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Scenario Parameter Generation Method and
Scenario Representativeness Metric for

Scenario-Based Assessment of Automated Vehicles
Erwin de Gelder1,2∗, Jasper Hof3, Eric Cator4, Jan-Pieter Paardekooper1,5, Olaf Op den Camp1,

Jeroen Ploeg6, Bart De Schutter2

Abstract—The development of assessment methods for the
performance of Automated Vehicles (AVs) is essential to enable
the deployment of automated driving technologies, due to the
complex operational domain of AVs. One candidate is scenario-
based assessment, in which test cases are derived from real-world
road traffic scenarios obtained from driving data. Because of
the high variety of the possible scenarios, using only observed
scenarios for the assessment is not sufficient. Therefore, methods
for generating additional scenarios are necessary.

Our contribution is twofold. First, we propose a method
to determine the parameters that describe the scenarios to a
sufficient degree while relying less on strong assumptions on the
parameters that characterize the scenarios. By estimating the
probability density function (pdf) of these parameters, realistic
parameter values can be generated. Second, we present the Sce-
nario Representativeness (SR) metric based on the Wasserstein
distance, which quantifies to what extent the scenarios with
the generated parameter values are representative of real-world
scenarios while covering the actual variety found in the real-
world scenarios.

A comparison of our proposed method with methods relying on
assumptions of the scenario parameterization and pdf estimation
shows that the proposed method can automatically determine the
optimal scenario parameterization and pdf estimation. Further-
more, it is demonstrated that our SR metric can be used to
choose the (number of) parameters that best describe a scenario.
The presented method is promising, because the parameterization
and pdf estimation can directly be applied to already available
importance sampling strategies for accelerating the evaluation of
AVs.

I. INTRODUCTION

AN essential aspect in the development of Automated
Vehicles (AVs) is the assessment of the quality and

performance of AV behavior with respect to safety, comfort,
and efficiency [1]–[3]. Because public road tests are expensive
and time consuming [4], [5], a scenario-based approach has
been proposed [2], [6]–[11]. With a scenario-based approach,
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the response of the system-under-test is assessed in many
scenarios and for the variations of these scenarios that occur
in the real world. Here, a scenario describes the situation
the system-under-test is in and how this situation develops
over time (in Section III-A, a precise definition of the term
scenario is provided). One of the advantages of a scenario-
based approach is that the assessment can focus on the more
challenging situations by selecting scenarios that are challeng-
ing for the system-under-test. As a source of information for
the assessment scenarios, real-world driving data has been
proposed, thereby guaranteeing that the scenarios represent
real-world driving conditions [7]–[9].

For the scenario-based assessment approach, it is important
that the generated scenarios are representative of scenarios
that could happen in real life. In other words, the scenarios
should be a representation of the real world [6]. Only then, the
results of the assessment can be generalized to the performance
of the system-under-test when operating in real life [10].
Furthermore, it is essential that the generated scenarios cover
the same variety that is found in real life. Riedmaier et al.
[6] argue that since an infinite number of situations occur in
the real world, the scenario generation methods must provide
a large number of variations in order to cover this infinite
number of situations.

Our data-driven approach uses observed scenarios to gen-
erate parameter values that describe new scenarios. Instead of
relying on a predetermined functional form of the signals, such
as a vehicle’s speed, and fitting parameters to this functional
form, we employ a Singular Value Decomposition (SVD) [12]
to determine in a data-driven manner the parameters that best
describe the scenarios. Next, the probability density function
(pdf) of the parameters is estimated, such that the pdf can be
used to sample the parameters to generate similar scenarios.
To not assume a particular shape of the pdf, Kernel Density
Estimation (KDE) [13], [14] is used for the pdf estimation.
Furthermore, with KDE, the correlations that might exist
among the parameters is modeled. This work also proposes
a novel metric called the Scenario Representativeness (SR)
metric for quantifying to what extent the generated scenarios
are representative and cover the actual variety of real-world
scenarios. More specifically, this metric uses the Wasserstein
distance [15] to compare a set of generated scenarios with a
set of observed scenarios.

This article is organized as follows. Section II reviews



related works. In Section III, the approach for generating sce-
narios for the assessment of AVs is explained. Next, Section IV
presents a novel metric for quantifying the performance of
the scenario-generation method. A case study is performed in
Section V. Section VI discusses relevant implications of our
approach and some directions for future research. Conclusions
of the paper are provided in Section VII.

II. RELATED WORKS

In this section, first, works concerning the generation of
scenarios for the assessment of AVs are reviewed. Next, works
related to the SR metric are reviewed.

A. Scenario generation

The approaches to determine scenarios for the assessment
of AVs can be categorized into three kinds [16]: scenarios
based on observations of real-world traffic, scenarios based
on the functionality that is being assessed, and a combination
of these two approaches. The current paper focuses on the first
approach.

In the literature, several methods are proposed to generate
scenarios for the assessment based on real-world driving data.
Lages et al. [17] proposed a method to construct scenarios in
a virtual simulation environment by reconstructing the real-
world scenarios observed by laser scanners. Zofka et al. [18]
presented how recorded sensor data can be exploited to create
scenarios that might lead to critical situations by modifying
parameters of the recorded parameterized scenarios. Stepien
et al. [19] generate scenarios by sampling scenario parameter
values from generalized extreme value distributions, where
the distribution parameters are fitted using scenario parameter
values extracted from safety-critical scenarios observed in
naturalistic driving data. In [10], [20]–[24], also parameter-
ized scenarios were generated and, in addition, importance
sampling techniques were presented that automatically gen-
erate scenarios in which the system-under-test shows (safety-
)critical behavior. Other approaches to generate scenarios in
which the system-under-test shows (safety-)critical behavior
are Monte Carlo tree search [25] and genetic programming
[26]. Schuldt et al. [27] provided a method to generate
scenarios using combinatorial algorithms that should ensure
that the test cases cover the variety of the possible situations
the system-under-test could encounter in real life. More re-
cently, Spooner et al. [28] presented a Generative Adversarial
Network (GAN) to generate pedestrian crossing scenarios.

In the existing literature, the scenario generation methods
for the assessment of AVs have either one or more of the
following shortcomings:

• Observed scenarios are replayed without adding more
variations [17]. In this case, the total variety of scenarios
that is found in real life will not be covered unless
unrealistic amounts of data are gathered.

• The scenarios are oversimplified. For example, a vehicle’s
speed profile follows a predetermined functional form
[10], [19], [21].

• Assumptions regarding the scenario parameter distribu-
tions are made that potentially compromise the quality of
the scenarios. For example, the parameters are assumed
to originate from a Gaussian [29] or generalized extreme
value [19] distribution, and/or it is assumed that (some
of) the parameters are uncorrelated [24].

• Because no pdf of the scenario parameters is known [18],
no evaluation can be made of the performance of the
system once deployed on the road, because it is unknown
how realistic and likely the scenarios are.

In Section III, a method is proposed that overcomes these
shortcomings.

B. Scenario representativeness metric

The generated scenarios should represent scenarios that
could happen in real life. Whereas different approaches exist
in the literature regarding the generation of scenarios for the
assessment of AVs, less is known about the comparison of the
generated scenarios with real-life traffic. From the mentioned
sources in Section II-A, only Feng et al. [24] compared their
generated scenarios with the ground truth from naturalistic
driving data. Feng et al. [24] compared the distributions of
vehicle speeds and bumper-to-bumper distances between the
constructed scenarios and the ground truth. To quantify the
similarity between the distributions, the Hellinger distance [30]
and the mean absolute error were used. The disadvantages of
this approach are that:

1) the generated scenarios may still be substantially differ-
ent even though the distributions of the vehicle speeds
and bumper-to-bumper distances are similar, and

2) only the marginal distributions are considered while the
correlation between the vehicle speeds and bumper-to-
bumper distances might be completely different.

Whereas little is known about comparing the generated
scenarios for the scenario-based assessment of AVs with
ground truth data, many similarity metrics for comparing two
pdfs are known [30]. Well-known metrics are the Minkowski
metric [30], which is a generalized version of the Euclidean
distance, the f -divergence, which is a generalized version of
both the Kullback-Leibler divergence [31] and the Hellinger
distance [30], and the Wasserstein metric [15]. For practical
reasons, this work uses the Wasserstein metric. As is shown
in Section IV-B, the Wasserstein distance can be estimated
using empirical distributions, i.e., without the need to estimate
and evaluate a pdf. The other mentioned metrics require
integration over the domain of the pdfs, which will give
computational issues since the considered pdfs will have a
high dimensionality.

III. SCENARIO GENERATION

To generate realistic scenarios for the assessment of AVs,
we use a data-driven approach: observed scenarios are used to
generate new scenarios. To do this, the scenarios are parame-
terized, i.e., parameters are defined that characterize a scenario.
For example, the duration of a scenario could be a parameter.
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Next, the pdf of the parameters is estimated. This pdf can
be used to generate parameter values for new scenarios. In
addition, the pdf contains the statistical information of the
parameters so that the performance of AVs can be estimated
[10], [32]. Choosing the parameters that describe a scenario,
however, is not trivial:

• Choosing too few parameters might lead to an oversim-
plification of the actual scenarios. As a result, not all
possible variations of a scenario are modeled.

• Too many parameters lead to problems with estimating
the pdf, due to the curse of dimensionality [33].

To overcome this problem, we first consider as many param-
eters as needed for a complete description of the scenarios
to avoid the oversimplification of the scenarios. Next, using
an SVD, a new set of parameters is created using a linear
mapping of the original scenario parameters. Because this new
set of parameters is ordered according to the contribution of
each of these parameters in describing the variation that exists
among the original scenario parameters, we will consider
only the most important parameters without losing too much
information. In this way, the curse of dimensionality is avoided
without relying on a predetermined choice of parameters.

Below, we first explain how to describe a scenario using
many parameters. Next, Section III-B proposes the use of
the SVD to reduce the number of parameters. Section III-C
describes how KDE is used to estimate the pdf of the reduced
set of parameters and how the estimated KDE can be used to
generate new scenarios.

A. Parameterization of scenarios

The first step of our approach is the parameterization of
scenarios. There is no single best way to parameterize the
scenarios considering the wide variety of scenarios. To deal
with this variety, this work distinguishes quantitative scenarios
from qualitative scenarios, using the definitions of scenario
and scenario category of [34]:

Definition 1 (Scenario). A scenario is a quantitative descrip-
tion of the relevant characteristics and activities and/or goals
of the ego vehicle(s), the static environment, the dynamic envi-
ronment and all events that are relevant to the ego vehicle(s)
within the time interval between the first and last relevant
event.

Definition 2 (Scenario category). A scenario category is a
qualitative description of relevant characteristics and activities
and/or goals of the ego vehicle(s), the static environment, and
the dynamic environment.

A scenario category is an abstraction of a scenario and,
therefore, a scenario category comprises multiple scenarios
[34]. For example, the scenario category “cut-in” comprises
all possible cut-in scenarios. The goal of our approach is to
determine the optimal parameterization of scenarios of a given
scenario category based on a set of observed scenarios of
the same scenario category and to estimate the pdf of these
parameters that can be used to generate parameter values for
new scenarios.

The observed scenarios are described using a time series
for the content of the scenario that changes within the time
window of the scenario (e.g., the speed of a vehicle) and some
additional parameters for the content that is fixed (e.g., the lane
width and the duration of the scenario). Here, y(t) ∈ Rny

denotes the time series of a scenario with t ∈ [t0, t1], where
ny denotes the dimension of the time series and t0 and t1
denote the start and end time of the scenario, respectively.
The nθ additional parameters are represented by θ ∈ Rnθ .

To deal with the time series, the continuous time interval
[t0, t1] is discretized, such that two consecutive time instants
are (t1 − t0)/(nt − 1) apart. This gives:

y =



y(t0)

y
(
t0 +

t1−t0
nt−1

)
y
(
t0 + 2 t1−t0

nt−1

)
...

y(t1)


∈ Rntny . (1)

Note that nt must be chosen such that no important infor-
mation is lost during the discretization. Because in practice,
due to the discrete nature of sensor readings, the time series
y(t) is obtained at certain specific times rather than on a con-
tinuous time interval, it may be required to use interpolation
techniques, such as splines [35], to evaluate y.

Let us assume that Nx observed scenarios can be used
to generate new scenarios. To indicate that the scenario pa-
rameters y and θ belong to a specific scenario, the index
i ∈ {1, . . . , Nx} is used, i.e., the parameters of the i-th
scenario are yi and θi. To further ease the notation, yi and θi
are combined into one vector xi:

xi =

[
yi

θi

]
∈ Rntny+nθ . (2)

B. Parameter reduction using Singular Value Decomposition
As shown in (2), nx = ntny + nθ parameters describe a

scenario. Even for small numbers of nt, ny , and nθ, the total
number of parameters becomes too large to reliably estimate
the joint pdf. One way to avoid this curse of dimensionality is
to assume that the parameters are independent, but especially
the parameters y(t0) till y(t1) in (1) are obviously correlated,
so assuming that the parameters are independent is not a good
solution.

In the field of machine learning, Principal Component Anal-
ysis (PCA) is commonly used for dimensionality reduction
[36]. As PCA uses the SVD [12], this work uses the SVD to
transform the parameters xi into a lower-dimensional vector
of parameters. Before applying the SVD, the parameters are
weighted with α ∈ Rnx in order to give more or less
importance to the nx parameters. This is particularly useful to
compensate for the imbalance in the parameter vector, where
the imbalance is caused by the fact that the parameter vector
considers the time series y(t) at nt different times and the
additional parameters θ only once. Let us define a matrix that
contains the parameters of the Nx scenarios:

X =
[
(α⊙ x1)− µ · · · (α⊙ xNx)− µ

]
∈ Rnx×Nx , (3)
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where ⊙ denotes the element-wise product of vectors and µ ∈
Rnx denotes the mean of the weighted scenario parameters:

µ =
1

Nx

Nx∑
i=1

α⊙ xi. (4)

Using the SVD of X , we obtain:

X = UΣV T. (5)

Here, both U ∈ Rnx×nx and V ∈ RNx×Nx are orthonor-
mal matrices. Therefore, both matrices can be interpreted as
rotation matrices in Rnx and RNx , respectively. The matrix
Σ ∈ Rnx×Nx takes the same shape as X . This matrix has
only zeros except on (part of) the diagonal. The diagonal
contains the so-called singular values, denoted by σj with
j ∈ {1, . . . , N̄}, N̄ = min(nx, Nx). These singular values
are in decreasing order, i.e.,

σ1 ≥ σ2 ≥ . . . ≥ σN̄ ≥ 0. (6)

Because of the decreasing singular values, rotating the matrix
X from the left with UT transforms the data to a new
coordinate system such that the first coordinate has the largest
variance compared to the other coordinates. This variance
equals σ2

1 . Similarly, the second largest variance equals σ2
2 and

lies on the second coordinate, etc. Because of the decreasing
variance, the scenario parameters can be approximated using
only the first d coordinates of the new coordinate system, as
these d coordinates describe the majority of the variations. So,
the scenario parameters of the i-th scenario are approximated
by setting σj = 0 for j > d:

α⊙ xi = µ+

N̄∑
j=1

σjvijuj ≈ µ+

d∑
j=1

σjvijuj , (7)

where vij is the (i, j)-th element of V , uj is the j-th column of
U , and d is the number of parameters that are retained. Thus,
the nx parameters of the i-th scenario are approximated using
the d parameters vi1, . . . , vid. The singular values σ1, . . . , σd,
the vectors u1, . . . ,ud, and µ are used to map the new scenario
parameters, vi1, . . . , vid, to an approximation of the weighted
original scenario parameters, α⊙ xi.

Remark 1. Using the approximation of (7), it is not necessary
to evaluate the complete SVD of (5). Only the first d columns
of U and V need to be computed and only the first d singular
values. In practice, d ≪ N̄ , so this saves a significant amount
of computation time. ♢

The choice of d < N̄ is not trivial. Choosing d too small
results in too much loss of detail. Choosing d too large will
give problems when estimating the pdf of the new parameters.
One method to choose d is to look at the amount of overall
variance of α⊙xi explained by the first d singular values. The
overall variance scales with the sum of the squared singular
values [12, p. 77], i.e.,

Nx∑
i=1

((α⊙ xi)− µ)
T
((α⊙ xi)− µ) =

N̄∑
j=1

σ2
j . (8)

Thus, the first d singular values explain∑d
j=1 σ

2
j∑N̄

j=1 σ
2
j

(9)

of the overall variance. One approach would be to set d such
that (9) exceeds a certain threshold, such as 0.95. Another way
to choose d is by inspecting the actual approximation error in
(7) and keep increasing d until the approximation error is not
too large. Section IV proposes an alternative way to determine
d using a metric that quantifies the goal of our generated
scenarios, i.e., that the generated scenarios are representing
real-world scenarios and cover the actual variety of real-world
scenarios.

C. Estimating the probability density function

Using the approximation of (7) based on the SVD, the i-th
scenario is described by the vector ṽi:

ṽTi =
[
vi1 · · · vid

]
. (10)

Note that the d entries of ṽi are linearly uncorrelated with the
d entries of ṽm (m ̸= i)1. Despite the linear independence, the
different entries of ṽi may still be dependent due to higher-
order correlations; so we treat these d entries as dependent
variables.

To estimate the pdf of ṽi, we propose to use KDE. KDE
[13], [14] is often referred to as a non-parametric way to
estimate the pdf, because KDE does not rely on the assumption
that the data are drawn from a given parametric family of
probability distributions. Because KDE produces a pdf that
adapts itself to the data, it is flexible regarding the shape of
the actual underlying distribution of ṽi. In KDE, the pdf is
estimated as:

f̂H(v) =
1

Nx

Nx∑
i=1

KH(v − ṽi). (11)

Here, KH(·) is the so-called scaled kernel with a positive
definite symmetric bandwidth matrix H ∈ Rd×d. The kernel
K(·) and the scaled kernel KH(·) are related using

KH(u) = |H|−1/2
K
(
H−1/2u

)
, (12)

where |·| denotes the matrix determinant. The choice of the
kernel function is not as important as the choice of the band-
width matrix [37], [38]. This article considers the Gaussian
kernel2, which is given by

K(u) =
1

(2π)
d/2

exp

{
−1

2
∥u∥22

}
, (13)

1This is assuming that σd > 0. With this assumption and because
X in (3) is defined such that the sum of each row of X equals zero,
it is easy to verify that 1

Nx

∑Nx
m=1 vmj = 0 for j ∈ {1, . . . , Nx}.

Therefore,
∑Nx

i=1

(
vij − 1

Nx

∑Nx
m=1 vmj

)(
vik − 1

Nx

∑Nx
m=1 vmk

)
=∑Nx

i=1 vijvik = 0 for j ̸= k, where the latter equality follows from the
orthonormality of V .

2The advantage of the Gaussian kernel is that it gives the possibility to
calculate a metric that quantifies the completeness of the data [39] and to
apply conditional sampling when generating scenario parameters [40]. Both
these topics are out of scope of this article.
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where ∥u∥22 = uTu denotes the squared 2-norm of u.
A bandwidth matrix of the form H = h2Id is used, where

Id denotes the d-by-d identity matrix. The bandwidth h is
determined with leave-one-out cross-validation [41], because
this minimizes the difference between the real pdf and the
estimated pdf according to the Kullback-Leibler divergence
[37], [42].

To sample scenario parameters using f̂H(·), first, an integer
i ∈ {1, . . . , Nx} is randomly chosen with each integer having
equal likelihood. Next, a random sample is drawn from a
Gaussian with covariance H and mean ṽi. Then, using the
approximation in (7), the scenario parameters are calculated.

As far as the computational effort is concerned, sampling the
scenario parameters from a KDE is efficient because there is
no need to actually evaluate the pdf. Determining the optimal
bandwidth matrix requires more computational effort, but this
only has to be done once per data set. The computational
complexity of cross-validation methods for the bandwidth
estimation typically scales with N2

x [43].

IV. SCENARIO REPRESENTATIVENESS METRIC

Ideally, the parameters of the generated scenarios are sam-
pled from the same distribution that underlies the real-world
scenario parameters. The problem is that this distribution is
unknown. Nevertheless, it is possible to define a metric that
quantifies the similarity of the distribution that is used to gen-
erate scenario parameters and the distribution that underlies the
real-world scenario parameters. Section IV-A further explains
the goal of this metric, which we call the SR metric. Next,
Section IV-B explains the Wasserstein distance [15], which is
then applied to derive our metric in Section IV-C.

A. Scenario comparison problem

The set of observed scenarios, described using the pa-
rameters xi, i ∈ {1, . . . , Nx}, are used for generating the
scenario parameters. To ease the notation, let us denote the
set of observed scenarios by X = {x1, . . . ,xNx

}. This work
assumes that these scenarios — that are comprised by the
same scenario category — are independently and identically
distributed according to the distribution f(·) : Rnx → R. Let
us denote the set of generated scenario parameter vectors by
W = {w1, . . . ,wNw

} where wi ∈ Rnx , i ∈ {1, . . . , Nw}
are similarly parameterized as in (2) and Nw is the number
of generated scenario parameter vectors. Let f̂(·) : Rnx → R

denote the pdf of the generated scenario parameter vectors,
which is obtained from f̂H(·) : Rd → R under a change
of variable according to the approximation in (7). As later
appears, it is not needed to have an explicit definition for f̂(·).
Ideally, f̂(·) is equal to f(·). So our metric aims to quantify
the similarity of f̂(·) and f(·).

To estimate the similarity between f̂(·) and f(·), we cannot
simply compare W with X . In that case, taking W = X would
give us the best result, but this is undesirable because, ideally,
the scenarios of the generated parameters cover the whole
variety of real-world scenarios and not just the variety that
have been observed in X . Therefore, another set of scenarios

is needed that can be used to test. Let us assume that such a set
of scenarios is available, denoted by Z = {z1, . . . , zNz

} where
zi ∈ Rnx , i ∈ {1, . . . , Nz} are independently and identically
distributed according to f(·). Thus, X and Z can be regarded
as a training and test set, respectively.

In summary, the goal is to find a metric that quantifies the
similarity of f̂(·) and f(·) using the sets of observed scenario
parameters X and Z and the set of scenario parameters W ,
generated based on X .

B. Empirical Wasserstein metric

The p-th Wasserstein metric (p ≥ 1) [15] is used to compare
two pdfs ξ(·) and η(·) defined on the set U . This metric is
defined as follows:

Wp(ξ, η) =

(
inf

γ∈Γ(ξ,η)

{∫
U×U

(∆(u, v))
p
dγ(u, v)

})1/p

.

(14)
Here, ∆(u, v) denotes the distance from u to v, which will be
defined below, and Γ(ξ, η) denotes the set of joint distributions
of (u, v) that have marginal distributions ξ(·) and η(·). Intu-
itively, if the pdfs ξ(·) and η(·) are seen as two piles of earth
having a different shape with mass 1, then (14) calculates the
minimum cost of converting one pile of earth with shape ξ(·)
into a pile of earth with shape η(·). Therefore, the Wasserstein
metric is also referred to as the earth mover’s distance [44].

In our case, the goal is to have a metric to compare f(·)
and f̂(·). Because f(·) is unknown, its approximation based
on Z is considered:

f(z) ≈ 1

Nz

Nz∑
i=1

δ(z− zi), z ∈ Rnx , (15)

where δ(·) denotes the Dirac delta function. Considering the
high dimension of z, numerical approximation of the integral
of the Wasserstein metric (14) using this approximation and
f̂(·) would require so many evaluations of f̂(·) that it becomes
computationally infeasible. Therefore, the empirical estimation
of the Wasserstein metric (14) is considered, which makes use
of the empirical estimation of f̂(·):

f̂(w) ≈ 1

Nw

Nw∑
i=1

δ(w −wi),w ∈ Rnx . (16)

Substituting the empirical estimations of (15) and (16) for
ξ(·) and η(·), respectively, into (14), leads to the so-called
empirical Wasserstein metric [45], which is defined as:

W̃p(Z,W) =

inf
T

Nz∑
i=1

Nw∑
j=1

(∆(zi,wj))
p
Tij

1/p

, (17)
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where Tij is the (i, j)-th element of the transportation matrix
T that is subject to the following conditions:

Nz∑
i=1

Tij =
1

Nw
∀ j ∈ {1, . . . , Nw}, (18)

Nw∑
j=1

Tij =
1

Nz
∀ i ∈ {1, . . . , Nz}, (19)

Tij ≥ 0 ∀ i ∈ {1, . . . , Nz}, j ∈ {1, . . . , Nw} (20)

For the distance function, we will use the 2-norm of the
difference of the scenario parameters after scaling the scenario
parameters according to the weights α that we also used in
Section III-B:

∆(z,w) = ∥(α⊙ z)− (α⊙w)∥2. (21)

C. Metric for testing scenario representativeness

The empirical Wasserstein metric W̃p(Z,W) is an approx-
imation of the Wasserstein metric Wp

(
f, f̂

)
. As one might

expect, using an infinite number of scenario parameters, i.e.,
for Nz → ∞ and Nw → ∞, the empirical Wasserstein metric
approaches the Wasserstein metric with probability 1 [45].
The problem is that Nz and Nw are not infinite. In addition,
whereas a fairly large number for Nw can be chosen, as
it is only limited by the available computational resources,
to increase Nz , more data are needed and this is generally
expensive. Therefore, this work proposes a metric that is
different from (17).

Our proposed SR metric is based on the following intuition:
Suppose that f̂ is indeed an approximation of f . Because X
and Z are based on the same underlying pdf, i.e., f , it is
expected that W̃p(X ,W) is similar to W̃p(Z,W). If, how-
ever, W̃p(X ,W) is significantly smaller than W̃p(Z,W), it
suggests overfitting of the training data because the generated
scenario parameters are too much skewed towards the training
data X . To penalize overfitting of the training data, our SR
metric includes a penalty in case W̃p(Z,W) is larger than
W̃p(X ,W). Thus, the SR metric becomes:

(22)
Mp (W,Z,X ) = W̃p (Z,W) +

β
(
W̃p (Z,W)− W̃p (X ,W)

)
.

Here, β is the weight of the penalty. The case study in
Section V demonstrates empirically that Mp(W,Z,X ) of (22)
better correlates with the Wasserstein metric of (14) than the
empirical Wasserstein metric of (17) and a method to choose
β.

V. CASE STUDY

To illustrate the proposed method for generating the scenario
parameters (Section III) and the SR metric (Section IV), these
are applied in a case study. Section V-A explains the scenario
categories that are considered in the case study and describes
the choices that are made regarding the scenario parame-
terization. Section V-B illustrates the approximation of the

Fig. 1. Schematic representation of the scenario category “leading vehicle
decelerating (LVD)”. The left vehicle is the ego vehicle.

Fig. 2. Schematic representation of the scenario category “cut-in”. The left
vehicle is the ego vehicle.

original parameterization using the SVD. Next, the scenario
parameter generation method is demonstrated in Section V-C.
Section V-C also shows that the SR metric (22) can be used
to choose d. Our method for generating scenario parameters
is compared with other methods in Section V-D. Section V-E
demonstrates that the SR metric (22) better correlates with the
Wasserstein metric (14) than the empirical Wasserstein metric
(17).

A. Scenario categories and parameterization

In this case study, two scenario categories are considered.
The first scenario category, labeled leading vehicle decelerat-
ing (LVD), involves an ego vehicle that is following another
vehicle that decelerates, see Fig. 1. As a result, the ego vehicle
might need to brake or change direction to avoid contact with
the vehicle that decelerates. The second scenario category
considers a vehicle that performs a cut-in, such that this
vehicle becomes the leading vehicle of the ego vehicle, see
Fig. 2. Depending on the speed and timing of the vehicle
that performs a cut-in, the ego vehicle might need to brake or
change direction to avoid a collision.

To obtain the scenarios, the data set described in [46] is
used. The data were recorded from a single vehicle in which
20 drivers were asked to drive a prescribed route, resulting in
63 hours of data containing 1150 LVD scenarios and 289 cut-
in scenarios. The majority of the route was on the highway.
To measure the surrounding traffic, the vehicle was equipped
with three radars and one camera. The surrounding traffic was
measured by fusing the data of the radars and the camera as
described in [47]. To extract the LVD and cut-in scenarios from
the data set with the fused data, we searched for particular
(combinations of) activities in the data: a deceleration activity
of a leading vehicle indicates an LVD scenario and a lane

6



0 5 10 15
0

50

100

Time [s]

Sp
ee

d
[k
m
/h

]

Fig. 3. Speed of the leading vehicle during 100 randomly-selected observed
LVD scenarios. For plotting purposes, the starting time of each scenario is
set to 0.

change of another vehicle that becomes the leading vehicle
indicates a cut-in scenario. For more information on the
process of extracting the scenarios, see [48].

From the 1150 LVD scenarios, the training uses 80% (so
Nx = 920) and the testing uses the remaining 20% (so
Nz = 230) as this 80/20 ratio is commonly used for splitting
the data into a training set and a test set. The training data
are used for generating Nw = 10000 new scenario parameter
vectors. To describe the decelerating behavior of the leading
vehicle, the acceleration of the leading vehicle at nt = 50
time instants is used (ny = 1). As additional parameters,
the duration of the scenario, t1 − t0, the initial speed of the
leading vehicle, and the initial time gap between the leading
vehicle and the ego vehicle are considered (nθ = 3). Thus,
nx = 53. In Fig. 3, the speed of the leading vehicle of 100
randomly-selected observed LVD scenarios are shown. The k-
th weight, αk, is obtained by dividing a chosen constant βk

by the standard deviation of the k-th parameter:

αk =
βk√

1
Nx

∑Nx

i=1((xi)k − x̄k)
2
, (23)

with (xi)k denoting the k-th element of xi and x̄k =
1
Nx

∑Nx

i=1(xi)k. In this way, the contribution of the k-th
parameter to the overall variance (see (8)) only depends on
βk. When choosing β1 = . . . = β53, the acceleration of
the leading vehicle would contribute 50 times more to the
overall variance of (8), because nt = 50 elements are used
to describe the acceleration. For the LVD scenarios, we want
to give the acceleration the same importance as each of the
other parameters, so we choose β1 = . . . = β50 = 1/

√
nt and

β51 = β52 = β53 = 1.
From the 289 cut-in scenarios, 80% are used for training

(so Nx = 231) and 20% are used for testing (so Nz = 58).
Both cut-in scenarios from the left and from the right are
considered. The training data are used for generating Nw =
10000 parameter vectors that describe cut-in scenarios. A cut-
in scenario is described using the speed of the vehicle that
performs the lane change and its lateral position with respect

TABLE I
THE LAST nθ = 3 COORDINATES OF BOTH µ AND THE FIRST FOUR

COLUMNS OF U AFTER SCALING WITH α FOR THE LVD SCENARIOS.
NOTE THAT ⊘ DENOTES ELEMENT-WISE DIVISION.

Coordinate 51 Coordinate 52 Coordinate 53
Scenario duration Initial speed Initial time gap

µ⊘ α 4.73 s 22.11 km/h 1.49 s
u1 ⊘ α −1.50 s −15.17 km/h 0.28 s
u2 ⊘ α −3.09 s 12.22 km/h −0.06 s
u3 ⊘ α 1.15 s −16.52 km/h 0.29 s
u4 ⊘ α 1.32 s −2.88 km/h −0.08 s

to the center of the ego vehicle’s lane (so ny = 2) at nt = 50
time instants. In case of a cut-in scenario from the left, the
lateral position is positive when the cutting-in vehicle is on
the left of the center of ego vehicle’s lane and vice versa
for a cut-in scenario from the right. Furthermore, nθ = 3
extra parameters are used to describe a cut-in scenario: the
duration of the scenario, the initial speed of the ego vehicle,
and the initial longitudinal position of the cutting-in vehicle
with respect to the ego vehicle. Thus, nx = 103. To give the
same importance to the speed of the vehicle that performs the
lane change, its lateral position, and the 3 extra parameters,
the weights are calculated using (23) with β1 = . . . = β100 =
1/
√
nt and β101 = β102 = β103 = 1.

B. Approximation of scenarios with SVD

As explained in Section III-C, using too many parameters
will lead to poor estimations of the pdf of the parameters.
We use an SVD to obtain a reduced number of parameters
that best describe the original scenarios parameters. This
section illustrates the approximation of the original scenario
parameters using the parameters obtained after applying the
SVD.

Following the approximation of (7), the scaled parameter
vector, α⊙ xi, is approximated using a linear combination of
the first d columns of U , i.e., u1, . . . ,ud. In Fig. 4 and Table I,
µ and the first four columns of U are shown for the LVD
scenarios. For an easier interpretation, the original scaling of
the parameters by α is undone via the element-wise division
by α. Figure 4 shows that the average scenario starts with a
deceleration of about 0.4m/s2 and ends with a deceleration
of about 0.8m/s2. Table I shows that the average scenario
duration is 4.73 s, the average initial speed of the leading
vehicle is 22.11 km/h, and the average initial time gap is
1.49 s. Since each scenario is estimated by combining the
curves in Fig. 4 and values in Table I, it can be seen that the
approximations do not contain complex acceleration curves.
In other words, the accelerations will be smoothed and the
details may get lost. The amount of smoothing depends on d,
i.e., the number of vectors of U that are used to approximate
the original parameter vector. Choosing the value of d is a
trade-off: a higher value of d leads to less smoothing and,
therefore, a smaller approximation error, but choosing d too
large leads to problems when estimating the pdf of the new
parameters.
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Fig. 4. The first nt = 50 coordinates of both µ and the first four columns of
U after scaling with α for the LVD scenarios. Note that ⊘ denotes element-
wise division.

0 2 4 6 8 10

20

40

60

80

1

2

3
4

5

Time [s]

Sp
ee

d
[k

m
/h

]

Measured
Approximation

Fig. 5. Five scenarios that require the highest average deceleration of
the follower. The black lines denote the observed scenarios and the gray
lines denote their approximations based on the d = 4 parameters. The
corresponding initial time gaps are listed in Table II.

Figure 5 shows five LVD scenarios. These selected LVD
scenarios correspond to the five LVD scenarios that require
the highest average deceleration of the following vehicle. The
line with the “1” denotes the LVD scenario that requires the
highest average deceleration. Table II lists the values of σjvji
for j ∈ {1, . . . , d} with d = 4 that are used to approximate the
original scenarios according to the approximation in (7). The
gray lines in Fig. 5 show the approximated speed of the five
LVD scenarios. Table II shows the initial time gaps of the five
scenarios shown in Fig. 5. These five scenarios illustrate that
the accelerations are smoothed, but the main characteristics of
the scenarios are captured by the approximations: the average
deceleration, the scenario duration, the initial speed, and the
initial time gap are well approximated.

C. Generating scenario parameters

An important parameter for the generation of the scenario
parameter vectors is the number of reduced parameters (d).
One approach is to look at the so-called explained variance
of (9) of the first d singular values, see Table III. The first
4 singular values already explain 90.4% of the variance for

TABLE II
INITIAL TIME GAPS OF THE FIVE SCENARIOS THAT REQUIRE THE HIGHEST

AVERAGE DECELERATION OF THE FOLLOWER. THE CORRESPONDING
SPEEDS ARE SHOWN IN FIG. 5.

# σ1vi1 σ2vi2 σ3vi3 σ4vi4 Initial time gap
Original Approximated

1 2.21 0.30 -0.03 2.16 1.91 s 1.91 s
2 -0.28 0.75 -0.46 1.56 1.08 s 1.11 s
3 0.61 -0.21 -0.42 1.53 1.43 s 1.43 s
4 1.74 0.25 0.58 1.63 2.00 s 2.00 s
5 -1.74 -0.71 -0.49 1.30 0.81 s 0.80 s

TABLE III
EXPLAINED VARIANCE ACCORDING TO (9).

d Leading vehicle decelerating Cut-in

1 36.9% 36.9%
2 63.0% 63.3%
3 78.0% 84.5%
4 90.4% 94.1%
5 94.5% 96.9%
6 96.7% 99.0%
7 98.2% 99.6%
8 99.2% 99.8%

the LVD scenarios, so d = 4 might be a suitable choice. In
Fig. 6, the speed of the leading vehicle of 100 generated LVD
scenarios is shown using d = 4.

Another way to determine d is to use the SR metric
Mp(W,Z,X ) defined in (22). In Fig. 7, the result is shown
when applying this metric with p = 1, alongside with
the empirical Wasserstein metric W̃1(Z,W) and the penalty
W̃1(Z,W)− W̃1(X ,W). Each point in Fig. 7 represents the
median3 when applying the metric 200 times, each time with
a different (random) partition of the training data X and test
data Z . The standard deviation of the medians in Fig. 7,
estimated using bootstrapping [50], is 0.005 or less. For the

3We preferred to use the median instead of the mean, such that the result
is less influenced by outliers [49].
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Fig. 6. Speed of the leading vehicle during 100 generated LVD scenarios.
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Fig. 7. Medians of the metrics for the set of generated LVD scenario
parameters. Note that d = 1 is excluded, because its metrics are an order
of magnitude higher than for d = 2 and would, therefore, not be visible with
the current scaling of the y-axis.

SR metric, the penalty is weighted using β = 0.25. The choice
of β = 0.25 is justified in Section V-E.

The most left points in Fig. 7 represent the metric in case the
set of training data X is directly used to sample the scenario
parameters instead of the approach of Section III. Here, W is
a selection with replacement of Nw scenarios from X , i.e.:

wi = x⌊u⌋, u ∼ U(1, Nx + 1),∀i ∈ {1, . . . , Nw}, (24)

where U(1, Nx + 1) denotes the continuous uniform distri-
bution with boundaries 1 and Nx + 1, and ⌊·⌋ denotes the
floor function. Using the training data directly for “generating
scenarios” leads to a low empirical Wasserstein metric. The
downside is that there is not much variation among the
generated scenarios. Therefore, the penalty is also the highest,
which results in M1(W,Z,X ) ≈ 0.967. Looking at d = 4, the
empirical Wasserstein metric (open squares) is approximately
similar compared to when the training set is directly used.
Due to the sampling of the scenario parameters from the
KDE, the generated scenarios contain more variation than the
training set, resulting in a lower penalty and, therefore, a lower
metric evaluation of M1(W,Z,X ) ≈ 0.843. Increasing d even
further results in higher metric evaluations. So based on the
proposed metric, d = 4 seems the right choice.

Figure 8 shows the results of the generation of the cut-in
scenario parameters in a similar way as Fig. 7. The standard
deviation of all points in Fig. 8 is less than 0.008. The lowest
penalty is obtained with d = 2, but the higher empirical
Wasserstein distance suggests that too much information is
lost. The best result, i.e., where the SR metric, M1(W,Z,X ),
is minimal, is obtained at d = 3.

D. Comparison with other approaches

Our proposed method utilizes an SVD to obtain the scenario
parameters and multivariate KDE to estimate the pdf of these
parameters. To illustrate the advantages of these choices,
the results of our method are compared with alternative
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Fig. 8. Medians of the metrics for the set of generated cut-in scenario
parameters.

approaches. First, instead of using an SVD for obtaining the
parameters, a fixed parameterization is used, such as in [10],
[18], [21]. Second, instead of using KDE to estimate the pdf of
the parameters, a Gaussian distribution like in [29] is assumed.
Third, the parameters are assumed to be independent.

When using a fixed parameterization for the LVD scenario,
4 parameters describe the scenario [10]: the speed reduction
of the leading vehicle, the final speed of the leading vehicle,
the duration of the scenario, and the initial time gap between
the leading vehicle and the ego vehicle. The speed of the
leading vehicle is assumed to follow a sinusoidal function,
such that the acceleration at the start and at the end of
the scenario equals zero. In case of the cut-in scenario, 5
parameters describe the scenario: the mean speed of the
vehicle cutting in, its initial lateral position with respect to the
center of the ego vehicle’s lane, the duration of the scenario,
the initial speed of the ego vehicle, and the initial longitudinal
position of the vehicle cutting in with respect to the ego
vehicle. The speed of the vehicle cutting in is assumed to be
constant. Its lateral position is assumed to follow a sinusoidal
function, such that the vehicle ends at the center of the ego
vehicle’s lane. For estimating the pdf of these parameters,
the comparison considers 4 possibilities: multivariate KDE,
multiple univariate KDEs, a multivariate Gaussian distribution,
and multiple univariate Gaussian distributions.

Table IV shows the results of the different approaches for
generating scenario parameters. For the LVD scenarios, our
proposed approach (top row in Table IV) resulted in the lowest
M1(W,Z,X ). For the cut-in scenarios, it is interesting to note
that the scores are not very different if SVD is used to obtain
the parameters. This is partly explained by the smaller data
set, because this results in a higher bandwidth4 that makes the
KDE result with the Gaussian kernel look more like a Gaussian
distribution. Using SVD and KDE while assuming that the
parameters are independent, results in an even better result:

4On average, the bandwidth is about 1.5 to 2 times larger for the cut-in
scenarios compared to the LVD scenarios.
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TABLE IV
MEDIANS OF THE METRIC M1(W,Z,X ) WITH DIFFERENT APPROACHES

FOR GENERATING SCENARIOS.

Parameters Distribution Dependency LVD Cut-in

SVD KDE Dependent 0.84 1.30
SVD Gaussian Dependent 1.00 1.33
SVD KDE Independent 0.99 1.28
SVD Gaussian Independent 1.00 1.33
Fixed KDE Dependent 2.65 1.70
Fixed Gaussian Dependent 2.58 1.71
Fixed KDE Independent 2.31 1.67
Fixed Gaussian Independent 4.76 1.69

1.28 instead of 1.30 (with a standard deviation of 0.005). This
indicates that assuming that the 3 parameters obtained with
the SVD are independent, is acceptable.

E. Evaluating the scenario representativeness metric

To determine whether our proposed metric (22) correlates
better with the Wasserstein metric (14) than the empirical
Wasserstein metric (15), the Wasserstein metric (14) needs to
be known. This is not possible because the true underlying dis-
tribution of the data is unknown. To estimate the Wasserstein
metric (14), the empirical Wasserstein metric (15) can be used
with large numbers of test scenarios and generated scenario
parameters, i.e., with large values of Nz and Nw, respectively.
Since a large number of test scenarios is not available to us, we
assume a certain distribution for f(·) from which the training
data and the test data are generated. The approach is as follows
(the numbers are for the LVD scenarios and, in parenthesis,
the numbers for the cut-in scenarios are shown):

1) Based on the original 1150 (289) scenarios, obtained
from the data, the following sets of scenario parameters
are generated using the proposed approach explained in
Section III with d = 4 (d = 3):

• A new set of training data X ∗ of size Nx = 920
(Nx = 231);

• A new set of test data Z∗ of size Nz = 230 (Nz =
58); and

• A large set of test data Z∗
large of size Nz = 10000

(Nz = 10000).
2) Based on X ∗, Nw = 10000 (Nw = 10000) scenario

parameters are generated and collected in a set W∗.
3) Our proposed metric is computed using W∗, Z∗, and

X ∗: M1(W∗,Z∗,X ∗) with β = 0.25.
4) The Wasserstein metric of (14) is estimated using the

empirical Wasserstein metric of (17) with W∗ and
Z∗

large. Note: to approximate the Wasserstein metric of
(14) using the empirical Wasserstein metric of (17), both
W∗ and Z∗

large need to be large (but not necessarily the
same) in size.

We have repeated this approach 200 times, each time with a
different (random) partition of the training data X and test data
Z . Figs. 9 and 10 show the result of this approach for the LVD
scenarios and cut-in scenarios, respectively. In both cases, the
empirical Wasserstein metric W̃1(Z∗,W∗) is minimal when
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Fig. 9. Medians of the metrics for the set of Nw = 10000 generated LVD
scenario parameter vectors. In this case, the Nx = 920 scenarios of X ∗ are
sampled from f̂H(·) of (11), where f̂H(·) is based on the original data set
X .
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Fig. 10. Medians of the metrics for the set of Nw = 10000 generated cut-in
scenario parameter vectors.

the training data are directly used for the generated scenario
parameters. Thus, the empirical Wasserstein metric suggests
that the best approach for generating new scenario parameters
is to simply sample parameters from the training data. The
actual Wasserstein metric, estimated using W̃1

(
Z∗

large,W∗
)

shows that using our proposed method outperforms sampling
parameters directly from the training data.

To justify the choice of β = 0.25, Fig. 11 shows the
correlation between the medians of the proposed metric
M1(W∗,Z∗,X ∗) and W̃1

(
Z∗

large,W∗
)

for different values

of β. With β = 0, i.e., M1(W∗,Z∗,X ∗) = W̃1(Z∗,W∗),
the correlation is 0.974 for the LVD scenarios and 0.824 for
the cut-in scenarios. The correlation increases with increasing
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different values of β. The solid line shows the result for the LVD scenarios
with a maximum correlation of 0.992 at β ≈ 0.21. The dashed line shows
the result for the cut-in scenarios with a maximum correlation of 0.987 at
β ≈ 0.27.

β until the maximum is obtained at β ≈ 0.21 for the LVD
scenarios and at β ≈ 0.27 for the cut-in scenarios. The
correlations at these maxima are 0.992 and 0.987, respectively.
Increasing β further results in a lower correlation, which
suggests that a choice of β = 0.25 seems appropriate.

The experiment described in this section can be used to
determine both d and β in an iterative manner given an initial
choice for β (denoted by β0):

1) Set i = 0.
2) Determine di, i.e., the optimal number of parameters that

minimizes M1(W,Z,X ) using β = βi.
3) Generate X ∗, W∗, Z∗, and Z∗

large using the approach
described in this section with d = di.

4) Increase i by 1.
5) Determine βi by maximizing the correlation between

M1(W∗,Z∗,X ∗) with β = βi and W̃1

(
Z∗

large,W∗
)

(e.g., see Fig. 11).
6) Repeat step 2.
7) Stop if di = di−1. Otherwise, return to step 3.

As an initial choice, β0 = 0.25 seems appropriate. More
specifically, when choosing β0 ∈ [0.1, 1], the optimal choice
of d is found after one iteration.

VI. DISCUSSION

One of the advantages of our proposed method for gener-
ating scenario parameters is that less assumptions are needed
regarding the parameterization of the scenarios:

• There is no assumption needed on a predetermined
functional form of the time series data. For example,
in an LVD scenario, the speed is often assumed to
follow a polynomial function [10], a sinusoidal function,
or a linear function [21]. In case of a predetermined
functional form, parameters are fitted to the functional
form. In our case, the SVD automatically determines the
optimal choice of parameterization without relying on a
predetermined functional form.

• There is no assumption needed for the shape of the
distribution of the parameters. For example, a particular
distribution, such as a Gaussian distribution [29] or a uni-
form distribution, may be assumed for which parameters
are fitted. Alternatively, assumptions are made regarding
the independence of the parameters [24]. In our case, the
KDE automatically adapts its shape to the data and also
considers the dependence among the different parameters.

It should be noted, however, that if there is a reason to believe
that one or more of the assumptions are valid, than alternative
methods for generation scenario parameters that make use of
such assumptions might perform equally or better than the
presented method [51]. In most cases, it will be difficult to
provide a proper justification of the assumptions regarding
the functional form of, e.g., the vehicle speed, and the pdf
of the scenario parameters and the presented method will
outperform methods relying on such assumptions. In any case,
the presented SR metric provides an opportunity to verify
the applicability of any assumptions regarding the scenario
parameterization and parameter distributions.

The generated scenario parameters represent scenarios that
could happen in real life and cover the same variety that is
found in real-world traffic. Most likely, the majority of these
scenarios are straightforward for the AV to deal with. To do
an efficient assessment, the focus should be on scenarios that
might lead to critical situations in which the probability of
collision is high. That is why so-called importance sampling
[52, Chapter 5.6] is often used for the assessment of AVs,
e.g., see [5], [10], [53], [54]. With importance sampling, a
different pdf, g(·), is used to sample scenario parameters, such
that more emphasis is put on scenarios that might lead to
critical situations. To get unbiased results, the result of a test
with scenario parameters x is weighted by the ratio of the
original probability density, f̂H(x), and the probability density
of the pdf used for importance sampling, g(x) [10], [52]–[54].
Note that the importance sampling techniques explained in
[10], [53], [54] can be directly applied on the estimated pdf
f̂H(·) in (11) of the reduced set of parameters. In future work,
our method for generating scenarios will be combined with
importance sampling [10], [53], [54] for an assessment of an
AV.

In some cases, one might want to sample from a conditional
pdf, e.g., in case of sampling the scenario parameters for
the LVD scenario such that the initial time gap equals a
specified value. Sampling from a KDE such that one or more
parameters are predetermined is straightforward [55]. In our
case, sampling from f̂h(·) such that the time gap equals a
specified value results in a linear constraint on the samples,
because the reduced parameter vector ṽi of (10) results from
a linear mapping of the original parameters xi of (2). In other
words, one might want to sample v from f̂H(·) of (11), such
that v is subject to the linear constraint

Av = b, (25)

where A and b are a matrix and vector, respectively. In [40],
an algorithm is provided for sampling from a pdf estimated
using KDE such that the generated sample is subject to the
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constraint of (25). The main idea of [40] is to weight each
parameter vector vi, i ∈ {1, . . . , Nx} in the KDE based on
how closely the vi matches the constraint (25).

The presented case study considers a vehicle for which the
full trajectory is predetermined. For the presented scenarios,
this works well, but the full trajectory is not predetermined in
scenarios where the actor’s behavior depends on the behavior
of the ego vehicle [56]. To deal with such scenarios, one
option is to use a driver behavior model (e.g., [57], [58]) with
predefined parameters instead of describing the full trajectory.
The parameters of the driver behavior model may be part of θ.
The proposed method for generating scenario parameter values
still applies in these kind of scenarios. Our ongoing research
focuses on the assessment of AVs using scenarios in which
driver behavior models are used for vehicles that may respond
to the ego vehicle’s behavior.

Since KDE is used, the generated scenario parameters
represent variations of the data. Nevertheless, if the data do
not contain scenarios that might lead to critical situations,
such as an emergency braking maneuver or a reckless cut-
in scenario, it is unlikely that such scenarios are generated,
even if importance sampling [10], [53], [54] is used. Therefore,
when using the generated scenarios for the (safety) assessment
of AVs, it is important that there is enough data such that the
data contain such scenarios. Although there is no consensus
yet on the required amount of data, some metrics have been
proposed [39], [59] for determining whether enough data have
been collected when using the data for the assessment of AVs.

This work employs the Wasserstein metric to propose the
SR metric for evaluating the generated scenario parameters.
It is illustrated how our proposed metric could be used to
determine the appropriate number of parameters (d) and the
type of distribution that is used to model the pdf of the scenario
parameters. Also, the bandwidth h or bandwidth matrix H
could also be determined by optimizing the proposed metric.
In case of the bandwidth estimation, the disadvantage is that
it would require more computational resources compared to,
e.g., leave-one-out cross-validation.

More research is needed to determine the influences on the
optimal choice for the penalty weight β. The case study has
demonstrated one way to verify whether the initial choice of
β was appropriate, but we do not yet know why a weight of
β ≈ 0.25 is an appropriate choice. The actual choice might
depend on, among others, Nx, Nz , Nw, and the shape of
the underlying distribution of the scenario parameters. Future
research with a larger data set will allow us to better determine
the optimal β and how this optimal value is influenced.

Future work involves researching the use of the proposed
metric in combination with alternative methods for generating
scenarios for the assessment of AVs. For example, Spooner et
al. [28] have used a GAN [60] to create pedestrian crossing
scenarios. One of the difficulties with GANs is to know
when the GAN truly replicates the underlying distribution.
Several metrics have been proposed [61] to evaluate the
performance of GANs, among which a metric based on the
Wasserstein metric that compares the generated data with test
data. Alternatively, our proposed metric, which also considers

the training data, could be considered for evaluating GANs. To
judge the potential of our proposed metric in this application,
more research is needed.

VII. CONCLUSIONS

It is essential for the deployment of Automated Vehicles
(AVs) to develop assessment methods. Scenario-based as-
sessment in which test cases are derived from real-world
road traffic scenarios is regarded as a viable approach for
assessing AVs. This work has presented a method to generate
parameterized scenarios for the use in test case descriptions
for the assessment of AVs. To not rely on a small set of param-
eters, we have used Singular Value Decomposition (SVD) to
reduce the parameters. Parameter values for the scenarios are
generated by drawing samples from the estimated probability
density function (pdf) of the reduced set of parameters. To deal
with the unknown shape of the pdf, it has been proposed to
estimate the pdf using Kernel Density Estimation (KDE). This
work has also presented a novel metric, the so-called Scenario
Representativeness (SR) metric, based on the Wasserstein met-
ric, for evaluating whether the generated scenario parameters
represent realistic scenarios while covering the same variety
that is found in real-world traffic.

A case study has illustrated the proposed method for
generating scenario parameter values using scenarios with a
leading vehicle that decelerates and scenarios with a vehicle
that performs a cut-in. The case study has also illustrated that
the proposed metric correctly quantifies the degree to which
the generated scenario parameter values represent real-world
scenarios and, at the same time, cover the same variety of
scenarios that is found in real life.

Future work involves applying the proposed method for
more complex scenarios, e.g., scenarios that contain several
different actors, to generate scenario-based test cases for the
safety assessment of AVs. Additionally, it would be of interest
to apply importance sampling for AV assessment in combina-
tion with the proposed method for generating scenarios. Other
future work involves investigating the use of the proposed
metric in combination with alternative methods for generating
scenarios for the assessment of AVs.
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