board of trains

arriving at platform p with station m as their destination

during period k, and nalightp,m (k) denotes the number of

passengers alighting from platform p with destination m
during period k.

In this paper, all trains are assumed to depart from the

starting platform of a line, visit every platform of the

line, and finally arrive at the terminal platform, i.e., short-

turn, shunting, and stop-skipping are not considered. In this

context, the number of trains departing at each platform

along a line is connected to the number of trains departing

at the first platform of the line. As there are several trains

arriving at a platform during period k, we can define ψp as

the average time for a train departing from the first platform

of a line to arrive at the current platform1. Then, we define

δp = floor

{

ψp

T

}

, (6)

γp = rem {ψp, T} , (7)

where floor {x} denotes the largest integer smaller than or

equal to x, and rem {ψp, T} refers to the remainder of the

division of ψp by T . Hence, we have

ψp = δpT + γp, 0 ≤ γp < T. (8)

Therefore, fp(k), which is the number of trains visiting

platform p during period k can be approximated by

fp (k) =
T − γp
T

fline(p)(k − δp) +
γp
T
fline(p)(k − δp − 1) ,

(9)

where line (p) defines the starting platform of the line

corresponding to platform p.

Due to safety requirements, the number of trains arriving

at platform p during period k should also satisfy

fp(k)
(

hmin
p + τmin

p

)

≤ T, (10)

where hmin
p represents the minimum headway between two

trains at platform p, and τmin
p is the minimum dwell time at

platform p.

1ψp can be determined based on the historical data of the timetable.

The number of passengers ntrainp,m (k) on board of trains

when trains arrive at platform p during period k can be

calculated by

n
train
p,m (k)=

T−r̄ppla(p)

T
n
depart

ppla(p),m
(k) +

r̄ppla(p)

T
n
depart

ppla(p),m
(k−1) ,

(11)

where ndepart
ppla(p),m

(k) denotes the number of passengers de-

parting from the predecessor platform of platform p with sta-

tion m as their destination during period k. As several trains

arrive at platform p during period k, r̄ppla(p) represents the

average running time of trains from the predecessor platform,

for the line to which platform p belongs, to platform p. Since

we aim at determining the number of trains over a relatively

long time window, we assume that T ≫ r̄ppla(p).

The number of passengers ntransp,q,m (k), transferring from

platform p to platform q with station m as their destination

during period k, can be computed by

ntransp,q,m(k) = βtrain
p,q,m(k) ntrainp,m (k), ∀q ∈ plat(p)/{p}, (12)

where plat(p) denotes the set of platforms at the same station

as platform p, βtrain
p,q,m(k) is the splitting rate of passengers

with station m as their destination transferring from platform

p to q ∈ plat(p) during period k, with
∑

q∈plat(p)

βtrain
p,q,m(k) = 1. (13)

Then, the number of passengers nalightp,m (k) alighting from

trains at platform p with destination m during period k can

be calculated by

nalightp,m (k)=











∑

q∈plat(p)/{p}

ntransp,q,m (k) , if m ∈ S/{sta(p)},

ntrainp,m (k) , if m = sta(p),
(14)

where sta(·) defines a mapping between a platform and its

corresponding station.

Therefore, the number of passengers ndepartp,m (k) departing

from platform p with station m as their destination during

period k can be calculated by

ndepartp,m (k) = ntrainp,m (k)− nalightp,m (k) + nabsorbp,m (k) . (15)

The arrival rate of passengers transferring from the other

platforms of the station and arriving at platform p during

period k is

n
arrive,trans
p,m (k)=

∑

q∈plat(p)/{p}

(

T − θtransq,p

T
n
trans
q,p,m (k)

+
θtransq,p

T
n
trans
q,p,m (k − 1)

)

,

(16)

where θtransq,p represents the average passenger walking time

for passengers from platform q to platform p.

III. MODEL PREDICTIVE CONTROL FOR REAL-TIME

TIMETABLE SCHEDULING

Based on the passenger absorption model proposed in

Section II, the total number of passenger wp(k) at platform

p who cannot board the train during period k is



wp(k) = nwait
p (k)− nabsorbp (k) , (17)

where P is the set of all platforms in the considered urban

rail network. Then, the total passenger travel time in the

network during period k can be described by

J
pass(k)=

∑

p∈P

(

wp(k)T + n
depart
p (k)r̄p + n

arrive,trans
p (k)θtransq,p

)

.

(18)

It is obvious that Jpass(k) can be minimized by using as

many trains as available running with the minimum headway;

however, the operational cost of using too many trains is

usually very high. In real life, adding trains would lead to

additional cost, e.g., energy consumption, crew scheduling

costs, and maintenance costs. Hence, a penalty term is

included to make a trade-off between passenger satisfaction

and operational costs. Therefore, the objective function of

the timetable scheduling problem is

J =

k0+N−1
∑

k=k0



Jpass(k) + ξ
∑

p∈P

fp(k)E



, (19)

where ξ is a weight balancing the two objectives, E repre-

sents the average operational cost for the departure of one

train at a platform, and N is the number of periods in the

planning window.

Therefore, the optimization problem for real-time

timetable scheduling based on the proposed passenger ab-

sorption model at period k0 is










min
f(k0)

J =
k0+N−1
∑

k=k0

(

Jpass(k) + ξ
∑

p∈P

fp(k)E

)

s.t. (1)−(5), (9)−(12), (14)−(17),

(20)

where f(k0) collects the variables fp(k0 + k) of all the

platforms for k = 0, 1, · · · , N − 1, i.e.,

f(k0) = [fp(k0 + 1), · · · , fp(k0 + k), · · · , fp(k0 +N − 1)]
T
.

(21)

Solving optimization problem (20) leads to a sequence of

decision variables for period k0 to k0 +N − 1, and in MPC

only the first decision variable for k = k0 is implemented,

and at the next period the prediction window is shifted for

one period, resulting in a new optimization problem.

The MPC optimization problem (20) is a nonlinear non-

convex optimization problem. Sequential quadratic program-

ming (SQP) algorithm is typically used in many fields to

solve nonlinear nonconvex optimization problems [17], [1].

However, SQP might result in a local optimal solution for

problem (20), and should be implemented with multi-start

SQP to improve the solution quality.

Another approach is to transform the nonlinear optimiza-

tion problem (20) into a mixed-integer linear programming

(MILP) problem by using the method in [18], [19]. Define a

auxiliary binary variable ρk,p and an auxiliary variable µk,p

and let

µk,p = nwait
p (k)− Cp (k) . (22)

Then, the statement µk,p ≤ 0 ⇔ ρk,p = 1 is true if and only

if {

µk,p ≤Mk,p (1− ρk,p) ,
µk,p ≥ ε+ (mk,p − ε) ρk,p,

(23)

with mk,p and Mk,p are the minimum value and the max-

imum value of fk,p, respectively, and ε is a small positive

number. Therefore, (3) can be rewritten as

nabsorbp (k) = ρk,pn
wait
p (k) + (1− ρk,p)Cp (k) . (24)

It is worth noting that there still some nonlinear terms in

(24), i.e., ρk,p · nwait
p (k) and ρk,p · Cp (k). The products

of binary variables and real valued variables can also be

transformed to linear terms by using the method in [18],

[19]. Define an auxiliary real-valued variable zk,p = ρk,p ·
nwait
p (k). Therefore, zk,p = ρk,p · n

wait
p (k) is equivalent to















zk,p ≤Mn ρk,p,
zk,p ≥ mn ρk,p,
zk,p ≤ nwait

p (k)−mn(1− ρk,p),
zk,p ≥ nwait

p (k)−Mn(1− ρk,p),

(25)

where mn and Mn are the minimum and maximum values

of nwait
p (k), respectively. Similarly, ρk,p ·Cp (k) can also be

transformed into linear inequalities [18], [19].

Based on the transformation, the MPC optimization prob-

lem can be written as an MILP problem of the following

form:
{

min
f(k0)

J = cT(k0)f(k0) + dT(k0)z(k0)

s.t. A(k0)f(k0) +B(k0)z(k0) ≤ b(k0),
(26)

where f(k0) contains the decision variables of all platforms

in the urban rail network of the planning window, z(k0) rep-

resents the auxiliary binary variable, c(k0) and d(k0) denote

the constant vectors of the problem in the current planning

window. The constraint A(k0)f(k0) +B(k0)z(k0) ≤ b(k0)
represents all the mixed-integer constraints in a matrix form.

As we can start with a feasible solution of the overall

system, i.e., the departure frequency of the basic timetable,

and we can always use the basic departure frequency, so

that a feasible solution can always be found. Therefore, the

recursive feasibility of MPC can be satisfied.

IV. CASE STUDY

In this section, we perform the case study to illustrate the

proposed passenger absorption model and the corresponding

MPC approach based on a small part of subway network

from Beijing subway network.

As shown in Fig. 2, we select two lines from Beijing

subway network. The network includes two subway lines

and each line has two directions. The network contains 19

stations and 40 platforms.

We use MATLAB (R2019b) at a computer with an Intel

Xeon W-2223 CPU and 8GB RAM for simulation. Passenger

demands of the network are generated based on real-life

passenger flow data of the Beijing subway network. In

the collected information, the passenger flow data of the

automatic fare collection system are varying every half hour.

Therefore, we set T = 1800 s in the case study. The main

parameters related to the simulation are listed in TABLE I.
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Fig. 2. Real-life network of 2 lines from Beijing subway network.

TABLE I

PARAMETERS FOR THE METRO NETWORK

Parameters Line 9 Line 14

Regular dwell time 60 s 60 s
Minimum dwell time 30 s 30 s
Regular headway 180 s 270 s
Minimum headway 108 s 108 s
Train capacity 2400 persons 2400 persons
Average transfer time 60 s 60 s
Period time 1800 s 1800 s

A. Assessment of the Absorption Model

The most accurate passenger-centric timetable scheduling

model we found in the literature is the model of [5], [20].

For compactness, we regard the model of [5], [20] as

“accurate model” in the remaining part of the section. Then,

we compare the accuracy and efficiency of the passenger

absorption model with the accurate model. The passenger

absorption model focuses on the departure frequency at each

period and does not involve detailed arrival and departure

times of trains. Therefore, instead of comparing the numbers

of passengers as a function of time, we compare the numbers

at the end of each period. In the undersaturated or saturated

situation, the capacity provided by trains when trains arrive

at platforms, are larger than or equal to the required capacity;

thus, all passengers are able to board the trains in time.

Hence, we select the oversaturated situation for simulation,

where efficient optimization approaches are important to

facilitate more passenger to board the trains in time.

The cumulative number of waiting passengers (CBP) and

the cumulative number of boarding passengers are two cru-

cial factors related to passenger satisfaction. The simulation

is conducted based on the passenger flow data from 7:00.

As Fig. 3 shows, the values of CWP and CBP are close to

that of accurate model. The simulation time of the accurate

model for the considered time window is 9.03s while the sim-

ulation time of the absorption model is 0.08s. The simulation

time of the absorption model is reduced significantly, which

implies that the absorption model can deal with the timetable
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Fig. 3. Comparison of the absorption model and the accurate model.

scheduling problem more efficiently. The simulation results

thus indicate that the absorption model can make a balanced

trade-off between model accuracy and computation burden.

B. MPC for Timetable Scheduling of Urban Rail Networks

In this section, we perform case study to show the ef-

fectiveness of the developed MILP-based MPC approach.

The prediction time window is 1.5 hours, i.e., the prediction

horizon is 3, and the case study is conducted for 10 periods.

The MILP problem is solved by using gurobi solver

implemented in MATLAB (R2019b). For the SQP algorithm,

we apply the fmincon function in the MATLAB Optimiza-

tion Toolbox. The basic timetable is generated according to

the regular dwell time and regular headway in TABLE I. The

performance, including the solution quality and the solution

time, is compared with that of the basic timetable.

TABLE II

COMPARISON OF PERFORMANCE AND COMPUTATION TIME

CORRESPONDING TO DIFFERENT APPROACHES

Method Performance
CPU time (s)
tavrg tmax

Basic timetable 1.0298 · 10
5 - -

SQP-based MPC 8.9841 · 10
4 60.1 77.6

MILP-based MPC 8.5447 · 10
4 23.5 27.6

The resulting MILP problem has 23584 continuous vari-

ables and 156 binary variables. The simulation results are

shown in TABLE II. We can find that, in this case study, both

SQP-based MPC and MILP-based MPC can largely improve

the performance compared with the basic timetable, with the

improvement of 12.76% and 17.03%, respectively. Instead

of keeping constant departure frequency during the whole

time window, SQP-based MPC and MILP-based MPC can

adjust the departure frequency based on the real-time pas-

senger demands, thus the performance is improved. SQP can

fall into sub-optimal solutions of the nonlinear non-convex

optimization problem, which will influence the performance

of SQP-based MPC.



To illustrate the performance of each approach, the per-

formance of each period are shown in Fig. 4. We can found

from Fig. 4 that the performance obtained from MILP-based

MPC is better than that of SQP-based MPC. Furthermore,

the average CPU time of MILP-based MPC is reduced with

a factor about 3 compared with SQP-based MPC. MILP-

based MPC performs best with respect to the solution time

and solution quality. The simulation results indicate that the

MILP-based approach can be used in real time to determine

departure frequencies in urban rail networks.
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Fig. 4. The value of objective function at each time step.

V. CONCLUSIONS

In this paper, a novel passenger absorption model has

been proposed for urban rail network timetable scheduling

considering time-varying passenger origin-destination de-

mands. The model divides the planning time window into

several periods. By optimizing the number of trains visiting a

platform during each period, an upper bound of the transport

capacity per period is determined, so that passengers can be

absorbed by trains at the platform. An MPC approach is

developed for the real-time timetable scheduling problem.

The passenger absorption model allows us to transform

the MPC optimization problem into a mixed-integer linear

programming problem, which can be solved efficiently by

the existing solvers. Simulation results indicate that the ab-

sorption model can make a balanced trade-off between model

accuracy and computational burden. Furthermore, we also

shown that MILP-based MPC can help to greatly reduce the

computation time while ensuring good control performance.

Our future work will involve developing two-level control

methods to incorporate a more detailed train operation model

and/or a more detailed passenger flow model into the passen-

ger absorption model, so that the practically implementable

timetable can be generated while keeping a balanced trade-

off between computation time and control performance.

To solve the timetable scheduling problem for large-scale

networks, we will investigate efficient distributed control

approaches. Future work will also investigate the potential

of extending the absorption model to more general case

of railway networks, including across-line operation, short-

turning, shunting, and stop-skipping.
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