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Abstract

This work studies logic-based distributed switching control for nonlinear agents in power-chained form, where logic-based
(switching) control arises from the online estimation of the control directions assumed to be unknown for all agents. Compared
to the state-of-the-art logic-based mechanisms, the challenge of power-chained dynamics is that in general asymptotic tracking
cannot be obtained, even for a single agent. To address this challenge, a new logic-based mechanism is proposed, which
is orchestrated by a dynamic boundary function. The boundary function is decreasing in-between switching instants and
monotonically increasing at the switching instants, depending on the jumps of an appropriately designed Lyapunov-like
function. To remove chattering (i.e. two or more switching instants occurring consecutively with zero dwell time), a dynamic
threshold is proposed, based on selecting the maximum values of the Lyapunov-like function before and after switching.

Key words: Logic-based switching, Distributed control, Dynamic boundary function, Unknown control directions

1 Introduction

Recent years have witnessed a tremendous progress in
the field of distributed control of nonlinear multi-agent sys-
tems [1, 2, 3, 4, 5, 6]. Such results can be categorized ac-
cording to two large families of nonlinear dynamics: strict-
feedback [1, 2, 3, 6, 7, 8] and pure-feedback [4, 5, 9] dynam-
ics. At the same time, another family of dynamics, namely
power-chained form, has been attracting great attention.
The reason is twofold: first, power-chained dynamics are a
generalization of strict-feedback and pure-feedback dynam-
ics since they include more general integrators (with pos-
itive odd-integer-powers) [10, 11, 12]; second, dynamics in
power-chained form can describe relevant classes of practical
systems such as dynamical boiler-turbine units [13], or hy-
draulic dynamics [14]. Besides, [10, 11, 12] have shown that
some classes of under-actuated, weakly coupled mechanical
systems with cubic force-deformation relations (nonlinear
spring forces) can also be captured by power-chained form. It
was shown that, even for a single agent, asymptotic tracking
for this class of dynamics is structurally impossible, even lo-
cally, because the linearized dynamics contain uncontrollable
modes whose eigenvalues are on the right half plane [10]. In
fact, the results in the literature for power-chained dynamics
achieve practical or semiglobal [10, 11, 12, 15, 16, 17, 18] sta-
bility, in place of asymptotic stability. This implies that dis-
tributed asymptotic tracking for power-chained dynamics, is
also structurally impossible in general. Furthermore, state-
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of-the-art results [15, 18] for power-chained dynamics rely
on the assumption that the agents’ control directions (i.e.
the signs of the control gain functions) are known a priori.
When such a priori knowledge is not available [2], a popu-
lar approach to tackle this challenge is continuous parameter
adaptation via Nussbaum functions [2, 19, 20, 21, 22, 23, 24],
which has been used also for distributed control of strict-
feedback or pure-feedback dynamics [2, 3, 4, 7, 8]. At the
same time, because it is well-recognized that Nussbaum-
based methods require additional complexity in the control
design and continuous parameter adaptation may lead to
large learning transients, several researchers have been en-
gaged in the problem of overcoming continuous parameter
adaptation by means of logic-based control [25, 26]. Notable
settings where logic-based adaptation was employed include
overcoming conventional continuous tuning of control pa-
rameters [27, 28, 29] and overcoming the conventional Nuss-
baum approach for strict-feedback dynamics [30, 31].

It is crucial to notice that the state-of-the-art logic-based
mechanisms in [30, 31] for strict-feedback systems rely on
monitor functions that monitor whether asymptotic track-
ing can be achieved (resulting in bounded energy of the
tracking error) [30] or whether finite-time stabilization can
be achieved (i.e. the tracking error converges to zero in fi-
nite time) [31]. Unfortunately, the same mechanism and
monitor functions cannot be adopted for agents in power-
chained form due to the aforementioned structural difficulty
in achieving asymptotic tracking, see also [11, Examples 2.1
and 2.2]. Therefore, a different logic-based mechanism must
be sought for distributed control of power-chained dynam-
ics. This motivates the research question in this work: is it
possible to design a new logic-based mechanism for multi-
agent systems in power-chained form with multiple unknown
control directions even when asymptotic tracking cannot be

Preprint submitted to Automatica



structurally obtained?

This paper provides a positive answer to this question with
the following contributions:

i) To overcome the challenge that the exact value of the
Lyapunov function is unavailable for logic-based adaptation,
we propose a new Lyapunov-like function (cf. the discussion
in Remark 3).

ii) We formally exclude any chattering phenomena by
proposing a new dynamic threshold condition at the switch-
ing instants of the logic-based adaptation. It is worth notic-
ing that state-of-the-art switching mechanisms cannot for-
mally exclude chattering (cf. the discussion in Remark 4);

iii) To overcome the difficulty that no asymptotic track-
ing can be achieved for the power-chained form, we propose
a new dynamic boundary function, which is decreasing in-
between switching instants and possibly increasing at the
switching instants of the logic-based adaptation (cf. Fig. 1
and the discussion in Remark 5);

Notations: The sets R and R
n stand for the set of real num-

bers and the n-dimensional Euclidean space, respectively;
Nodd denotes the set of positive odd integers; ‖ · ‖ refers to
either the Euclidean vector norm or the induced matrix 2-
norm. Vectors are denoted in bold script, such as χi,m Wi,m,
ϕi,m, Zi,m, di,σ, and hi(·). For compactness and when-
ever unambiguous, some variable dependencies might be
dropped throughout this paper, e.g. ι, ψi,m, si,m, ri,m can be
used to represent ι(x1, x2), ψi,m(χi,m), si,m(ϑi,m, αi,m−1),
ri,m(ϑi,m, αi,m−1), respectively.

2 Problem formulation and preliminaries

Let us first give some preliminaries on graph theory. The
communication topology among agents is described by a
directed graph G , (V , E ), with V , {0, 1, . . . , N} the
set of nodes (agents) and with E ⊆ V × V the set of di-
rected edges between two distinct agents. A directed edge
(j, i) ∈ E represents that agent i can obtain information
from agent j. The neighbor set of agent i is denoted by
Ni = {j|(j, i) ∈ E }. Because agent 0 plays a special role

(leader), let us consider the subgraph defined by G ,
(

V , E
)

with V , {1, 2 . . . , N} the set of follower agents and E de-
fined accordingly. For this subgraph, let us define the ad-
jacency matrix A = [aij ] ∈ R

N×N as follows: if (j, i) ∈ E ,
then aij = 1, otherwise aij = 0. The Laplacian matrix L

associated with G is defined as L =


 0 01×N

−b L + B


 with

B = diag[b1, . . . , bN ], where bi = 1 if the leader 0 ∈ Ni,
and bi = 0 otherwise. Moreover, b = [b1, . . . , bN ]T and

L = D − A is the Laplacian matrix related to G with
D = diag[d1, . . . , dN ], where di =

∑
j∈Ni

aij .

Consider a multi-agent system whose agents have the fol-
lowing nonlinear dynamics




χ̇i,m = φi,m(χi,m) + ψi,m(χi,m)χ
pi,m
i,m+1,

χ̇i,ni
= φi,ni

(χi,ni
) + ψi,ni

(χi,ni
)u

pi,ni
i ,

yi = χi,1,

(1)

for i = 1, . . . , N , m = 1, . . . , ni − 1, where ni is the dimen-
sion of system state χi,ni

= [χi,1, . . . , χi,ni
]T ∈ R

ni and

χi,m = [χi,1, . . . , χi,m]T ∈ R
m. In (1), pi,m ∈ Nodd are pos-

itive odd powers, and ui ∈ R is the agent control input to

be designed. The functions φi,m(·) and ψi,m(·) are unknown
locally Lipschitz continuous nonlinearities. The following as-
sumptions are considered.

Assumption 1 For each follower i, the signs of ψi,m(·),
called the control directions, are unknown and there exist
known positive constants ψi,m and ψ

i,m
such that

ψ
i,m
≤ |ψi,m(·)| ≤ ψi,m (2)

for i = 1, . . . , N , m = 1, . . . , ni.

Assumption 2 [6] The leader agent 0 is represented by a
leader output signal yr, which is continuous, bounded and
with bounded derivative; yr is available only to the subset of
follower agents i such that agent 0 ∈ Ni, i.e. to those agents
directly connected to the leader according to directed graph
G .

Assumption 3 [6] The directed graph G contains at least
one directed spanning tree with the leader as the root. This
implies that L + B is nonsingular.

Remark 1 The bounds in (2) are standardly assumed to
ensure controllability of the system [11, 15, 16, 17]; As-
sumptions 2-3 are also standard in literature. The peculiar
characteristic (and challenge) of (1) as compared to other
multi-agent system models proposed in the literature, are
the unknown multiple control directions in Assumption 1.
Although some works have addressed multi-agent systems
with unknown control directions [2, 3, 4, 7, 8], the dynamics
therein are in the form of strict-feedback systems.

Define the consensus tracking error for the i-th follower
as

ξi,1 =
∑

j∈Ni

aij(yi − yj) + bi(yi − yr), (3)

for i = 1, . . . , N . After collecting ξ1 = [ξ1,1, . . . , ξN,1]
T ∈

R
N , one has ξ1 = (L + B)ω, where ω = y − yr with

y = [y1, . . . , yN ]T and yr = [yr, . . . , yr]
T . Due to the nonsin-

gularity of L + B, it holds that ‖ω‖ ≤ ‖ξ1‖

σmin(L+B)
, where

σmin(L + B) is the minimum singular value of L + B.
We impose a prescribed performance [32] on the consensus

tracking error ξi,1 as ξ
i,1

(t) ≤ ξi,1(t) ≤ ξi,1(t) for t ≥ 0,

where ξi,1(t) = (ρi,1 − ρi,∞) exp(−li,1t) + ρi,∞ and ξ
i,1

(t) =

(ρ
i,1

+ρi,∞) exp(−li,1t)−ρi,∞ are the so-called performance

functions [32], where li,1 > 0 and li,1 > 0 denote the mini-
mum admissible convergence rates, ρi,∞ > 0 is the maximum
allowable tracking error at steady state, ρi,1 > ρi,∞ > 0
and ρ

i,1
< −ρi,∞ < 0 respectively represent the maximum

and minimum bounds for ξi,1(0). The following transformed
consensus tracking error is then used for feedback:

ϑi,1(t) = ln

(
ξi,1(t)− ξ

i,1
(t)

ξi,1(t)− ξi,1(t)

)
. (4)

Note that ϑi,1 is monotonically increasing w.r.t. ξi,1 and
that (4) implies that the consensus tracking error ξi,1 is
within its imposed bounds provided ϑi,1 is bounded [32].

Consensus tracking problem: Under dynamics (1) and
Assumptions 1-3, the goal is to design ui such that all closed-
loop signals are semi-globally ultimately uniformly bounded,
and the output of each follower agent i can follow the leader
agent’s signal yr in spite of completely multiple unknown
control directions.

Practical tracking [11, eq. (2.10)] (i.e. the tracking error
converges to a residual set) will be sought, due to the fact
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that asymptotic tracking cannot be realized in general for
dynamics (1) [11]. The following lemmas are instrumental in
solving the practical tracking problem.

Lemma 1 [10] For any x1, x2 ∈ R, given positive integers
r1, r2 and any real-valued function ι(·, ·) > 0, it holds that

|x1|
r1 |x2|

r2 ≤
r2

r1 + r2
ι(x1, x2)

−
r1
r2 |x2|

r1+r2

+
r1

r1 + r2
ι(x1, x2)|x1|

r1+r2 . (5)

Lemma 2 [18] For any x1, x2 ∈ R, and positive odd integer
p ∈ Nodd, it holds that

(x1 + x2)
p = r(x1, x2)x

p
1 + s(x1, x2)x

p
2 (6)

where r(x1, x2) ∈
[
r, r
]
with r = 1 − δ and r = 1 + δ,

and δ =
∑p

k=1
p!

k!(p−k)!
p−k

p
l

p
p−k is a constant taking value

in (0, 1) for some appropriately small constant l, and where

|s(x1, x2)| ≤ s(δ) with s(δ) =
∑p

k=1
p!

k!(p−k)!
k
p
l−

p
k a positive

constant for a given l.

3 Adaptive Switching Consensus Protocol

The control design solving the consensus tracking prob-
lem comprises a continuous input (i.e. acting in-between two
consecutive switching instants) and a switching mechanism
(acting at the switching instants) to tune online some param-
eters of the continuous input. In this section, we focus on the
continuous input, the design of which is well-established in
literature under the assumption that the control directions
are known [15].

After defining ϑi,1 as in (4), and state errors

ϑi,m = χi,m − αi,m−1, m = 2, . . . , ni, (7)

the continuous control input comprises the so-called virtual
laws αi,m and the actual control ui, designed as

αi,1 = −hi,1ℑ
1

pi,1

i,1

(
ki,1 + ǫ

pi,1
i,1 Θ̂i,1Γ

pi,1
i,1 + ̺

pi,1
i,1

) 1
pi,1 (8)

ℑi,1 = ϑ
pi,1
i,1

[
ℓi,1ψ

i,1
(di + bi)(1− δi,1)

]−1
,

αi,m = −hi,mℑ
1

pi,m

i,m

(
ki,m + ǫ

pi,m
i,m Θ̂i,mΓ

pi,m
i,m + ̺

pi,m
i,m

) 1
pi,m

(9)

ℑi,m = ϑ
pi,m
i,m

[
ψ

i,m
(1− δi,m)

]−1
, (m = 1, . . . , ni)

ui = αi,ni
, δi,ni

= 0, (10)

˙̂
Θi,m = γi,m

[
ǫ
pi,m
i,m ϑpi+3

i,m Γ
pi,m
i,m − βi,mΘ̂i,m

]
. (11)

with pi,m = pi+3
pi−pi,m+3

, p
i,m

= pi+3
pi,m

, pi = max
m=1,...,ni

{pi,m},

and where 0 < δi,m < 1, ̺i,m > 0, ǫi,m > 0, γi,m > 0 and
βi,m > 0, (m = 1, . . . , ni) are design parameters. In (11),

Θ̂i,m is the estimate of Θi,m = ‖W ∗
i,m‖

pi,m and Γi,m =
‖ϕi,m‖, which comes from appropriately designed function
approximators (as detailed later on). Notice that the control
design (8)-(11) is not complete, since the terms ki,m and
hi,m are to be designed: these terms are necessary to tackle
the multiple unknown control directions, and their design
will be addressed in Sect. 4 via a switching mechanism. The
rationale for the design (8)-(11) is given in the following
steps.

Step i, 1 (i = 1, . . . , N): The time derivative of ϑi,1 along
(1), (3), and (4) is

ϑ̇i,1 = li,1ξ̇i,1 +Hi,1 = li,1(di + bi)ψi,1χ
pi,1
i,2 + Ei,1, (12)

where li,1 = ∂ϑi,1/∂ξi,1 > 0, Hi,1 =
(
∂ϑi,1/∂ξi,1

)
ξ̇i,1 +(

∂ϑi,1/∂ξ
i,1

)
ξ̇
i,1

, and Ei,1 = li,1(di+ bi)φi,1− li,1
∑

j∈Ni
aij

×(φi,1+ψi,1χ
pi,1
i,2 )−biẏr+Hi,1. Along the same veins as [33],

there exist some optimal weights W ∗
i,1, and a linear-in-the-

parameter approximator W ∗
i,1ϕi,1(Zi,1) for |Ei,1| such that

ϑ
pi−pi,1+3

i,1 Ei,1 ≤
∣∣∣ϑpi−pi,1+3

i,1

∣∣∣
[
W

∗
i,1ϕi,1(Zi,1) + εi,1(Zi,1)

]

≤ ϑpi+3
i,1

(
̺
pi,1
i,1 + ǫ

pi,1
i,1 Θi,1Γ

pi,1
i,1

)
+ µi,1,

where the last inequality uses Lemma 1. Furthermore, µi,1 =

ǫ
−p

i,1

i,1 + ̺
−p

i,1

i,1 ε
p
i,1

i,1 with ǫi,1 > 0 and ̺i,1 > 0 being de-

sign constants, εi,1(Zi,1) is the approximation error sat-
isfying

∣∣εi,1(Zi,1)
∣∣ ≤ εi,1 on a compact set Ωi,1, Zi,1 =[

χi,1, χj,1,j∈Ni
, χj,2,j∈Ni

, biyr, biẏr
]T
∈ Ωi,1, and εi,1 > 0 a

constant.

Remark 2 The continuous function |Ei,1| in (12) embeds
the effect of graph connectivity, since |Ei,1| depends on the
connectivity matrix aij and bi. Note that, because the ac-
tivation function ϕi,1(·) of the linear-in-the-parameter ap-
proximation relies on the neighboring states, standard uni-
versal approximation results [34] of linear-in-the-parameter
approximation still hold. Similar approximation ideas also
can be found in [5, 34, 35]. Simulation results in this paper
also validate this point (cf. Figs. 7 and 8).

Consider the Lyapunov function candidate

Vi,1 =
ϑ
pi−pi,1+4

i,1

pi − pi,1 + 4
+

1

2γi,1
Θ̃2

i,1 (13)

where Θ̃i,1 = Θi,1 − Θ̂i,1. According to Lemmas 1 and 2, it
holds that

ϑ
pi−pi,1+3

i,1 χ
pi,1
i,2 = si,1ϑ

pi−pi,1+3

i,1 ϑ
pi,1
i,2 + ri,1ϑ

pi−pi,1+3

i,1 α
pi,1
i,1

< |si,1|
(
ϑpi+3
i,1 + ϑpi+3

i,2

)
+ ri,1ϑ

pi−pi,1+3

i,1 α
pi,1
i,1 . (14)

Then, it follows from (12), (13), and (14) that the deriva-
tive of Vi,1 with respect to time is

V̇i,1 <li,1(di + bi)ϑ
pi−pi,1+3

i,1 α
pi,1
i,1 hi,1ri,1|ψi,1| −

Θ̃i,1
˙̂
Θi,1

γi,1

+ ϑpi+3
i,1

(
̺
pi,1
i,1 + ǫ

pi,1
i,1 Θi,1Γ

pi,1
i,1

)
+∆i,1 + µi,1

+̟i,1

(
ϑpi+3
i,1 + ϑpi+3

i,2

)
, (15)

where ∆i,1 = li,1(di + bi)ri,1ϑ
pi−pi,1+3

i,1 α
pi,1
i,1 (sign(ψi,1) −

hi,1)|ψi,1|, ̟i,1 = (di + bi)li,1ψi,1si,1, and we used the fact
that ψi,1 = sign(ψi,1)|ψi,1|. Substituting the virtual control
αi,1 (8) into (15) gives

V̇i,1 <− (ki,1 −̟i,1)ϑ
pi+3
i,1 + ϑpi+3

i,1 ǫ
pi,1
i,1 Θ̃i,1Γ

pi,1
i,1

−
Θ̃i,1

˙̂
Θi,1

γi,1
+̟i,1ϑ

pi+3
i,2 +∆i,1 + µi,1. (16)

Substituting the adaptive law
˙̂
Θi,1 (11) into (16) yields

V̇i,1 < −ci,1ϑ
pi+3
i,1 +̟i,1ϑ

pi+3
i,2 − βi,1Θ̃i,1Θ̂i,1 +∆i,1 + µi,1,

where ci,1 = ki,1 −̟i,1.

Step i,m (i = 1, . . . , N, m = 2, . . . , ni− 1) : It follows from
(1), (7), and (9) that the derivative of ϑi,m is

ϑ̇i,m = ψi,mχ
pi,m
i,m+1 + Ei,m, (17)

where Ei,m = φi,m −
∑m−1

q=1

∂αi,m−1

∂χi,q

(
φi,q + ψi,qχ

pi,q
i,q+1

)
−

∂αi,m−1

∂yr
ẏr −

∑m−1
q=1

∂αi,m−1

∂Θ̂i,q

˙̂
Θi,q −

∑
j∈Ni

aij
∂αi,m−1

∂χj,1

(
φj,1 +

3



ψj,2χ
pj,1
j,2

)
. Referring to Step i, 1, there exist some optimal

weights W ∗
i,m, and a linear-in-the-parameter approximator

W ∗
i,mϕi,m(Zi,m) for |Ei,m| such that

ϑ
pi−pi,m+3

i,m Ei,m

≤
∣∣∣ϑpi−pi,m+3

i,m

∣∣∣
[
W

∗
i,mϕi,m(Zi,m) + εi,m(Zi,m)

]

≤ϑpi+3
i,m

(
̺
pi,m
i,m + ǫ

pi,m
i,m Θi,mΓ

pi,m
i,m

)
+ µi,m,

where µi,m = ǫ
−p

i,m

i,m +̺
−p

i,m

i,m ε
p
i,m

i,m with ǫi,m > 0 and ̺i,m >

0 design constants, εi,m(Zi,m) is the approximation error
satisfying

∣∣εi,m(Zi,m)
∣∣ ≤ εi,m on a compact set Ωi,m, with

Zi,m =
[
χi,m,χj,m,,

∂αi,m−1

∂χj,1
,
∂αi,m−1

∂χi,1
, . . . ,

∂αi,m−1

∂χi,m−1
,
∂αi,m−1

∂Θ̂i,1
,

. . . ,
∂αi,m−1

∂Θ̂i,m−1

, Θ̂i,1, . . . , Θ̂i,m−1,
∂αi,m−1

∂yr
, biyr

]T
j∈Ni

∈ Ωi,m

and εi,m > 0 a constant. Consider the Lyapunov function
candidate

Vi,m = Vi,m−1 +
ϑ
pi−pi,m+4

i,m

pi − pi,m + 4
+

1

2γi,m
Θ̃2

i,m, (18)

where Θ̃i,m = Θi,m − Θ̂i,m. Following similar derivations as
in Step i, 1, the derivative of Vi,m with respect to time is

V̇i,m <−
∑m

q=1
ci,qϑ

pi+3
i,q +̟i,mϑ

pi+3
i,m+1 +

∑m

q=1
∆i,q

+
∑m

q=1

(βi,q
2

(
Θ2

i,q − Θ̃2
i,q

)
+ µi,q

)
, (19)

where ci,m = ki,m −̟i,m −̟i,m−1, ̟i,m = ψi,msi,m, and

∆i,m = ϑ
pi−pi,m+3

i,m α
pi,m
i,m (sign(ψi,m)− hi,m)ri,m|ψi,m|, (m =

2, . . . , ni − 1).
Step i, ni(i = 1, . . . , N) : For the last step, consider the
Lyapunov function candidate

Vi,ni
= Vi,ni−1 +

ϑ
pi−pi,ni

+4

i,ni

pi − pi,ni
+ 4

+
1

2γi,ni

Θ̃2
i,ni

, (20)

where Θ̃i,ni
= Θi,ni

− Θ̂i,ni
. Along similar lines as the pre-

vious steps, it is possible to conclude that

V̇i,ni
<−

∑ni

q=1
ci,qϑ

pi+3
i,q +

∑ni

q=1

(
βi,q
2

(
Θ2

i,q − Θ̃2
i,q

))

+
∑ni

q=1
µi,q +

∑ni

q=1
∆i,q, (21)

with ci,ni
= ki,ni

−̟i,ni−1 and ∆i,ni
= ϑ

pi−pi,ni
+3

i,ni
u
pi,ni
i ×

(sign(ψi,ni
)− hi,ni

)|ψi,ni
|. For any constant ηi > 0, in light

of Lemma 1, we have ηi + ϑpi+3
i,q ≥ η

pi,q−1

pi+3

i ϑ
pi−pi,q+4

i,q .

Thus, (21) can be upper bounded as

V̇i,ni
< −ςiVi,ni

+ Ξi +
∑ni

q=1
∆i,q, (22)

where ςi = min
{
γi,qβi,q, (pi − pi,q + 4)ci,qη

pi,q−1

pi+3

i , i =

1, . . . , N, q = 1, . . . , ni

}
, Ξi =

∑ni

q=1(ci,qηi + µi,q) +∑ni

q=1
1
2
βi,qΘ

2
i,q.

The remaining problem is now the one of handling the
term

∑ni

q=1 ∆i,q in (22) containing the signs of the control
directions, which are unknown in view of Assumption 1.
To tackle this term, a logic-based switching mechanism is
proposed in the next section to adapt online the estimates
hi,m of the multiple control directions.

4 Proposed Logic-based Design
Logic-based adaptation has been proposed in the literature
for different classes of systems [30, 31, 36]. Because logic-
based loops are switched systems [25, 37, 38], the concept of

Algorithm 1 Logic-Based Distributed Switching Con-
trol Mechanism for the ith Follower Agent

1: Initialize: Set t0 ← 0, σ ← 0, hi(t0) ← di,0, V i(t0) ≥

ℓi,∞(t0) > 0 and V i(t0) ≥ V̂i,ni
(t0). Select positive de-

sign parameters ζℓi,∞ and ζki,m
, i = 1, . . . , N , m =

1, . . . , ni.

2: For every time t, for every agent i, calculate V̂i,ni
(t),

ℓi(tσ, t), V i(t), Li(tσ, t), and Mi(tσ, t).
3: while

(
Mi(tσ, t) ≥ 0

)
, do

4: Implement virtual control law (9), actual control
5: law (10), and parameter adaptation law (11).

6: hi(t)← di,σ;
7: ℓi,∞(t)← ℓi,∞(tσ);
8: ki,m(t)← ki,m(tσ);
9: else
10: σ ← σ + 1;
11: if σ is equal to 2ni ;
12: then σ ← 0;
13: end if
14: tσ ← t;

15: V i(tσ)← max
{
V̂i,ni

(t−σ ), V̂i,ni
(tσ)

}
;

16: hi(t)← di,σ;
17: ℓi,∞(tσ)← ℓi,∞(tσ−1) + ζℓi,∞ ;
18: ℓi,∞(t)← ℓi,∞(tσ);
19: ki,m(tσ)← ki,m(tσ−1) + ζki,m

;
20: ki,m(t)← ki,m(tσ).
21: end while

solution is intended in the sense of Carathéodory [25, Sect.
1.2.1]. Also, the subsequent switching mechanism is designed
in such a way that chattering is avoided and the switching
stops in finite time. Therefore, phenomena such as sliding
mode or Zeno behavior, which are often a concern in switched
systems, are avoided.

4.1 Switching Mechanism

0 5 10 15

0

2

4

0 5 10 15

0

2

4

0 5 10 15

0

2

4

Figure 1. The sketch of the proposed switching mechanism.

We adopt a similar notation to [30], where the vectors
di,σ ∈ R

ni , whose elements are either 1 or −1, are used
to represent all possible combinations of ni control direc-
tions for each agent i. Accordingly, the switching sequence
σ(·), taking values in 0, 1, . . . , 2ni − 1, is a piecewise right-
continuous function [25, Chap.1], and goes through all such
possible combinations. For example, if ni = 2, we have four
possible combinations: di,0 = [−1,−1]T , di,1 = [−1, 1]T ,
di,2 = [1, 1]T , di,3 = [1,−1]T . The order according to which
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the combinations are listed can be arbitrary, provided that
all combinations are listed without repetitions. The reader
can refer to [30] for more details on di,σ. Please notice that
each agent can exhibit its own switching sequence σi(·): how-
ever, in the following we will simply use σ(·) to avoid com-
plicating the notation. Define hi(t) = [hi,1, . . . , hi,ni

]T with
hi,m ∈ {−1, 1}, m = 1, . . . , ni. Let us now define

V i(t) = max
{
ℓi(tσ, t), V̂i,ni

(t)
}
, (23)

Li(tσ, t) = ℓi(tσ, t)− V i(t), (24)

with

V̂i,ni
=

ni∑

m=1

{
ϑ
pi−pi,m+4

i,m

pi − pi,m + 4
+

1

2γi,m
Θ̂2

i,m

}
(25)

and ℓi(tσ, t) being a dynamic boundary function designed as

ℓi(tσ, t) =
(
V i(tσ)− ℓi,∞(tσ)

)
exp

(
− θi(t− tσ)

)
+ ℓi,∞(tσ),

where θi > 0 is a design parameter. Let

Mi(tσ, t) = Li(tσ, t) + κi (26)

where κi > 0 is a preselected constant.

We are now in a position to present the logic-based mech-
anism for updating hi(t), σ(t), ki,m(t), m = 1, · · · , ni, and
ℓi,∞(t). After an initialization phase, the mechanism com-
prises a hold phase (i.e. σ is kept constant) and an update
phase (i.e. σ is switched to a new value).

Initialization : t0 ← 0, σ ← 0, hi(t0) ← di,0, V i(t0) ≥

ℓi,∞(t0) > 0 and V i(t0) ≥ V̂i,ni
(t0).

Hold phase: Phase in-between consecutive switching in-
stants:

while Mi(tσ, t) ≥ 0, (27)

do hi(t)← di,σ; (28)

ℓi,∞(t)← ℓi,∞(tσ); (29)

ki,m(t)← ki,m(tσ); (30)

end while

at the same time, implement virtual control law (9), actual
control law (10), and parameter adaptation law (11).

Update phase: Phase at the switching instant:

if Mi(tσ, t) < 0, (31)

then σ ← σ + 1; (32)

if σ is equal to 2ni ,

then σ ← 0; (33)

end if

tσ ← t; (34)

V i(tσ)← max
{
V̂i,ni

(t−σ ), V̂i,ni
(tσ)

}
; (35)

hi(t)← di,σ; (36)

ℓi,∞(tσ)← ℓi,∞(tσ−1) + ζℓi,∞ ; (37)

ℓi,∞(t)← ℓi,∞(tσ); (38)

ki,m(tσ)← ki,m(tσ−1) + ζki,m
; (39)

ki,m(t)← ki,m(tσ); (40)

end if

with ζℓi,∞ > 0 and ζki,m
> 0 being design constants, m =

1, . . . , ni, σ = 1, 2, . . ., and where t−σ denotes the value of tσ
when (31) is satisfied but hi(tσ), ℓi,∞(tσ), and ki,m(tσ) have
not been updated yet, and tσ represents the time instant
when (31) holds, and in the meantime, hi(tσ), ℓi,∞(tσ), and
ki,m(tσ) also have been updated according to (36)-(40).

The rationale for the proposed mechanism is as follows: the
switching instants tσ, σ = 0, 1, ..., occur whenever condition
(31) is satisfied. The reset condition in (33) is necessary
when all combinations in di,σ have been visited and thus it
is necessary to start from the first one. The logic condition
(35) circumvents the chattering phenomena at the switching
instants tσ, as elaborated in Remark 4.

The unique challenges of using logic-based mechanisms
to handle multiple unknown control directions for power-
chained form are elaborated in the following remarks:

Remark 3 A crucial challenge of the proposed logic-based
switching is that the exact value of the Lyapunov function
Vi,m (18) is unavailable (as it contains the unknown constants

Θi,m in Θ̃i,m = Θi,m − Θ̂i,m). Therefore, the unavailable
Lyapunov function must be replaced by some estimate. To

pursue this, the Lyapunov-like function V̂i,ni
(25) is proposed

and designed in such a way as to establish the boundedness
of the closed-loop signals (cf. appendix).

Remark 4 State-of-the-art logic-based mechanisms [30, 31,
39] cannot formally exclude chattering phenomena since they

adopt ℓi(tσ, tσ) = V i(tσ) = V̂i,ni
(tσ) = V̂i,ni

(t−σ ). More pre-
cisely, the update phase of [30, 31, 39] is designed as

if Mi(tσ, t) < 0,

then tσ ← t;

V i(tσ)← V̂i,ni
(t−σ );

hi(t)← di,σ;

ki,m(tσ)← ki,m(tσ−1) + ζki,m
;

end if

In view of the discussions in [28, Remark 2 and the analysis
after eq. (35)], it is theoretically possible for such mechanisms

to yield an increase V i(tσ) = V̂i,ni
(tσ) > V̂i,ni

(t−σ ) + κi =
ℓi(tσ, tσ) + κi, which indicates that Mi(tσ, t) < 0, leading to
a new switching instant immediately after the previous one.
This is because updating hi(t) and ki,m may result in in-
stantaneous changes in the tracking errors ϑi,m, according
to (7)-(10), which may lead to an increase of the value of the
Lyapunov functions (13), (18), and (20). This could make
the inequality (31) hold once more immediately after the
previous time instant. To solve such issue, we exclude chat-
tering phenomena by proposing a new dynamic threshold
condition (35) at the switching instants, based on selecting
the maximum values of the Lyapunov-like function before
and after switching.

Remark 5 State-of-the-art logic-based designs for strict-
feedback systems [30, 31, 39] rely on the fact that asymptotic
tracking can be obtained for this class of systems: there ex-
ists at least one di,σ, σ ∈ {0, 1, . . . , 2

ni − 1}, that leads to a
vanishing tracking error. Unfortunately, it is well known in
the literature that asymptotic tracking is impossible in gen-
eral for the class of nonlinear systems (1) [11]. Therefore,
the switching logic cannot rely on vanishing tracking errors.
To overcome the above difficulty, we propose a new moni-
tor function ℓi(·), which is decreasing in-between switching
instants and possibly increasing at switching instants. The
role of ℓi(·) is crucial to closed-loop stability through (23):
ℓi(·) is used to monitor the upper bound of the designed

Lyapunov-like function V̂i,ni
as shown in Fig. 1. The dis-

tinguishing feature of ℓi(·) is to allow V̂i,ni
to increase by a

constant at every switching instant. Notice that the finite-
switching mechanism guarantees that ℓi(·) does not grow to

5



infinity and thus closed-loop stability can be obtained.

4.2 Main stability result

To analyze the stability of the closed-loop system, we con-
sider the global Lyapunov function

V =
∑N

i=1
Vi,ni

, and V̂ =
∑N

i=1
V̂i,ni

(41)

Theorem 1 Under Assumptions 1-3, consider the closed-
loop system consisting of the nonlinear multi-agent dynam-
ics (1) in power-chained form and the logic-based switching
control mechanism in Algorithm 1. Then, there exist positive
design parameters ̺i,m, ǫi,m, γi,m, βi,m, ηi,m, and ki,m such
that:

• All closed-loop signals are semi-globally ultimately uni-
formly bounded and the prescribed performances of
ξi,1(t) are ensured, i.e., the inequality ξ

i,1
(t) ≤ ξi,1(t) ≤

ξi,1(t), i = 1, . . . , N , holds.

• Switching stops in finite time and ω(t) converges to the
compact set

Ω⋆ =

{
ω(t)

∣∣∣‖ω(t)‖t→+∞ ≤

√√√√√ (N2 +N − 1)2
∑N

i=1

ρ2
i,∞[(exp(ϑi,1)−1)]2

[1+exp(ϑi,1)]
2

N1−N (N − 1)N−1





where ϑi,1 =
[(
pi − pi,1 + 4)(ℓi,∞(tσs) + κi

)] 1
pi−pi,1+4

with σs being a sufficiently large integer.

PROOF. See the appendix.

5 Simulation results

0 1 2 3

(a)

1 2 3

0

(b)

Figure 2. Two different communication topologies

To validate the effectiveness of the proposed control method,
two different communication topologies with one leader (la-
beled by 0) and three follower agents are considered as rep-
resented by the directed graph of Fig. 2. From Fig. 2-(a) and
2-(b), it can be seen that the signal of the leader is only ac-
cessible to follower 1 and follower 2, respectively. The follow-
ing parameter settings are kept the same for both topologies.
The leader output is yr = 6 sin(0.5t) + 6 sin(t) and the three
follower agents are described by the following dynamics:

Agent 1

{
χ̇1,1 = 1.5 cos(χ1,1)χ1,1 + 0.8χ3

1,2,

χ̇1,2 = χ1,1 sin(χ1,2) +
(
tanh(χ1,1) + 1.2

)
u5
1.

Agent 2

{
χ̇2,1 = 1.25χ2,1 + 0.5χ3

2,1 + 1.5χ3
2,2,

χ̇2,2 = 0.75χ2,2χ
2
2,1 +

(
sin(χ2,1)

2 + 0.75
)
u5
2.

Agent 3

{
χ̇3,1 = 0.5

(
cos(χ3,1) + χ2

3,1

)
+ 1.2χ3

3,2,

χ̇3,2 = χ3,1 sin(χ3,2) +
(
| cos(χ3,1)|+ 0.2

)
u5
3.

In our simulation, RBF NNs are used as linear-in-
the-parameter approximators to approximate |Ei,j(Zi,j)|,
i = 1, 2, 3, j = 1, 2, employing 64 nodes with centers evenly
spaced in [−1.5, 1.5]× [−1.5, 1.5]× [−1.5, 1.5]× [−1.5, 1.5]×
[−1.5, 1.5]× [−1.5, 1.5]× [−1.5, 1.5]× [−1.5, 1.5]× [−1.5, 1.5]
and widths equal to 2. The initial conditions are selected
as: χ1,1(0) = 0.75, χ1,2(0) = −1.75, χ2,1(0) = 1.5, χ2,2(0) =

−1.5, χ3,1(0) = 1.75, χ3,2(0) = −1.2, Θ̂1,1(0) = 6.5,

Θ̂1,2(0) = 7.5, Θ̂2,1(0) = 4, Θ̂2,2(0) = 3, Θ̂3,1(0) = 6.5,

Θ̂3,2(0) = 4.75, ℓ1,∞(0) = ℓ2,∞(0) = ℓ3,∞(0) = 0.5,
k1,1(0) = k2,1(0) = k3,1(0) = 6, k1,2(0) = k2,2(0) =
k3,2(0) = 8. The design parameters are chosen as:
ζk1,1 = ζk1,2 = 1, ζk2,1 = ζk2,2 = ζk3,1 = ζk3,2 = 1.5,
ǫ1,1 = ǫ1,2 = ǫ2,1 = ǫ2,2 = ǫ3,1 = ǫ3,2 = 1, ̺1,1 = ̺1,2 =
̺2,1 = ̺2,2 = ̺3,1 = ̺3,2 = 1, γ1,1 = γ2,1 = γ3,1 = 1,
γ1,2 = γ2,2 = γ3,2 = 0.4, β1,1 = β2,1 = β3,1 = 0.8,
β1,2 = β2,2 = β3,2 = 6.25, δ1,1 = δ2,1 = δ3,1 = 0.25,
κ1 = κ2 = κ3 = 0.3, θ1 = 1.8, θ2 = 1.25, θ3 = 0.75,
ζℓ1,∞ = ζℓ2,∞ = ζℓ3,∞ = 0.5, ρ

1,1
= ρ

2,1
= ρ

3,1
= −6,

ρ1,1 = ρ2,1 = ρ3,1 = 8, l1,1 = l2,1 = l3,1 = 3,

l1,1 = l2,1 = l3,1 = 4, and ρ1,∞ = ρ2,∞ = ρ3,∞ = 0.95.

The simulation results are shown in Figs. 3-8. Fig. 3-
(a) and Fig. 5-(a) reveal that the tracking errors ξi,1, i =
1, 2, 3, under the two topologies evolve within their respec-
tive bounds. Figs. 3-(b)-(c) and Figs. 5-(b)-(c) show that the

functions V̂i,ni
, i = 1, 2, 3, under both topologies are upper

bounded by ℓi, i = 1, 2, 3, respectively. It can be seen from
Figs. 4 and 6 that switching for both topologies stops in fi-
nite time and that the parameters ki,j , i = 1, 2, 3, j = 1, 2,
are updated synchronously with the control directions hi,j ,
i = 1, 2, 3, j = 1, 2. Figs. 7 and 8 show that the NN approx-
imators can achieve satisfactory approximation.

6 Conclusions

This work has proposed a logic-based switching mechanism
for distributed switching tracking control of nonlinear multi-
agent systems in power-chained form and with multiple un-
known control directions. A novel dynamic boundary func-
tion that is decreasing in-between switching instants and
possibly increasing at the switching instants has been de-
vised to tackle the issue that asymptotic tracking cannot be
achieved for such challenging nonlinear systems. An inter-
esting problem to be investigated in the future is to combine
logic-based update of the control directions with logic-based
updates of the parameters.

Appendix

Proof of Theorem 1. We provide the proof through two
stages. At stage 1, we show that the control goals of Theo-
rem 1 are guaranteed on the interval [0,+∞) provided that
the switching stops in finite time. At stage 2, we show by
contradiction that indeed the switching stops in finite time.

Stage 1: Let [0, ts) be the maximum interval of the exis-
tence of the closed-loop solution, σs be the final switching
index, and tσs < ts be the time instant when the final switch-
ing occurs. Combining (23), (26), (27), and the fact that
there is only a finite number of switchings, one can conclude
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Figure 3. Topology in Fig. 2-(a): (a) trajectories of the consensus tracking errors ξ1,1, ξ2,1, and ξ3,1; (b) trajectories of V̂1,2

and ℓ1; (c) trajectories of V̂2,2 and ℓ2; (d) trajectories of V̂3,2 and ℓ3.
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Figure 4. Topology in Fig. 2-(a): (a) evolution of h1,1, h1,2, k1,1 and k1,2; (b) evolution of h2,1, h2,2, k2,1 and k2,2; (c) evolution
of h3,1, h3,2, k3,1 and k3,2.
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Figure 8. Topology in Fig. 2-(b): evolution of |E1,1|, |E1,2|, |E2,1|, |E2,2|, |E3,1|, |E3,2|, and their NN approximations |Ê1,1|,

|Ê1,2|, |Ê2,1|, |Ê2,2|, |Ê3,1|, |Ê3,2|.

that after the final switching (i.e. for t > tσs), it holds that
Li(tσs , t) + κi ≥ 0, t ∈ [tσs , ts), which indicates that

V̂i,ni
(t) ≤ ℓi(tσs , t) + κi, t ∈ [tσs , ts). (42)

Thus, V̂i,ni
(·), ϑi,m and Θ̂i,m(·), i = 1, . . . , N ,m = 1, . . . , ni,

are bounded due to the boundedness of ℓi(·) and κi on the
interval [tσs , ts). Furthermore, the virtual control laws αi,m,
m = 1, . . . , ni − 1, i = 1, . . . , N and the actual control law
ui, i = 1, . . . , N are bounded on [tσs , ts) according to (8)-

(10). Thus, χi,m, Θ̃i,m, m = 1, . . . , ni, i = 1, . . . , N , are
bounded on [tσs , ts) arising from the fact that yr(·), Θi,m, and

Θ̂i,m(·) are bounded on [tσs , ts). According to [40, Theorem
54, page. 476], no finite-time escape phenomena occurs, and
thus ts = +∞. As a result, one concludes that all closed-
loop signals are bounded on the entire time interval [0,+∞).
Then, invoking (25) yields

lim
t→+∞

|ϑi,1| ≤
[(
pi − pi,1 + 4)(ℓi,∞(tσs) + κi

)] 1
pi−pi,1+4

, ϑi,1

which, in combination with the definition of ϑi,1, gives

lim
t→+∞

ξi,1(t) ≤
ρi,∞ exp(ϑi,1)− ρi,∞

1 + exp(ϑi,1)

After using a lower bound N̄
N2+N−1

[41] with N̄ =
(
N−1
N

)N−1

2 for σmin

(
L + B

)
, it follows that

lim
t→+∞

‖ω(t)‖ ≤

√√√√√ (N2 +N − 1)2
N∑
i=1

ρ2
i,∞[(exp(ϑi,1)−1)]2

[1+exp(ϑi,1)]
2

N1−N (N − 1)N−1
.

We are now in a position to discuss the existence of a compact
set that makes the universal approximation ability valid,
provided that the switching stops in finite time.

Consider the initial conditions χi,m(0) and Θ̂i,m(0) ≥ 0, for

i = 1, . . . , N ,m = 1, . . . , ni, satisfying V̂
(
χi,m(0), Θ̂i,m(0)

)
<

Υ0 with Υ0 =
∑N

i=1 ~i with ~i , maxσ∈{0,1,...,σs} ℓi(tσ, tσ)
and consider the compact set

Ω0 =
{(

χi,m(t), Θ̂i,m(t)
)∣∣∣V̂

(
χi,m, Θ̂i,m

)
≤ Υ, t ≥ 0

}

(43)

where Υ = Υ0 +
∑N

i=1 κi. According to Algorithm 1, (41),
and (42), ~i is bounded provided that the switching stops in
finite time, and that the inequality

V̂
(
χi,m(t), Θ̂i,m(t)

)
< Υ, (44)

holds true for all t ≥ 0 provided that V̂
(
χi,m(0), Θ̂i,m(0)

)
<

Υ0 holds true. Therefore, the existence of the compact set Ω0

makes the universal approximation ability of the linear-in-
the-parameter approximation valid since all state variables
involved are retained in Ω0 all the time.

Stage 2: At this stage, by seeking a contradiction, we prove
that there indeed exist a finite number of switchings. Let us
first suppose that there exist an infinite number of switch-
ings. Therefore, there surely exists a sufficiently large tσs such

that γi,qβi,q ≤ (pi − pi,q + 4)ci,qη

pi,q−1

pi+3

i , i = 1, . . . , N, q =
1, . . . , ni, and such that

hi(t) = di,σs = [sign(ψi,1), . . . , sign(ψi,ni
)]T (45)

on [tσs , tσs+1). Thus, ςi = γi,qβi,q, q = 1, . . . , ni, i =
1, . . . , N . It follows from (43) that (22) becomes

V̇i,ni
< −ςiVi,ni

+ Ξi as
∑ni

q=1
∆i,q = 0, (46)

which, combined with (20) and the Gronwall inequality [11],
implies that

ϑpi+3
i,m <

[
(pi − pi,m + 4)

(
Vi,ni

(0) + Ξi/ςi
)] pi+3

pi−pi,m+4

, Ψi,m

∣∣Θ̂i,m

∣∣ <
√

2γi,m
(
Vi,ni

(0) + Ξi/ςi
)
+Θi,m , Λ̄i,m (47)

holds on [tσs , tσs+1) for i = 1, . . . , N , m = 1, . . . , ni. Thus,
it follows from (11) that
∣∣ ˙̂Θi,m

∣∣ < γi,mǫ
pi,m
i,m Ψi,mΓi,m + γi,mβi,mΛ̄i,m , Υi,m (48)

holds on [tσs , tσs+1), where Γi,m is the upper bound of Γ
pi,m
i,m

according to [16, Lemma 2], for i = 1, . . . , N , m = 1, . . . , ni.

Recalling (20), (25), (46)-(48), we can obtain that

˙̂
V i,ni

(t) < −ςiVi,ni
+ Ξi +

∑ni

m=1

Θi,m
˙̂
Θi,m

γi,m

< −ςiV̂i,ni
+ Ξi +

∑ni

m=1

Θi,m
˙̂
Θi,m

γi,m
−
∑ni

m=1

ςiΘ
2
i,m

2γi,m

+
∑ni

m=1

ςiΘi,mΘ̂i,m

γi,m
< −ςiV̂i,ni

+ Ξ̂i, (49)

where Ξ̂i = Ξi +
∑ni

m=1

Θi,mΥi,m

γi,m
+
∑ni

m=1

ςiΘi,mΛ̄i,m

γi,m
is an

unknown positive constant. Hence, we have V̂i,ni
(t) ≤ Ξ̂i

ςi
,

on [t∗, tσs+1), where t∗ is the first time instant satisfying

V̂i,ni
(t∗) = Ξ̂i

ςi
. Then, one has that

˙̂
V i,ni

< 0 holds when

V̂i,ni
≥ Ξ̂i

ςi
. The fact that V̂i,ni

(·) strictly decreases on the

time interval [tσs , t
∗) implies that no new switching occurs

on [tσs , t
∗) and that t∗ < tσs+1.

When t ∈ [tσs , t
∗
)
, we can guarantee 0 < θi ≤ ςi by

choosing proper γi,q, and βi,q, q = 1, . . . , ni, according
to ςi = γi,qβi,q, q = 1, . . . , ni, i = 1, . . . , N , which implies

that V̂i,ni
(t) ≤ ℓi(t), on [tσs , t

∗
)
. When t ∈

[
t∗, tσs+1), the

condition ℓi,∞(t) ≥ Ξ̂i

ςi
can be satisfied via a sufficiently

8



large σs in view of (29) and (30). Hence, it holds that

V̂i,ni
(t) ≤ ℓi(tσs , t), ∀t ∈

[
t∗, tσs+1

)
.

To summarize, we have that V̂i,ni
(t) < ℓi(tσs , t) < ℓi(tσs , t)+

κi, on [tσs , tσs+1), which means that switching condition (31)
can never be satisfied on the time interval [tσs , tσs+1). This
contradicts the assumption made in the beginning of stage
2. Thus, the proof is completed. �
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