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Short-Term Traffic Flow Prediction Based on the
Efficient Hinging Hyperplanes Neural Network

Qinghua Tao, Zhen Li, Jun Xu, Shu Lin, Bart De Schutter, Fellow, IEEE, and Johan A.K. Suykens, Fellow, IEEE

Abstract—Traffic flow (TF) prediction is an important and
yet a challenging task in transportation systems, since the TF
involves high nonlinearities and is affected by many elements.
Recently, neural networks have attracted much attention for TF
prediction, but they are commonly black boxes with complex
architectures and difficult to be interpreted, e.g., the contributions
of specific traffic elements are not explicit, hardly providing
informative guidance. In this paper, we aim at addressing more
interpretable short-term TF prediction with joint consideration to
high accuracy, and thus introduces a pragmatic method by apply-
ing the efficient hinging hyperplanes neural network (EHHNN)
simply built upon sparse neuron connections. In the proposed
method, different traffic factors are incorporated into the inputs,
including their spatial-temporal information. Besides the pursuit
of accuracy, we further extend the ANOVA decomposition of
EHHNNs to the interpretation analysis with specifications to
traffic data, in which the contributions concerning specific traffic
variables are detected quantitatively. As such, the proposed
method firstly applies the EHHNN to filter out more important
traffic variables for dimensionality reduction while maintaining
accurate prediction. Then, variable interpretation analysis is
performed from different perspectives, e.g. to quantitatively
investigate the influence of traffic factors and also their spatial-
temporal impacts. Therefore, a predictor and an analyzing tool
can both be attained for the TF by exerting the flexibility and
extending the interpretability of EHHNNSs, which is promising to
provide informative guidance to future traffic control. Numerical
experiments verify the effectiveness and potential of the proposed
method in TF prediction and analysis.

Index Terms—Traffic flow prediction, piecewise linear neural
networks, interpretation, variables analysis.

I. INTRODUCTION

ITH the booming of economy, modern transportation
systems have been developing rapidly, along with
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which traffic congestion and incidents are increasing. In the
past a few decades, researchers have been working on the
development of advanced intelligent transportation systems, in
which the prediction of traffic flow (TF) appears as a crucial
task [1]. The quality of system service depends to a large
extent on TF prediction, since accurate prediction is very
useful to provide information for proactive dynamic traffic
control, so as to alleviate traffic congestion and to improve
the operation efficiency [2].

TF prediction utilizes historical traffic data, normally the
volume of vehicles (TF) in the predicted location, as the inputs
to predict the TF in a location at future time steps. The existing
methods for TF prediction can be mainly categorized as the
types based on traffic simulation, non-parametric modeling and
parametric modeling [3]. In [4], the LWR model was proposed
by taking the TF as a fluid to predict. Daganzo constructed
the cell transmission model as a simple approximation to the
relationship of the density [5]. In [6], the stochastic features
in urban traffic dynamics are also discussed with demand
uncertainties. There is much literature of the theoretical basis
of those simulation based methods. However, the accuracy
remains unsatisfactory and the computational burden is high.
Non-parametric methods developed rapidly and gained wide
attention, since they have been found to provide stronger
representability and flexibility to capture the nonlinearities of
TF data, including support vector regression (SVR) [7], [8], k-
nearest neighbor methods [9], etc. Parametric models include
Kalman filtering models [10], historical average (HA), and
time-series models relating to the autoregressive integrated
moving average (ARIMA) [11]-[14], etc.

Particularly, the methods based on deep neural networks
(NN) are getting increasing popularity and have brought
great improvements in performance. Deep NNs use multilayer
architectures to extract features of TF data from the original
input variables. In [15], deep belief networks were applied
to predict TF with multitask learning by layerwise training
[3]. Later, convolutional neural networks (CNN) were used
[16]-[19] and combined with different techniques, such as
the adversarial learning [19], and graph CNNs have also been
found effective [20]-[22]. Moreover, the attention mechanism
has been successfully applied for enhancing TF prediction
accuracy [23], [24]. Recently in [25], different advanced tech-
niques in deep learning were integrated for further enhancing
the accuracy of short-term TF prediction, namely the attention
based spatial-temporal graph convolution network (ASTGCN),
which utilized spatial-temporal information of traffic data and
showed state-of-the-art performance. In addition to the single-
model prediction, hybrid deep learning models were also



equipped by combining different models [26]-[29].

Although the aforementioned methods based on NNs have
achieved fairly good accuracy, they require sophisticated tech-
niques and varied tunings, and commonly have complex ar-
chitectures. Moreover, the spatial-temporal correlations are in-
herently considered in the input variables, where the extracted
features are high-level and used for enhancing the accuracy, so
that it remains a black-box model and is difficult to analyze.
In these predictors based on typical NNs, the contributions of
different traffic variables to the prediction are not explicit, such
as the influence of specific traffic variables (e.g., locations and
historical time steps), and thus can hardly provide potentially
informative analysis to facilitate future traffic control. As
indicated in [30]-[35], more interpretable TF prediction is
of great significance for future traffic control, but remains a
challenge by far. Thus, rather than simply having an accurate
predictor, it is desirable to perform interpretation analysis of
the TF data and to investigate the modeling mechanism behind
the predictors. Recently, a novel NN was proposed with a good
trade-off between model flexibility and interpretability, namely
the efficient hinging hyperplanes neural network (EHHNN)
[36]. The EHHNN developed from the piecewise linear (PWL)
representation of adaptive hinging hyperplanes (AHH), which
involves a generic tree topology and thus is easier to interpret
[37]. The EHHNN has shown great flexibility in dynamic
system identification, and in particular, is decomposable via
the analysis of variance (ANOVA) [36], [38], [39] owing to its
sparse architecture, which greatly facilitates variable analysis.

In this paper, we revisit the problem of TF prediction and
address joint considerations w.r.t. both accuracy and interpre-
tation analysis. To this end, a pragmatic TF prediction and
analysis method is established based on the EHHNN [36].
Compared to the existing methods using typical NNs, the TF
prediction accuracy is guaranteed by the model flexibility of
EHHNN, and yet the network architecture of EHHNN is much
simpler. More importantly, we further extend the ANOVA
decomposition of EHHNNSs to varied interpretation analysis
towards TF prediction, where careful considerations are taken
with specifications to traffic variables and their physical expla-
nations. In this way, it become viable to identify the particular
TF variables contributing to the prediction output, whether
they participate additively as univariate units or jointly in
interaction with multiple traffic variables and how important
they are concerning spatial or temporal aspects. Therefore,
aside from the accurate predictor, our proposed method also
leverages the interpretability of EHHNNS to detect the effects
and correlations between different traffic variables, which
yields a promising interpretable TF prediction. The main
contributions of this study are summarized as follows:

o A programmatic method is introduced for accurate short-
term TF prediction by applying the EHHNN, which is
an accurate predictor yet with much simpler architectures
than typical NNs. Different traffic factors are incorporated
as the potential candidates to provide more possibilities
not only in boosting accurate prediction but also in
enhancing TF analysis afterwards. Those traffic factors
include the TF, the average vehicle speed (AVS), and
the road occupancy (RO), containing their spatial and

temporal information.

e We further extend the ANOVA decomposition of
EHHNNS to varied interpretation analysis, which is spec-
ified to traffic variables. In this way, we decouple traf-
fic variables differently regarding their explicit physical
meanings, so that their corresponding contributions to the
prediction output can be detected quantitatively. Hence,
4 perspectives are introduced therein: variables selection,
analysis of traffic factors (TF, AVS, and RO), spatial
analysis and temporal analysis.

« An efficient training algorithm is developed for EHHNNS,
so as to adapt to the practical application of real-world
datasets. Numerical experiments demonstrate that the
proposed method based on the EHHNN can achieve
advantageous prediction accuracy and meanwhile effec-
tively conduct varied analysis.

The rest of the paper is organized as follows. Section II
introduces the preliminaries. Section III presents the details
of the proposed method by extending the EHHNN and its
ANOVA decomposition to TF prediction as well as interpre-
tation analysis. Section IV gives the numerical experiments,
and a brief conclusion is provided in Section VI.

II. PRELIMINARIES

In this section, the prerequisites of this manuscript are
presented, including some basic descriptions for the problem
of TF prediction and a brief introduction to the EHHNN
applied in our method.

A. Basic Descriptions for TF Prediction Problem

Given a sequence X = {Xj,...,X,} of the observed
traffic data from the historical n time steps, the task is to
predict the TF y'*7 at a future time step ¢ + T (T time steps
ahead) in the target location [3]. In TF prediction, a model
f(-) is employed as the predictor, which aims to shrink the
gap between the prediction results Y=o (X) and the observed
data Y. Generally, the prediction model f(-) is estimated by
minimizing the ¢ norm loss, i.e.,

min |[Y - £(01X, Y)[3, (1)

where 6 is the vector of parameters. The problem of TF
prediction normally consists of two stages, i.e., the determi-
nation of the relevant input variables and the prediction of
the targeted TF [15]. The process of determining the input
variables can be abstracted as determining a mapping g(-),
which selects the most representative variables X from the
given candidates F, i.e., X = g(F). Most existing work
conducts the first stage by manual selection from the historical
TF at the prediction location [31], or employing supervised
models to extract high-level features and then feed them into
the subsequent predicting models [40], [41]. In the second
stage, different models can be used to perform the prediction
by utilizing the input data or the extracted features.



B. The EHHNN

In our method, the model used for TF prediction is the
EHHNN, see Section III, where the terminology “hinging
hyperplanes (HH)”” comes from the work of [42], [43]. The HH
is a popular PWL model to approximate nonlinear systems,
and consists of the so-called hinges. The model of AHH
also employs the hinges, but is built on compositing multiple
univariate hinges. The topology of AHH can be seen as a
generic recursive regression tree [37]; thus AHH has better
interpretability than other PWL and even general nonlinear
models. The EHHNN is an efficient network variant of AHH
and inherits the universal approximation ability from AHH.

1) Network Architecture: The architecture of EHHNNSs
consists of three parts, i.e., the initial layer, the hidden layers,
and the output connections [36]. Different from other NN, the
EHHNN is built upon the compositions of “max” and “min”
operators without connecting weights between hidden layers.
In this way, the neurons in EHHNNs can be connected to each
other in a skip-layer manner, constructing a flexible model
output, i.e., Fig. 1. More importantly, this special architecture
enables the network to be decomposable via ANOVA and to
be easy to obtain the explicit neuron expressions concerning
specific variables.

Input ., Initial .| Hidden
X [ Layer [ Layers
BN Ml
~ |
Network
Output

Fig. 1: Structure framework of the EHHNN.

2) Neuron Formulation: In the initial layer, the “max”
operator can be regarded as the univariate rectifier linear
unit (ReLU) [44] restricted to a specific dimension. For
instance, in neuron z1 s = max{0,z; — Bk, }, =; is the i-
th component of  and Sy, is called the k-th splitting knot
over x;. Then, the “min” operator becomes the activation
function, which utilizes the existing neurons to formulate more
flexible PWL neurons in the subsequent hidden layers, i.e.,
Zks() = min{zg, s, (), 2k, s, (x) } denoting the s-th neuron
in the k-th layer with k = k1 + ko, given by

Zg,s(®) = ming, o, e Amax{zy, — Bs,, 0},
= 2)
coymax{z,, — Bs,,0}},
where Ji s = {vs,...,vs,} contains the indices of the

interacting variables with {v,,...,vs, } C {1,...,d}. The
cardinality |Jy s| is k, i.e., k variables are interacting in
neurons of the k-th layer. Thus, the layer index of EHHNNs
is determined by the number of variables in the neurons.

The output layer of EHHNN is the weighted sum of all
neurons by skipping layers:

ny
f(w) = wWo + Z st max{xvl,s - Bl,sa O}+
=1
> > wysminge g, {max{z, — B, ,0}},
k=2s=1
€)]

where ny, is the number of neurons in the k-th layer, wy s € R
are the weights connecting the network output, and wy € R is
the constant bias. Skip-layer connections are also used in the
highway NNs [45] and the residual NNs [46]. Differently, in
EHHNNS, multiplication operations and connecting weights
are not involved across neurons, and all variables are not
necessarily coupled in each neuron, so that the network
structure is much simpler and easier to train and analyze.

III. TF PREDICTION AND ANALYSIS BASED ON THE
EHHNN

In this section, the proposed method for TF prediction
and analysis is introduced in detail. The flexible EHHNN is
firstly applied to boost accurate TF prediction, where different
traffic factors are considered in the inputs together with their
spatial-temporal information. Then, interpretation analysis is
conducted from varied perspectives with specifications to
traffic variables via extending the ANOVA decomposition of
the EHHNN predictor.

A. Prediction for TF Data

In this subsection, we aim at formulating the TF predictor
by applying the EHHNN with the traffic data, and then
corresponding interpretation studies will follow up in the next
subsection.

The problem of TF prediction can be abstracted as follows.
Let X! denote the data vector at the ¢-th time step in the i-
th observation segment of the selected transportation system.
Given the current time step ¢ and the data sequence H =
{X! |o; € Z;, t € T} in the selected observation segments of
Z; at previous n time steps of T ={t — 1,t —2,--- ;t — n},
the task is to predict the TF yf+T at a future time step ¢ + T
within the ¢-th observation segment. Then, the corresponding
forecasting model is described as

gt = f(XL), i €T, tET, 4)

where gf*T denotes the EHHNN prediction in our method. In
many existing methods, the inputs X (’il are normally taken as
the historical TF data in the prediction location, i.e., Z; = {i}
[31] or the historical TF data in different locations equipped
with observation detectors [15], [40].

In practice, various factors can influence the TF [2]. In this
paper, besides the historical TF, the attributes of AVS and RO
are also incorporated as the potential traffic factors affecting
the TF, providing more possibilities to boost the prediction
accuracy by including different traffic variables. In addition,
the corresponding data of those traffic factors from different
adjacent observation segments are also incorporated into the
input variables for spatial information. The historical data of
these selected factors, i.e., TF, AVS and RO, are considered
for temporal information. Those variables are seen as the
candidates which potentially affect the TF, but their importance
to the prediction can vary significantly.

For spatial information, we mainly focus on the upstream
segment (the (7 — 1)-th observation) as well as the downstream
segment (the (¢ + 1)-th observation) herein. This idea can
be easily extended to different spatial considerations, see



Section IV-B3 and Section IV-C. Therefore, the EHHNN for
TF prediction is formulated as

9T = feuun~ (Yl sh,.05,), 0 €Li, t€ T,  (5)

where 7, = {i,i+1,i—1}and T ={t — 1,...,t — n}.

In the constructed EHHNN predictor (5), the spatial-
temporal information is contained in the input data w.r.t.
7 and T, where 3! s’ , and p! denote the historical TF,
AVS, and RO within the observation segment o; at time
step t, respectively. Therefore, the dimensionality of the input
variables is 3|7 |- |Z|, where | - | represents the cardinality of

a set. Fig. 2 illustrates the descriptions of the input variables.

TF Y, [ oo I [eeeee | |
' ‘ (Upstream)
AVS SgL Lo el | L 0 —i-1
RO Pl el Ll |
TE Yol Lo | . | | — _
|  (Predicted)
t -
AVS S, | [ eoeeee | [ | | o =i
RO PAL el el |
t—n t t—1 @
0 IR SO IR I I B
" ' ‘ (Downstream)
AVS Séll | ...... | | ...... | | > oi :|+1
RO Pl Ll el |
t-n t t-1

Fig. 2: An illustration on the descriptions of input variables.

As described above, different traffic factors are incorporated
together with spatial-temporal considerations in this paper.
With such input data containing rich traffic information and
the flexibility of EHHNNs, accurate TF prediction can be
expected. Thus, the EHHNN is now successfully applied as
a TF predictor.

However, when all the potential variables are considered,
and the resulting prediction model can be complicated and
computationally expensive regarding the redundant informa-
tion. Therefore, it is necessary to filter individual variables and
to select the ones that contribute influentially to the prediction.
Then, a more concise predictor model can be obtained, while
the prediction accuracy can also be guaranteed with those
influential variables selected.

Based on the special network architecture of EHHNNS,
it is amenable to perform interpretation analysis towards
the TF prediction, while other NNs commonly extract high-
level features from input data to enhance accuracy and are
difficult to explicitly detect the contributions of specific traffic
variables. Therefore, there are two major parts in the proposed
method, i.e., an EHHNN model (5) is trained and performed
with variables analysis and selections and then a more accu-

rate EHHNN predictor with the selected traffic variables is
attained, see the following subsection.

B. Interpretation towards TF Data

In the neurons of EHHNNS, variables are not coupled in a
linearly weighted combination, but by “min” and “max” oper-
ators, i.e., the network is decomposable w.r.t. input variables.
It has been shown in [36] that the ANOVA decomposition can
be used in EHHNNSs to select influential variables. In fact,
for practical applications, variables are assigned with explicit
physical explanations, so that the analysis can be enriched by
careful considerations specified on real-world data, rather than
simply detecting influential individual variables in [36].

In this subsection, we further extend the ANOVA decom-
position of EHHNNS to the application of more interpretable
TF prediction, and thus present different analysis towards TF
data. In this paper, the interpretation analysis is performed
from 4 perspectives: variables selections similar to [36], and
the detections on factor influence (TF, AVS, and RO), spatial
influence and temporal influence.

1) Variable Decomposition: In the TF predictor based on
EHHNNS, the explicit expressions of all neurons in each layer
can be rearranged as

fenunn () = wo + Zfz(iﬁz) + Z fij(xi,zi) + -+, (6)

in which the first sum is over all neurons involving only a
single variable, the second sum is over those neurons repre-
senting two-variable interactions, and so on. In the EHHNN
predictor for TF, the input traffic variables can both additively
and interactingly contribute to the prediction output, and their
corresponding contributions can be decoupled.

More specifically, f;(x;) is composed of the sum over all
source neurons involving the particular input variable x;, and
fij(xs, ;) indicates the sum over all neurons in the second
hidden layer involving the particular pair of variables x; and
2. Then, we have the ANOVA functions, i.e.,

fri (@) = >

(kys):dk,s={r1}

wk7szk7s<i)

frlrg (IT17IT‘2) = wk,szk,s(i) (7)

(k,8):Jk,s={r1,m2}

where the set Jj s contains the indices of variables & inter-
acting in the neuron zy s, @ is x,, in the first equation, & is
[, Zr,]T in the second, and so on. In this way, the EHHNN
is decomposed into different network components character-
ized by individual traffic variables or their interactions.

To assist the following analysis, besides each individual
traffic variable, we can decompose the network components
from 3 aspects, i.e., the traffic factors (:IcTF , i:AVS, and

z"0), the spatial information (d?:Spa(f) ), and the temporal



information (:itep(g)). Accordingly, the EHHNN predictor can
be decomposed into different components concerning

iTF [yo7 17“‘7yo,_ 172/0: 7~~~7y¢t)7 n7y01_{_17"-7y21_:L1]T7
FAVS [307 . sol 1,5211,...,507 ’307+1"' so7+1]
iR? = Z;,lla"'vpol 17po, ""7p07 7pol+1""7yol+1
&P = [yt 17yol ,yoq+17~~ Sol+1,pol N
itcp(i) [yoL 17"'7yoi,17yoi 7"'ayoi 7yoi+17"'7yo,+n1]T

In the EHHNN predictor, the index sets representing the
indices of neurons which contain variables 2T, ghAVS, RO,
P and 7P are now denoted as JTF, JAVS, jRO,
Jspa(®) and JteP() | respectively.

Similar to the strategy in [36], [38], with the training data,
the standard variance (the o value) of the decomposed network
components concerning specific variables, i.e., the ANOVA
functions in (7), can be computed to reflect their relative
contributions to the prediction output. Given an ANOVA
function and the index set J of the variables x contained
on it, we rewrite such an ANOVA function listed in (6)
as fy(-), where the variable (£ = x,,) is or the variables
(@ = [y, Tp,, --|T) are coupled in f;(-). With the given
training data, the standard variance (the o value) of each f;(-)
in (7) is calculated by

gy = VAR(fJ(iE)),
fr@) = 3 wpsms(T), ©)
(k,8):Jk,s=J

where VAR(:) denotes the corresponding variance of the
prediction output related to the variables (&) in set J. The
larger o; is, a greater impact the corresponding network
component has on the prediction output, i.e., the particular
TF input variables & are more influential on the EHHNN
prediction output, so that the relative importance of different
network components is revealed explicitly.

2) Variable Analysis: By extending the ANOVA decom-
position of EHHNNs, the TF prediction process becomes
more interpretable, since it is now possible to detect the
contributions of different individual traffic variables to the
predictor or the interactions of them.

On the one hand, more influential input variables need to
be selected for the predictor. On the other hand, interpretation
analysis on the prediction outputs is also of great significance
to have more in-depth understanding of the TF data, poten-
tially providing guidance to future traffic control [30], [32]-
[35]. With the variable decomposition in Section III-B1, the
method proposed for TF variable analysis is presented mainly
from 4 aspects, i.e., variable selection, traffic factor analysis,
spatial analysis, and temporal analysis. To this end, we apply
ANOVA decomposition to the source nodes in a single-layered
EHHNN, where the relative importance of all candidate input
variables is revealed by the o values in (9). We unify the
vector of complete input variables as z = [y, , s’ ,p ]7 with
oj€Z;and teT.

In analysis part of the proposed method, variable selection is
firstly conducted by sorting the o value regarding each variable
z of z in descending order and selecting the top d ones for
further prediction, which reduces model dimensionality and
maintains prediction accuracy.

Next, the analysis of different traffic factors is cast by
computing the accumulative o values concerning the corre-
sponding traffic variables to reveal their relative importance.
For example, the importance of historical TF is evaluated by
the o value over

>

(k,s):Jg,s=JTF

frr = Wi, 52k, (Z). (10)

Similar analysis can be done for the factors of AVS and RO
in (8) based on the index sets JAYS and JRO, respectively.
Analogously, spatial analysis is performed by computing the
corresponding o value of

>

fspa =
(Ky5): i, o =50

(1)

wk,szk,s(i:)v

and then temporal analysis is done by calculating the o value
concerning

(ky8):Jk,s=

ftep = (12)

wk’szk,s(:ﬁ).

Jtep

In addition, we can also perform extra analysis to detect the
influence of different variable interactions in deeper layers of
the EHHNN, showing the effects of different traffic variable
interactings.

C. Method Summary

In this subsection, a more efficient training algorithm is
proposed for the EHHNN, so as to better adapt to practical ap-
plications with real-world datasets. In EHHNNS, the splitting
knots [y, are pre-allocated as the quantiles of each dimension,
and the composites of subsequent hidden layers do not requires
weights in between. Consequently, the weights connecting all
neurons to the output are the only parameters to optimize. It
is generally difficult to obtain the optimal connections among
neurons, and thus the EHHNN employs a descent algorithm for
searching the locally optimal network structure, and then the
finally parameters are determined [36]. However, such descent
algorithm traverses all neuron combinations by repeatedly
updating the parameters. Given the total number of neurons
P and the number of data points M, the computation costs
in the existing training algorithm for EHHNN come from
two aspect for each cycle of the descent searching, i.e., the
optimization on the network structure and the ADMM solver
for the network parameters [36]. Here, the adjacency matrix
determines the network structure, and its optimization is based
on the traversal scheme, leading to the worst-case complexity
as O(P*M) for 1-cycle optimization. The number of cycles
in optimization is problem-dependent, and it was shown in
[36] that 10 cycles could obtain good results for the tested
problems, which is very time-consuming and even intractable
for high dimensions and large data sizes.

To make the EHHNN more computationally applicable,
an efficient training algorithm is hereby proposed based on
stacking subnetworks, each of which is generated by random
searches followed with a pruning procedure by ADMM.
More specifically, the size of each subnetwork is tentatively
set excessively larges for flexibility, and then an ¢; norm



regularization is used to trim the model to moderate size,
i.e., we adopt the least absolute shrinkage and selection
operator (LASSO). Analogously, the training of each EHHNN
subnetwork is done through the optimization problem

1
i I = 2wz (X) — wolfy + Al (13

where A > 0 is the regularization coefficient. In this paper, we
solve the resulting LASSO problem (13) with the alternating
direction method of multipliers (ADMM) algorithm [47]. After
this, the weights w, ; are determined and redundant neurons
are removed, so that the network gets more condensed and
maintains flexibility.

To alleviate the effect of the randomness in generating the
EHHNN network structure, a stacking strategy is adopted to at-
tain the final network, similar to the procedures in [48]. Specif-
ically, multiple datasets are generated by dividing the original
training dataset ) into subsets Vi, ..., Vr, each of which is
used to train an EHHNN subnetwork fraunn,;(x). Then,
the final network frumnn(x) is stacked by femnnn(x) =

Zle v; fenunn ;(z, 0;), ie.,

L
min > (y(k) = > yifeunnn,;(@(k),0;)% (14)

T @)y (k))EV =1

The stacked EHHNN can be merged into a compact network
by rearranging all neurons layer by layer in each subnetwork.
Then, the merged EHHNN is more concise in expression
and maintains the interpretability. Now each subnetwork is
randomly generated and the parameters are then solved by
the ADMM, so that the optimization of the adjacency ma-
trix, i.e., the traversal procedure, is omitted for obtaining
the network structure. It was pointed out in [36] that the
computational burden of the subsequent ADMM solver for
parameters was way less and even negligible, compared to the
existing traversal scheme in optimizing the network structure.
Besides, the proposed training algorithm only conducts a
single cycle, and thus it is distinctively more efficient, even
if L times of ADMM are performed for the parameters of
subnetworks. In the next section, the resulting accuracy using
this efficient training algorithm will be verified through the
extensive numerical experiments in TF prediction.

In summary, the proposed method for TF prediction and
analysis based on the EHHNN is presented in Algorithm 1,
where the training of EHHNNs in Step 1/4 is performed with
the algorithm mentioned above, i.e., (13) and (14).

IV. NUMERICAL EXPERIMENTS

In this section, numerical experiments are performed to
evaluate the proposed method for TF prediction and analysis
by applying the EHHNN and extending its ANOVA decompo-
sition, where real world datasets are used for TF prediction in
different settings and various related methods are compared.
Then, other real world examples are evaluated to further
demonstrate the effectiveness of the proposed method and its
flexibility to adapt to different traffic scenarios.

Algorithm 1 TF Prediction and Analysis Based on EHHNN

Input: Input sequence H = {X} (m)} and output sequence
Y ={yl(m)} witho; €Z;, t €T, m=1,..., M.
Output: The EHHNN predictor fgpunn(x) and the corre-

sponding analysis results.

1: Train a single-layered EHHNN with data H and Y;

2: Conduct ANOVA decomposition (6) on the EHHNN ob-
tained by Step 1, i.e., calculating the o values (9);

3: Variable Selection: sort the o value concerning each
variable zj, of z in descending order (Sort{cy}) and select
the top d ones;

4: Train the TF prediction model using a multilayer EHHNN
fenunn () with the variables selected by Step 3;

5. Traffic Factor Analysis: compute the accumulative o
value over frp = ZJ};I‘I:wthk,s(ib)? favs =
ZJﬁ\iswk,sZk,s(i’) and fro :WZJE(;wk,szk,s({t);

6: Spatial Analysis: compute the accumulative o values over
fspa(f) = ZJZpé(i) wk,szk,S(i%Vt eT;

7: Temporal Ana’l}sis: compute the accumulative o values
over ftep(%) = ZJ;cp(i)wk,szk,s(i)aVi €T

8: Additional Analysirés: repeat Step 2 for the EHHNN pre-
dictor and calculate the o values of variable interactions.

A. Data and Settings

The experimental data are collected from the Caltrans Per-
formance Measurement System (PeMS) which can be accessed
via https://pems.dot.ca.gov/, and are sampled every 5 minutes
in each detector. In this paper, the traffic data from March 11th
to April 7th of the year 2019 are used, where the data of the
first 3 weeks are chosen for training and that of the remaining 1
week for testing. The EHHNN is implemented on a platform
Matlab R2016b and a 3.20GHz Intel(R) Core(TM) i7-8700
CPU of 16.0 GB. The data are pre-processed to have the unit
scale, i.e., © € [0, 1]9. We first present a series of experiments
on the selected data to do the TF prediction together with the
comparison with other effective methods, and then perform
the analysis on TF data from different perspectives.

To evaluate the prediction performance, similar to [49], [S0],
we use the mean absolute error (MAE), the root mean squared
error (RMSE), and the R-squared index R? as companion
criteria. The R? ranges from 0 to 1 and is used to measure the
data similarity, where a larger value indicates a more accurate
approximation. The criteria are defined as follows:

1 M
MAE = M Z ‘y’m - :gm‘

m=1
1 M
= | = —9,,)2 (15)
RMSE M ;(ym ym)
R2—1_ Z%:l(yz — Jm)*

where M is the number of data, v, is the observed TF with
mean value y, and ¢, denotes the predicted TF.


https://pems.dot.ca.gov/

For the EHHNN predictor in this paper, L = 10 subnet-
works are generated using subsets of the sample data, where
the penalty coefficient in the LASSO problems is selected from
{0.01,0.05,0.1,0.5,1}. Considering that the training data are
intrinsically time series, the training data sets for generating
subnetworks are chosen as

(16)

For the final stacked EHHNN (14), the complete sample
dataset is used for training, i.e., V = {x(m),y(m)}_,. For
the initial layer, the source neurons are set as max{0, z; — B, }
with i € {1,...,d} and By, € {0,0.25,0.5,0.75}.

B. TF Prediction and Analysis on Road Segments

In this subsection, the road segment described in Section
III-A is presented as a numerical study to comprehensively
evaluate the proposed method in Algorithm 1, concerning
both prediction accuracy and interpretation analysis. As shown
in Fig. 2, the spatial-temporal data of TF, AVS and RO of
detectors in the corridor US-50 with indices 311974, 313658,
and 314559 are chosen.

In summary, the experiments mainly contain two parts, i.e.,

- Performance Evaluation and Comparisons: The candidate
variables in Table I are considered, and the more impor-
tant ones are selected based on the o values in (9) to
train the EHHNN. Then, the prediction performance of
the EHHNN is compared with 5 related methods;

- Variable Analysis: To interpret the EHHNN predictor,
variable analysis is conducted mainly concerning the
aspects of network components, traffic factors, spatial
influence and spatial influence based on the o values (9).

1) Performance Evaluation and Comparisons: To evaluate
the overall prediction performance of the proposed method,
5 related methods are presented for comparisons. In this
experiment, we incorporate the NN, random walk (RW) [51],
radial basis function (RBF), support vector regression (SVR),
and the attention based spatial-temporal graph convolution
network (ASTGCN) models, among which the RW model is
regarded as a simple baseline that takes the current TF as
the future outcome while the recently proposed ASTGCN has
shown state-of-the-art performance in TF prediction. For the
network models, the number of layer is 3 and the number
of hidden units in each hidden layer is [10, 20, 50, 100] and
the AdamOptimizer is used with a batch size of 50 and a
learning rate as 0.01. The ASTGCN is set with default settings
described in [25]. Then, the final structure is determined as
the best one evaluated by 5-fold cross validation, where the
training dataset is randomly partitioned into 5 equal-sized
subsets, one of which is used in turn as the validation data.

TABLE I: Potential input variables

Historical time steps n Factor
TF AVS RO
Segment
Upstream 0; =4 — 1 10 10 10
Prediction 0; = 1 10 10 10
Downstream o; = 7 + 1 10 10 10

In our proposed method, the EHHNN is more than a
predictor, and it is also an effective analyzing tool to identify
the importance and effects of the input variables. Taking 7" = 1
for instance, we can select more influential variables according
to their o values, by removing the least influential ones. The
corresponding prediction performance can be seen in Fig 3,
where d is the number of selected variables.
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d

Fig. 3: An illustration of the prediction performance with d
variables selected.

From Fig 3, we can find that the prediction accuracy
preliminarily improves with increasing number of variables
(approximately when d < 16), and then stays almost un-
changed, suggesting that approximately no less than 16 vari-
ables need to be selected as the final input X. Then, we
employ a multilayer EHHNN to further verify the effect of
variable selection and Table II presents the results. Table II
demonstrates that less input variables than d = 16 can even
yield higher prediction accuracy than considering all candidate
variables (d = 90), which further verifies the effectiveness of
variable selection with the EHHNN. The 74 removed variables
are mainly contained in the downstream segment, for which
the corresponding spatial analysis will be introduced in Section
IV-B2.

TABLE II: Comparison on variable selection

MAE RMSE R2?
0.033  0.046  0.969
0.039  0.052 0959

d=16
d=90

As the experiments are for short-term prediction, we aim
at predicting the TF within the next half hour. In this paper,
the predicted future time step 7" takes 3 different values, i.e.,
T = 1,3,6, representing prediction horizons of 5, 15, 30
minutes, respectively. The comparison results with other TF
prediction methods are shown in Table III, where the highest
testing accuracy of each measure criterion is marked in bold.

Table III demonstrates that the EHHNN outperforms other
methods for most of the cases, where the RBF model shows
similar results with the EHHNN regarding MAE and RMSE
when 7" = 6 and the ASTGCN shows to be slightly advan-
tageous when 7' = 6. In particular, the ASTGCN employs



TABLE III: Comparison on TF prediction performance on road segments of different methods

Prediction EHHNN NN RW
Step MAE RMSE R? MAE RMSE R? MAE RMSE R?
T=1 0.033 0.047 0.969  0.036 0.048 0.966  0.039 0.055 0.957
T=3 0.041 0.058 0.949  0.047 0.066 0935  0.050 0.072 0.924
T=6 0.050 0.069 0.930  0.060 0.083 0.897  0.065 0.093 0.872
SVR ASTGCN RBF
MAE RMSE R? MAE RMSE R? MAE RMSE R?
T=1 0.040 0.055 0.956  0.042 0.056 0.956  0.036 0.051 0.961
T=3 0.050 0.067 0.933  0.042 0.057 0956  0.043 0.061 0.946
T=6 0.062 0.082 0.900  0.046 0.063 0.941  0.050 0.069 0.929

many sophisticated deep learning techniques with complex
network structures and shows state-of-the-art performance in
TF prediction [25], and it is worth noting that the 3-layered
EHHNN can achieve competitive and even advantageous
performance compared to the ASTGCN, which integrates
graphical CNNs and the attention mechanism. In our 3-layered
EHHNN predictor, there are at most 3 variables interacting in
a single neuron, and such an EHHNN can already achieve high
prediction accuracy to well describe the TF data, while most
existing methods based on NNs have all variables coupled in
each single neuron. This reflects the concise structure and great
flexibility of the EHHNN predictor for TF, and also indicates
that the variables should not always be fully coupled with
each other in TF prediction, providing possible interpretation
analysis about interaction levels and relations among different
traffic variables.

2) Variable Analysis: As shown in Algorithm 1, we then
perform variable analysis from 4 perspectives: network compo-
nent influence (variable selection), factor influence (TF, AVS,
and RO), spatial influence, and temporal influence. Here, we
set the prediction horizon as 5 minutes as a case study to
illustrate the interpretability.

o Network component influence: When selecting more influ-
ential variables in the EHHNN in Fig 3, the relative importance
of different input variables can be revealed. Then, when the
more flexible EHHNN predictor is applied to TF prediction,
the interactions of the selected variables (network components
in hidden layers) can be detected. The number of hidden
units in each hidden layer is [50,50,50], i.e., there are 50
neurons containing single variables, 50 neurons involving two
interacting variables, and 50 neurons with three interacting
variables. Those neurons all directly connect and contribute to
the final network outputs.

Firstly, we detect the influence of different individual traffic
variables to the EHHNN predictor, based on the o values
in (9). Table IV shows the largest 5 o values of the source
neurons, reflecting the impacts of individual variables. It can
be seen that the TF in the upstream segment at the previous
time step (y/~}) is the most influential element affecting the
TF prediction and the TF in the prediction segment 2 time
steps before was also quite important (yf_1 and yf_Z). The
TF in the upstream segment close to (3 time steps before)
the predicted time step (yfjf) is also influential. Our analysis
results tell that a lagging impact from the upstream segment
plays a critical role in affecting the TF, which coincides with
the practical assumptions in transportation systems, verifying
the effectiveness of our analysis. Moreover, the concrete time

steps of influential TF variables can also be revealed, which
has potential to be utilized for proactive traffic control, such
as restricting the TF in the upstream segment in advance to
mitigate the traffic congestion in the prediction segment. In
addition, the variables yf:f and yf:f are in the list while
yf:f does not appear. This may be due to the reason that the
historical TF values within different time steps in the upstream
segment are not independent, and the vehicles are not evenly

distributed in the prediction location as time is passing by.

TABLE IV: ANOVA decomposition of individual variables.

No.  Variable o
1 yi=,  0.083
2 yi2 0043
3 y%*1 0.043
4 yi3 0041
5 Y=y 0.003

Then, we show the interactions among variables with the
top 5 o values, i.e., the network components in hidden
layers, in Table V, where the interacting variables within the
corresponding neurons are given in the second column.

TABLE V: ANOVA decomposition of variable interaction.

No. Interacting Variables o
1 Yyl 2 sl 0.0084
2yl ty Tt 00076
3 yimi syl 0.0069
4wty iyt 0.0049
5 Yy st 0.0049

Table V shows that the neurons containing the interactions
between TF (y) and AVS (s), i.e., No. 1, 3, and 5, and also
the interactions between the TF from different historical time
steps, i.e., No. 2 and 4, are more influential to the prediction
output. For example, for the first row, the TF in the prediction
segment in previous time steps t — 7 and ¢ — 2, as well as with
the AVS in the prediction segment in time step ¢ — 1, contribute
jointly to the output, reflecting that the combinational effect
of TF and AVS in the prediction segment is significant. For
the second row, the TF in the prediction segment in previous
time steps ¢t — 3 and £ — 2 has a joint impact together with
the historical TF from the upstream segment, revealing that
the TF in the upstream segment in previous time steps t — 2
can possibly arrive in the prediction segment at the predicted
time step, and affect the TF hereby. The other interactions can
be explained similarly and their relative importance can also
be revealed, which explicitly unfolds the constitution of the



TABLE VI: Attribute contribution

AVS RO TF
o | 0019 0.032 0.328

TABLE VII: Segment contribution

Upstream(¢ + 1)
o 0.144

Downstream(i — 1)
0.050

Prediction(z)
0.185

predictor and provides an interpretable predictor. Compared
to Table V, the influence of single variables shown in Table
IV is higher than those of variable interactions, indicating that
for our problem, the variables mainly contribute additively to
the prediction output, which reveals rather simple relations
between those variables.

e Traffic factor influence: TF, AVS, and RO are basic traffic
factors that reflect the characteristics of the TF. Through the
ANOVA decomposition, the influence of these 3 traffic factors
is shown by the o values in Table VI.

We can see from Table VI that TE, AVS, and RO all
influence the TF prediction and it is effective to deploy
them in the input variables. Specifically, the historical TF is
significantly more influential to the prediction output than the
other 2 factors. At the same time, it demonstrates that the
factors AVS and RO also have an impact on the prediction
output to some extent, verifying the effectiveness of deploying
multiple traffic factors, where AVS and RO seem to have
comparable importance but less than that of the historical TF.
Note that to calculate the variance o, neuron outputs relating
to that particular factor are all considered. For example, for the
AVS, neuron outputs containing s/, ,0; € {i — 1,i,i+1},t €
{t—1,...,t — 10} are all summed to calculate the o value,
i.e., (8) and (10).

o Spatial influence: Besides the prediction segment, we also
employ the upstream and the downstream segments for spatial
information. Here, the relative contributions of these segments
are shown in Table VII, reflecting the spatial influence. Notice
that the o value of the i-th segment is calculated by summing
all neurons containing the corresponding TF, AVS, and RO.

Table VII demonstrates that the variables from the upstream
segment show a comparable level of importance as the ones
from the prediction segment, while the contribution of the
downstream segment is shown to be much lower. This analysis
result can be considered as an indication that most of the TF
in the predicted future time step comes from the upstream
segment, and the vehicles in the downstream segment have
significantly less impact under the given scenario.

o Temporal influence: In the prediction formula (5), we can
find that the number of historical time steps n is a tuning
parameter that reflects the temporal influence. A large value
of n means that the historical data far away from the current
predicted time step are also taken into account. Fig. 4 depicts
the influence of n, where n = 10 represents the furthest time
step and n = 1 denotes the closest one from the current
prediction.

We can see from Fig. 4 that the influence decreases when the
historical time steps are selected farther away from the current
prediction time step, which is in accordance with practical
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Fig. 4: Temporal influence based on the o value.

scenarios, i.e., the vehicles passing through a long time ago
are unlikely to pose significantly impacts when predicting
the TF at future time steps. It can also be noticed that the
temporal effect becomes lower with increasing n. Thus, it can
be regarded as an indication for determining the number of
previous time steps in the historical data. These experiments
show that considering the historical data from the previous
n = 10 time steps is sufficient to take the temporal information
into account.

3) Extended scenarios: We enrich the modeling in (5) by
deploying multiple detectors in both upstream and downstream
observation segments, each of which incorporates the infor-
mation from 3 individual detectors, i.e., the prediction model
feuunn (Y5, s5,,ph,) in (5) is modified into

0 €T, T ={i+3,i+2,i+1,ii—1,i—2i—3}, (17)

where a larger value of |o; — 4| indicates a longer distance of
the corresponding detector from the prediction segment. The
indices of the selected detectors are 311974, 318282, 314270,
314559, 319631, 313852, 313658 in PeMS. Then, we conduct
the experiment with the same settings as Section IV-B2, and
now the total number of candidate variables is 3-7-10 = 210.
Considering the performance of the compared methods, we
then simply report the prediction accuracy with ASTGCN,
i.e., the RMSE results of EHHNN/ASTGCN are 0.032/0.058
(T = 1), 0.055/0.060 (I'" = 3) and 0.057/0.058 (I' = 6),
further verifying the effectiveness of the proposed method
in prediction accuracy. Similarly, with multiple upstream and
downstream segments, spatial analysis can be conducted. Table
VIII shows the relative importance of the selected segments,
where “pred” is abbreviated for the prediction segment.

TABLE VIII: Segment contribution based on the o value.

T Upstream Pred Downstream
t+3 i+2 i+1 1 i+1 i+2 i+3
1 | 0071 0.115 0.113 0207 0.066 0.048 0.035
3 /0108 0.116 0.113 0209 0.133 0.136 0.113
6 | 0.156 0.156 0.155 0.190 0.051 0.266 0.182

Table VIII shows a similar tendency to that in Table VII
under the same prediction step 7' = 1, where the detectors in



the upstream segments are more influential to the prediction
output and those in the downstream segments have lower
impact. When the prediction step 7" increases, meaning that we
aim to predict the TF a bit farther away from the current time
step (I'" = 6), the influence of faraway upstream segments,
i.e., 1+ 3 and i + 2, shows to be higher, since it takes time for
the vehicles in faraway upstream segments (i +3 and ¢+ 2) to
arrive in the prediction segment. Moreover, vehicles normally
move from upstream to downstream, so that the vehicles in
the prediction segment are expected to be the ones that also
passed the upstream segments in previous time steps, whereas
this extended scenario in Table VIII shows that the information
from downstream segments can also affect the TF at a bit
faraway future time step, such as T' = 6. One inference could
be expected that there are likely traffic congestions in the
downstream segments and a backpropagation of delay on the
TF may occur when performing the prediction at later future
time steps. This experiment provides versatile information
of different road segments relating to TF, AVS, and RO
that may cause traffic congestions in the prediction location
under different road configurations in traffic systems, which
is promising to facilitating the design of proper strategies to
control the TF in the influential segments at proper time steps
ahead.
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Fig. 5: Temporal influence based on the o value with different

prediction horizons.

Besides the spatial influence, we can also explore a similar
interpretation from the temporal aspect. Fig. 5 shows the
results. We can see that the influence of those variables
with larger lagged values becomes more distinctive when
predicting the TF at a relatively faraway time step (larger
T). Combined with the above Table VIII, we can see from
the analysis that more spatial-temporal information could be
needed if a longer prediction horizon (larger 7) is set, and
the proposed interpretation analysis based on EHHNNs can
provide a suggestion to detect such information for variable
selection.

C. TF Prediction on Transportation Intersections

The proposed method can be easily adapted to different sce-
narios to perform TF prediction and analysis. In this subsec-

tion, we introduce another practical scenario in transportation
systems as a case study to further demonstrate the effectiveness
and extendability of the proposed method. Instead of the
road segment, we conduct the TF prediction on a mainline
nearby a transportation intersection, which is connected with
multiple roads. The data are also collected from PeMS, and
the distribution of the selected detectors is shown in Fig. 6.
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Fig. 6: Distribution of the selected detectors, where the infor-
mation from detectors in detectors #0, . .., #6 is incorporated
into the TF prediction in #0.

In Fig. 6, the indices of detectors regarding detec-
tors #0,...,#6 are 1113138, 1113173, 1113181, 1113126,
1113297, 1113301, and 112021, respectively, in which the data
are also sampled from March 11th to April 7th of the year
2019. Similar with the settings in Section IV-B, we employ
the EHHNN to predict the TF, and Fig. 7 gives an illustration
on the prediction results with prediction step 7" = 1.
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Fig. 7: An illustration of the prediction result on detector #0
with the EHHNN, where the testing MAE, RMSE and R? are
0.029, 0.036 and 0.977, respectively.

Fig. 7 shows that the used EHHNN can well predict the
TF nearby a traffic intersection with high volume and more
complicated components influencing the TF, which further
indicates the effectiveness of the proposed method. We also



briefly compare the results with ASTGCN, i.e., the RMSE
of EHHNN/ASTGCN is 0.036/0.054 (T = 1), 0.048/0.055
(T" = 3), and 0.069/0.057 (T' = 6).

Similarly, the relative importance of those detectors can
also be investigated, and the results are given in Table IX.
It can be seen that the information from detector #5 shows
to be more influential than other selected detectors, including
the prediction detector, indicating that a large portion of the
TF in #0 can be possibly coming from the roads monitored
by detector #5. Moreover, the importance of those selected
detectors varies when prediction time step 7' changes, and
this can be due to the fact that the distances between these
selected detectors and the prediction detector are different, and
the corresponding TF from them can arrive at the prediction
area in different future time steps. Such analysis results can
be potentially adopted to prevent future traffic congestions in
the prediction area, such as offering informative guidance to
drivers heading towards the prediction area and providing use-
ful information to the traffic controllers nearby. For instance,
we could limit the TF in the more influential areas ahead of
time, according to our analysis, such as limiting the TF in
the areas nearby detectors #5, #2 and #1 to support the
optimization of traffic control.

TABLE IX: Detector contribution based on the o value.

T #0  #1I  #2  #3  #4  #5  #6
[ [0.066 0.025 0017 0020 0021 0.173 0.008
310075 0090 0067 0041 0045 0.165 0.025
6 | 0.132 0.147 0.130 0.141 0.107 0209 0.049

In the case study of Fig. 6, temporal analysis can also be
conducted analogously to demonstrate the influence of vari-
ables from different historical time steps, in which a similar
tendency is obtained with Fig. 5. This analysis cal facilitate to
determine the number of historical time steps n, when different
prediction steps T are required. More specifically, the most
influential variables are presented in Table X with different
prediction time steps 7.

TABLE X: Variable influence based on the o value with
different prediction time step 7.

T=1 T=3 T=56

Variable o Variable o Variable o
yiTT 0132 [yt 0063 | yiTT 0059
y’é* 0.025 yé* L0033 | ¢t 0033
v 2 0019 y%*2 0026 | ¢i72 0028
it 0015 | oyttt 0023 | 2 0.023
yo 2 0013 | yitt 0018 | yiT! 0016

The analysis from our method indicates that the TF in
detector #b5 is the most influential for each T' = 1, 3,6,
given the current considerations. When 7' is increasing, the
impact of historical TF in the prediction observation detector
decreases and the more influential variables are mainly from
other detectors and different historical time steps. This analysis
can be helpful to explore how the TF in the prediction detector
is formulated and how to adjust the TF in different roads
when dealing with the corresponding traffic congestion or
cooperative control. Overall, to control the future TF in #0,

one can adjust the TF of the roads nearby #5 in advance.
When predicting the TF after 5 minutes (7' = 1) nearby #0,
the TF around #4 can also be taken into account, while it
has less influence when predicting the TF after 30 minutes
(T = 6). Besides, for route planning guidance to drivers, such
analysis result is also useful. For instance, when the drivers
arrive close to #5 and encounter intensive congestion here
at the current moment, they can be suggested not to drive
towards #0, which may also suffer a high volume of TF at the
upcoming time steps. Although the aforementioned analysis
is not always guaranteed to correspond exactly to the ground
truth under different real-world scenarios, it can be seen as a
promising attempt to perform accurate and more interpretable
TF prediction.

V. CONCLUSIONS

In this paper, short-term TF prediction is addressed together
with interpretation analysis, and thus a pragmatic method is
introduced based on the recently proposed EHHNN, which is
a universal approximator and yet has quite simple architec-
tures of sparse neuron connections. In the proposed method,
the EHHNN is firstly applied for accurate TF prediction
by utilizing its model flexibility. Compared with black-box
models, the EHHNN predictor can be performed with ANOVA
decomposition to quantitatively detect the contributions of dif-
ferent variables. On such basis, we further extend the ANOVA
decomposition of EHHNNSs with specifications to traffic data,
and then perform variable selection and varied interpretation
analysis covering traffic factors, road segments (spatial) as well
as historical time steps (temporal) of specific traffic variables,
presenting a more interpretable TF prediction process. Thus,
the resulting EHHNN is not only an accurate predictor for
TF herein, but also an effective tool to perform interpretation
analysis to approach more in-depth understanding, which is
promising to provide versatile information to future traffic
control. Numerical experiments confirm the effectiveness and
potentials of the proposed method under different settings.

For future work, it would be interesting to investigate the
impacts of other traffic factors and possibly their assistance to
provocative traffic control. More analysis based on the inter-
pretability of EHHNNS is also worthy of further investigations.
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