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Hierarchical model predictive control for on-line

high-speed railway delay management and train

control in a dynamic operations environment
Yihui Wang, Songwei Zhu, Shukai Li*, Lixing Yang, Bart De Schutter, Fellow, IEEE

Abstract—In practice, the operation of high-speed trains is
often affected by adverse weather conditions or equipment
failures, which result in delays and even cancellations of train
services. In this paper, a novel two-layer hierarchical model
predictive control (MPC) model is proposed for on-line high-
speed railway delay management and train control for mini-
mizing train delays and cancellations. The upper layer manages
the global objectives of the train operation, i.e., minimizing
the total train delays and providing guidance for the speed
control in the lower layer. The objectives of the lower layer are
to satisfy the running time requirements given by the upper
layer and to save energy at the same time. The optimization
problems in both levels of the hierarchical MPC framework
are formulated as small-scale mixed integer linear programming
problems, which can be solved efficiently by existing solvers.
Particularly, the train control problem is solved in a distributed
way for each train. Simulation analysis based on the real-life
data of the Beijing-Shanghai high-speed railway shows that the
proposed hierarchical MPC framework can meet the real-time
requirements and reduce train delays effectively when compared
with widely accepted strategies, e.g., first-scheduled-first-serve
and first-come-first-serve. Moreover, the proposed hierarchical
MPC framework also provides good robustness performance for
different disturbance scenarios.

Index Terms—high speed railway, train rescheduling, speed
control, hierarchical model predictive control, MILP

I. INTRODUCTION

High-speed railway lines are of crucial importance for the

mobility of passengers as well as for the competitiveness of

regional economy. The reliability and punctuality of high-

speed train services are the main focuses of the train operating

companies and railway infrastructure managers. In normal

situations, high-speed trains are operated as planned in the

timetable. However, unavoidable disturbances and disruptions

(caused by bad weather, infrastructure failures, malfunction

of rolling stocks, etc.) often happen and result in delays and

even cancellation of train services. Particularly, in this paper

we consider the disturbances that only affect the operation

of trains in a local area and the consequences are relatively

limited. The disturbances could be caused by adverse weather
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conditions (e.g., heavy rain and snow, strong wind) or by

signaling failures, which generally trigger temporary speed

restrictions.

When adverse weather conditions or the equipment failures

occur, on the one hand, train dispatchers need to trigger the

temporary speed restrictions (TSRs) for the affected area and

then take effective dispatching strategies, such as re-timing,

re-routing, and re-ordering, for the affected train services to

reduce the potential train delays. On the other hand, the auto-

matic train operation (ATO) systems or the train drivers receive

the TSRs and the modified departure and arrival ( or running

and dwell) times via the train control system and they need to

take proper driving strategies (e.g., accelerating, decelerating,

coasting, and cruising) to respect the instructions given the

dispatchers and to save energy consumption. As defined in the

literature, the problem faced by the train dispatcher is called

the on-line delay management problem or train rescheduling

problem, while the problem faced by the ATO systems or train

drivers is called the train control problem or the speed control

problem. Both the delay management problem and train con-

trol problem are well addressed separately in the literature (see

the recent survey papers, e.g., [1]–[7]. However, the traffic-

related characteristics (i.e., train departure and arrival times,

train orders) and the train-related characteristics (i.e., speed

trajectories, traction and braking forces) are closely interacted

with each other. So we only focus on the studies that elaborate

the interaction or integration of traffic management and train

control in this paper.

It is common to let the traffic management and train

control interact in a sequential way, i.e., the train rescheduling

problem is solved first and then the speed profiles are adjusted

accordingly. Albrecht [8] presented a sequential approach to

investigate the interaction between train rescheduling and train

control and concluded that anticipating train control can reduce

energy consumption and even reduce delays significantly for

certain situations. D’Ariano et al. [9] proposed target points

(i.e., arrival times and advisory speeds at key locations) for

the speed optimization of rescheduled trains with the aim of

punctuality and energy saving. Corman et al. [10] proposed

a green wave policy for traffic management, where there is a

speed profile available between any two consecutive stations

and the dwell times are adjusted to avoid modifications of this

speed profile. Caimi et al. [11] proposed a model predictive

control approach for rescheduling trains in the complex station

area, where there are multiple pre-calculated speed profiles

available to build the blocking diagrams for train rescheduling.



2

Another way to coordinate the traffic management and train

control is using iterative approaches, where speed profiles can

be optimized according to the updated train timetable and then

be fed back to the train rescheduling process for the sake of

performance enhancement. Mazzarello and Ottaviani [12] de-

veloped a double feedback loop structure to optimize the train-

related and traffic-related decisions using heuristics. Similarly,

an iterative train rescheduling and speed adjusting approach is

presented in [13], where the drivers adjust the speed of trains

in order to meet the updated train timetable. Moreover, [14]

investigated the multiple-phase train trajectory optimization

approach with consideration of constraints imposed by traffic

management.

Unified models for the integration of traffic management

and speed control approach have become popular in recent

years. Yin et al. [15] formulated a train rescheduling model for

metro lines that considers the time-variant passenger dynamic

characteristics and the energy consumption of train operations.

Xu et al. [16] presented a mixed integer linear programming

model based on alternative graphs for the integration of traffic

management and speed control, where the operation speeds

of trains are classified into several levels and managed by

indicating additional travel times for the train rescheduling

process. [17] proposed an integrated optimization model for

traffic management and train control, where the train speed

profile is computed to determine the main target points (i.e.,

target position, target time, target speed) and sub-target points

for preventing potential traffic conflicts. Luan et al. [18],

[19] studied the integration problem of train management

and speed control by developing three optimization models

to form the real-time train schedule via optimizing the driving

strategies. However, the integrated model is very complex and

many approximations and simplifications are needed to obtain

solutions efficiently.

The scale of the integrated traffic management and train

control problem is too large for real-time application in most

of the cases, which becomes computationally prohibitive for

on-line decision-making in a dynamic environment. Moreover,

the previous literature on the integrated optimization of train

traffic management and train control is mainly confined to

static optimization, which seldom involves dynamic updated

information [18], [15], [16]. In addition, to realize the on-line

decision making process for the traffic management, the model

predictive control (MPC) algorithm has been developed with

the strategy of rolling optimization [20]–[23], which can be

efficiently applied to cope with the on-line high-speed railway

delay management and train control problem.

In order to satisfy the on-line requirements of practical

applications, we therefore present a hierarchical MPC

approach for the on-line delay management and train control

of the high-speed railway. The contributions of the current

paper to the literature are listed as follows:

• A hierarchical optimization framework is presented for

the on-line high-speed railway operations in a dynamic

operations environment, where the delay management

problem is addressed at a slow time scale in the upper

layer, while the speed control problem is implemented in

a fast time scale in the lower layer.

• A novel hierarchical model predictive control algorithm

is particularly designed for the on-line delay management

and train control problem, which is solved in a moving-

horizon manner, where the real-time updated information

of the train, even considering uncertain operational con-

ditions, can be included in the on-line decision-making

process. This makes the solutions robust to uncertainty,

disturbances, and even model mismatch.

• The hierarchical model predictive control algorithm di-

vides the original problem into two-layer small-scale op-

timization problems that can be solved relatively indepen-

dently to realize the complexity reduction. More specif-

ically, for the train control problem in the lower layer,

the speed profile problem for each train can be solved

in parallel, which greatly improves the computational

efficiency to meet the on-line calculation requirements

of high-speed trains.

The remainder of this paper is organized as follows. In

Section II, we give a problem statement and the formulation

assumptions. Section III introduces the mathematical formu-

lation of the hierarchical model predictive control scheme.

The solution approach for the hierarchical MPC framework

is proposed in Section IV. Experimental results based on the

Beijing-Shanghai high-speed railway line are given in Section

V. Finally, Section VI concludes the paper.

II. PROBLEM STATEMENT AND FORMULATION

ASSUMPTIONS

In this section, we first introduce the topology and the

signaling principle of a high-speed railway line. The current

practice for the handling process of the temporary speed

restrictions (TSRs) is then described. After that we illustrate

the hierarchical model prediction control framework by a small

example. Finally, the assumptions of this research are listed

and explained in detail.

A. Problem statement

In practical operations, unavoidable perturbations (or distur-

bances) caused by adverse weather conditions or equipment

failures often happen and significantly impact the operation

of trains. In order to cope with unavoidable perturbations

(or disturbances), temporary speed restrictions (TSRs) need

to be triggered by the dispatchers and put into the signaling

systems to address safety concerns. However, there are also

more serious cases that are classified as “disruptions” where

tracks may be totally blocked and some train services need to

be suspended and fully stopped. In this paper, we only consider

the disturbances or perturbations that trigger TSRs and that

only affect trains in a relatively small area. In practice, the

starting and end positions of the TSRs are also at the splitting

points between block sections as illustrated by the yellow and

orange areas in Figure 1.

Moreover, when TSRs are triggered due to adverse weather

conditions or equipment failures, train drivers (or automatic

train operation (ATO) systems) of the affected trains should
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apply braking forces to reduce the speed of the trains to satisfy

the speed limits. If drivers or ATO systems cannot reduce

the speed of the trains in time, emergency braking may be

triggered by the signaling system to stop trains immediately.

So it is important to have a speed control model that takes the

detailed train characteristics, fixed speed limits, TSRs, arrival

times, etc. into account to make sure that trains arrive at the

next station smoothly and save energy consumption as well.

Since the affected trains are operated at a lower speed, which

results in longer running time between stations, there could be

potential conflicts for the operation of neighboring trains. So

a train rescheduling model is required in the control center to

take proper measures, e.g., re-timing (changing running and

dwell times of trains) and re-ordering (changing the order of

trains), for resolving the conflicts and minimizing delays from

the planned timetable.

TSR2: 160 km/hTSR1: 80 km/h

Down direction

Up direction

Fig. 1: The illustration of the track layout and temporary

speed restrictions (TSRs) of a high-speed railway line (the

transponders (triangles) and the signal towers are used to

transmit TSRs information and a segment corresponds to a

block section)

Station
1

2

3

4

5

6
Time

Upper layer: train rescheduling problem

Realized  
running/dwell
times

Recommended  
running/dwell
times

Adverse
weather
conditions

Train f

...

Lower layer: speed control problem

Train 1
TSR
train speed

Output the train
speed profiles

Optimize the
traction/braking forces

Fig. 2: The hierarchical traffic management and train control

framework for high speed railways

In this paper, we propose a hierarchical model predictive

control framework, where the problems in the upper and lower

levels are both solved in a rolling horizon way. The current

train rescheduling and train control framework in practice is

a hierarchical setting basically. The dispatchers in the control

center regulate the order of trains, the running/dwelling times,

etc, according to the measured departure and arrival times of

trains at stations and the updated TSRs information. The train

drivers or ATO systems adapt the behavior (dwelling, speed,

etc.) of trains according to the measured statues (position,

speed, etc.) of itself and the trains nearby and the run-

ning/dwelling times and TSRs specified by the dispatchers. In

this paper, we propose a hierarchical model predictive control

framework as illustrated in Figure 2 for the traffic management

and train control of high speed railways under unavoidable

perturbations (or disturbances), where TSRs are triggered to

ensure the safe operation of trains. Within the hierarchical

model predictive control framework, the original integrated

train rescheduling and speed control problem is effectively

reduced and decomposed into two-layer optimization problem.

The information that are transmitted between the upper layer

and the lower layer involves the scheduled running/dwell times

and the realized running/dwell times for trains, as illustrated in

Figure 2. Since the disturbances cannot be fully avoided by the

anticipation and the train schedule obtained in the high level

could involve potential conflicts, the feedback of the upper

layer is the actual departure/arrival times that yield in the

lower level controller. Moreover, the higher level controller

are triggered when the actual departure/arrival delay reaches

a pre-defined threshold or the information of the TSRs is

updated. The rolling horizon could be expressed as a certain

time span (e.g., an hour) or a certain number of trains (e.g., 5

trains). The lower level updates the speed profiles with a much

higher frequency, which updates when a TSR is triggered,

a train departs or arrives at a station, and/or a train passes

a block section. Compared with the rolling horizon in the

upper level, the length of the rolling horizon in the lower

level is much shorter and it could e.g. be equal to the left

running time to the next station. Therefore, the hierarchical

model predictive control framework does not only reduce the

computational complexity of the integrated traffic management

and train control problem, but also provides a on-line decision

making approach with the real-time updated information in a

dynamic operations environment.

B. Assumptions

In our hierarchical model predictive control framework, we

make the following assumptions:

• The operation of train services in the up and down di-

rections is separated from each other; so we can consider

the operation of trains in one direction only.

• The cancellation of train services is not considered in the

train rescheduling problem since we only consider small

disturbances and perturbations caused by adverse weather

conditions or signal failures (e.g., short communication

interruptions).

• The rolling stock circulation plan is not considered in the

train rescheduling formulation.

III. MATHEMATICAL FORMULATION

Within the hierarchical optimization framework, two op-

timization models are introduced: (1) a macroscopic train

rescheduling model in the upper layer considering a high-

speed line with multiple stations and different types of train

services, and (2) a speed control model in the lower layer

with consideration of the detailed train characteristics, line

conditions, temporary speed limits, etc. In this section, the
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TABLE I: Parameters and subscripts for the model formulation

Notations Definition

I, F set of stations and trains

i, f indices of stations and trains

I f , I
stop
f set of stations that train f passes and stops at

I
stop
f number of scheduled stops of train f

Fi set of trains pass station i

Fi,i+1 set of trains pass station i and station i+1

d̄ f ,i, ā f ,i planned departure time and arrival time of train f at station

i

w̄ f ,i planned dwell time for train f at station i

σ r
f ,i, σ w

f ,i disturbances of running and dwell time of train f at station

i

h
min,arr

f , f ′ , h
min,dep

f , f ′ minimum arrival-arrival and departure-departure headways

Ci capacity of station i

Ni,i′ total number of small intervals between station i and i′

n index of the small intervals between station i and i′

Emax
i,n maximal kinetic energy per mass for a train at position si,n

Emin minimum kinetic energy (a small positive value) per mass

for a train

ℓ index of temporary speed restrictions

L set of temporary speed restrictions

ETSR
ℓ maximal kinetic energy of the ℓ-th temporary speed restric-

tion

iℓ, īℓ start and end stations of the ℓ-th temporary speed restriction

T start
ℓ ,T end

ℓ start and end time of the ℓ-th temporary speed restriction

TABLE II: Variables for the model formulation

Notations Definition

d f ,i,a f ,i departure and arrival time of train f at station i

r f ,i, w f ,i running and dwell time of train f at station i

Yf ,i,ℓ binary variable to indicate whether the operation of train f

between i and i+1 is affected by the ℓ-th TSR

ξ f , f ′ ,i binary variable to indicate the arrival order of train f and f ′ at

station i

η f , f ′ ,i binary variable to indicate the departure order of train f and f ′

at station i

ε f , f ′ ,i binary variable to indicate the order of train f ’s arrival and train

f ′’s departure

a f ,i,n, d f ,i,n arrival and departure time of train f at position si,n between

stations i and i′

E f ,i,n kenetic energy of train f at position si,n between stations i and i′

u f ,i,n traction/braking force of train f at position si,n between stations

i and i′

notations and decision variables are introduced first. Then, the

constraints and objective functions of the train rescheduling

and speed profile optimization are formulated.

A. Notations and decision variables

Table I lists the parameters and subscripts used in the model

formulation. Moreover, Table II gives the decision variables for

the railway traffic delay management and train control.

B. Upper hierarchical layer

We consider a high speed railway line with I stations, i.e.,

i ∈ I= {1,2, . . . , I}, where station i+1 is the first station after

station i and the train services that operate on this line are

indexed by f with f ∈ F = {1,2, . . . ,F}. The set of stations

that train f passes is denoted by I f and the set of stations in

which train f should stop is defined as I
stop
f . We have I f ⊆ I

and I
stop
f ⊆ I f . In addition, the number of scheduled stops for

train service f is denoted as I
stop
f .

The objective function of the train rescheduling model is

to minimize the sum of the mean absolute delay time at all

scheduled stops for all trains, i.e., the deviations of the arrival

and departure times with respect to the planned arrival times:

min Zup = ∑
f∈F

∑
i∈Istop

f

(

|a f ,i − ā f ,i|
I

stop
f

+
|d f ,i − d̄ f ,i|

I
stop
f

)

, (1)

where a f ,i (d f ,i) and ā f ,i (d̄ f ,i) are the actual and planned

arrival (departure) times of train f at station i.

The constraints for the train rescheduling problem in the

upper layer involves the following five groups.

1) Departure/arrival constraints: The departure and arrival

times of train services should satisfy the following constraints

a f ,i+1 = d f ,i + r f ,i +σ r
f ,i, (2)

d f ,i = a f ,i +w f ,i +σw
f ,i, (3)

where r f ,i is the running time of train f between station i

and station i+ 1, which depends on the train categories and

characteristics of train f , line conditions between station i and

i+1, stop patterns, temporary speed restrictions, etc., and w f ,i

is the dwell time of train f at station i. Moreover, σ r
f ,i and σw

f ,i
are introduced to denote the disturbances of the running time

and dwell time of train f at station i, which are given based

on estimations. In addition, the departure time d f ,i should be

later than or equal to the planned departure time if train f

stops at station i, i.e.,

d f ,i ≥ d̄ f ,i. (4)

2) Running/dwell time constraints: The running time r f ,i

should be larger than or equal to the minimum running time

rmin
f ,i , i.e.,

r f ,i ≥ rmin
f ,i , (5)

where the minimum running times for the normal operations

can be calculated based on the speed limits, characteristics of

trains, etc. If the operation of train f is affected by a TSR

indexed by ℓ, as illustrated in Figure 3, then the minimum

running time of train f between station i and i+ 1 will be

much longer compared with the one for the normal operation.

A binary variable Yf ,i,ℓ is introduced to indicate whether the

operation of train f between stations i and i+1 is fully affected

by TSR indexed by ℓ, which is defined as follows

Yf ,i,ℓ =

{

1 if d f ,i ≥ T start
ℓ and a f ,i+1 ≤ T end

ℓ , i, i+1 ∈ Iℓ,

0 otherwise,
(6)

where Iℓ denotes the set of stations influenced by TSR ℓ and

Yf ,i,ℓ = 1 means that the operation of train f between station

i and i+ 1 is affected by TSR ℓ, i.e., the running process of

train f between stations i and i+1 is a subset of the activation

period of TSR ℓ. If the operation of train f between station

i and i+ 1 is affected by TSR ℓ, the minimum running time

rmin
f ,i cannot be achieved. Hence, an updated minimum running

time, i.e., rmin
f ,i,ℓ with rmin

f ,i,ℓ > rmin
f ,i , is adopted to increase the

feasibility of the train schedule generated in the upper level.

The following constraint is introduced to consider the updated

minimum running time, i.e.,

r f ,i ≥ rmin
f ,i,ℓ+M(Yf ,i,ℓ−1), (7)
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Position

Time

80km/h 160km/h

+1

+2

+1 +2

Fig. 3: An illustration of temporary speed restrictions (TSRs)

on the operation of train f

where M is a sufficient large number, which is introduced

to ensure r f ,i ≥ rmin
f ,i,ℓ when binary variable Yf ,i,ℓ is equal to

1, but to let this constraint be fully satisfied when Yf ,i,ℓ is

equal to 0. For constraint (7), the value of M should be

larger than rmin
f ,i,ℓ− rmin

f ,i . It is worth to note that the operation

of train f between stations i and i + 1 could be partially

affected by TSRs. Due to the difficulty of accurate estimation

of minimum running times, if the operation of train between

two consecutive stations is partially affected by TSRs, only the

minimum running time constraint (5) is involved. This could

result in potential train conflicts; however, these conflicts can

be well taken care of in the lower level control.

It is worth to note that the maximum running times are

not specified in the upper layer model because the values of

the TSRs can not be known in advance and it decides the

maximum running times. However, the delay of train services

are considered in the objective function, which indirectly

considers the maximum running times.

Moreover, if train service f does not stop at station i, then

the dwell time w f ,i should be equal to zero. In addition, if a

train is scheduled to stop at a certain station, then this station

cannot be skipped during the rescheduling so as to guarantee

the satisfaction of passengers. Therefore, in our paper, we only

allow trains to add new stops if needed. Therefore, we have

the following constraints for the dwell times

w f ,i ≥ w̄ f ,i, (8)

where w̄ f ,i is equal to zero if train f does not plan to stop at

station i. So when we have w f ,i > w̄ f ,i and w̄ f ,i = 0, it means

that the stop pattern of train f is changed at station i.

3) Headway constraints: The operation of train services

should also satisfy the headway constraints, which involve

the arrival-arrival headway constraints, the departure-departure

headway constraints, the arrival-departure headway con-

straints, and the departure-arrival headway constraints. Since

we only consider the macroscopic train scheduling model in

this paper and the detailed station layout is not considered,

we assume that the departure routes and the arrival routes of

trains at stations are independent from each other, which is

generally holds for most of the high speed railway stations in

China. So we only consider the arrival-arrival and departure-

departure headway constraints as illustrated in Figure 4, which

can be formulated as follows:

a f ,i −a f ′,i ≥ h
min,arr

f , f ′ −Mξ f , f ′,i, (9)

d f ,i −d f ′,i ≥ h
min,dep

f , f ′ −Mη f , f ′,i, (10)

af '',i+1 af ',i+1

station i

station i+1

train f

train f '

train f ''

train f ''

train f '

train f

station i station i+1

Fig. 4: An illustration of the minimum headways between

trains

where ξ f , f ′,i and η f , f ′,i denote the arriving and departing order

of train f and f ′ at station i, i.e.,

ξ f , f ′,i =

{

1 if train f arrives earlier than train f ′,
0 if train f arrives later than train f ′,

(11)

and

η f , f ′,i =

{

1 if train f departs earlier than train f ′,
0 if train f departs later than train f ′.

(12)

It is worth to note that the big M in (9) and (10) should be

larger than h
min,arr

f , f ′ −amin
f ,i +amax

f ′,i and h
min,dep

f , f ′ −dmin
f ,i +dmax

f ′,i .

4) Train ordering constraints: The order of trains can only

be changed at stations in our paper, so we have

ξ f , f ′,i+1 = η f , f ′,i, (13)

which means that the arrival order of trains f and f ′ at station

i+ 1 should be the same as the departure order at station i

because there is no overtaking facilities between two stations.

Furthermore, the order between any two trains should also

satisfy

ξ f , f ′,i +ξ f ′, f ,i = 1,∀ f ∈ F, f ′ ∈ F, i ∈ I f , i ∈ I f ′ , (14)

η f , f ′,i +η f ′, f ,i = 1,∀ f ∈ F, f ′ ∈ F, i ∈ I f , i ∈ I f ′ , (15)

which indicates that either train f arrives at station i before

train f ′ or train f ′ arrives before train f at station i.

5) Station capacity constraints: Each station has a capacity

limit, which corresponds to the maximum number of trains that

can stop in or pass a station simultaneously. According to the

practical operation rules, a station track (platform or siding)

can only accommodate one train at most and the station tracks

are usually dedicated to one operation direction, i.e., either the

up direction or the down direction. So when considering the

station capacities, we could only take the trains operated in

the same direction into account. We introduce binary variables

ε f , f ′,i to indicate whether the arrival of train f is before the

departure of train f ′ or not, i.e.,

ε f , f ′,i =

{

1 if train f arrives before the departure of f ′,
0 if train f arrives after the departure of f ′.

(16)

The station capacity constraints can be formulated as

∑
f ′∈F,i∈I f ′

(1−ξ f , f ′,i)− ∑
f ′∈F,i∈I f ′

(1− ε f , f ′,i)≤Ci −1, (17)
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for all f ∈F, i∈ I f , where Ci is the capacity1 of station i. More

specifically, ∑ f ′∈F,i∈I f
(1−ξ f , f ′,i) denotes the number of trains

that have arrived at station i before the arrival of train f and

∑ f ′∈F,i∈I f
(1− ε f , f ′,i) denotes the number of trains that have

departed from station i before the arrival of train f . In order

to let train f enter station i, there should be a station track

available. So the right-hand side of inequality (17) is Ci −1.

The assembled optimization problem for the upper layer can

be written as follows:

min
(a f ,i,d f ,i,r f ,i,ξ f , f ′,i,η f , f ′,i)

∑
f∈F

∑
i∈I

|a f ,i − ā f ,i|
I

stop
F

+
|d f ,i − d̄ f ,i|

I
stop
F

s.t. (2)− (17).

(18)

C. Lower hierarchical layer

The upper layer specifies the running time r f ,i of train

f between station i and i + 1 by using the macroscopic

train rescheduling model to minimize the deviation of train

operations with respect to the planned timetable. However,

train f may not stop at all stations, i.e., train f may skip

some stations according to the planned timetable. For the train

control problem, the speed profile is optimized between two

consecutive stations where train f stops, denoted by stations i

and i′. Therefore, r̄ f ,i,i′ is introduced to denote the running time

of train f between stations i and i′ that are recommended by

the upper layer, which can be calculated by r̄ f ,i,i′ = ∑i′−1
ĩ=i

r f ,ĩ.

The detailed information, such as the characteristics of trains,

the section length, the grade profile and curvature of the track

between those two stations, is not explicitly considered in the

upper level model, which only takes the minimum running

times between stations into account. So the running times

calculated by the upper layer may not be feasible for the

detailed train operation model in the lower level, especially if

there are some TSRs appear due to the strong wind, heavy rain,

big snow, etc. Those TSRs would largely affect the running

time of trains between stations. For example, the maximum

speed for the type G trains is 350 km/h in CTCS-3, however,

the TSR could be 200 km/h, 120 km/h, or even 60 km/h for a

certain time period in the affected block sections. Therefore,

the specified running times in the upper layer may not be

realized and delays would occur and propagate among the

trains in the high speed lines.

The mass-point model is usually used in the literature and

the operation of trains is subject to Newton’s second law. As

presented in previous studies [24]–[27], it is better to select

the position s as an independent variable instead of the time t

because the speed limits, grade profiles, curvatures vary with

respect to the position of trains. Furthermore, as in [25], [26],

[28], we take kinetic energy per mass unit Ẽ = 0.5v2 and

time t as states to eliminate some (but not all) of the model

nonlinearities. As given in [28], the continuous-space train

dynamic model can be written as

mρ
dẼ

ds
= u(s)−Rb(Ẽ)−Rl(s, Ẽ), (19)

1It is noted that we only consider the operation of trains in one direction.
So the capacity of station here is also means the capacity for the considered
direction.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Station i Station i'

block section block section block section

Fig. 5: An illustrative example for the splitting of block

sections between two stations

dt

ds
=

1√
2Ẽ

, (20)

where m (m > 0) is the train’s mass [kg], ρ (ρ > 0) is

the rotating mass factor [28], v (v ≥ 0) is the train’s speed

[m/s], s (s ≥ 0) is the train’s position [m], u corresponds to

the traction or braking force [N], Rb : R → R is the basic

resistance including roll resistance and air resistance [N], and

Rl : R→R is the line resistance caused by track grade, curves,

and tunnels [N]. More specifically, the basic resistance and the

line resistance can be calculated by

Rb(Ẽ) = Rb,1 +2Rb,2Ẽ, (21)

Rl(s, Ẽ) = R̃l(s)+2R̃t(s)Ẽ, (22)

where Rb,1 and Rb,2 are the coefficients of the basic resistance,

R̃l(s) and R̃t(s) are the components of line resistance that do

not depend on the train’s speed.

In order to formulate the microscopic train operation control

model, the block sections between stations are considered,

where the length of a block section is around 1000 m to

1500 m. Each block section is then split into small inter-

vals with length of e.g. 50 m or 100 m for the detailed

computation of speed profiles. The position of the nodes

that divided those small intervals between stations i and i′

are denoted by si,0,si,1, . . . ,si,n, . . . ,si,Ni,i′ and the length of

those intervals can be calculated by ∆si,n = si,n − si,n−1 for

n ∈ Ni,i′ = {1,2, . . . ,Ni,i′}. The splitting points for the block

sections are given in N
B
i,i′ . An illustrative example for the

small intervals is given in Figure 5, where there are three

block sections between stations i and i′ and each block section

is then split into multiple small intervals. Particularly, the

splitting points of the block sections are 1, 10, 17, and 23, i.e.,

N
B
i,i′ = {1,10,17,23} for the small example given in Figure 5.

Particularly, si′,0 is basically the position of station i′ and

we have si,Ni,i′ = si′,0 if station i′ is the next station that

train f stops at after station i. By appropriately defining the

discretization of the intervals, without loss of generality the

coefficient of the line resistance can be written as follows

R̃l(s) = Rl
i,n, for s ∈ [si,n−1,si,n] and n ∈ Ni,i′ , (23)

R̃t(s) = Rt
i,n, for s ∈ [si,n−1,si,n] and n ∈ Ni,i′ . (24)

In addition, we introduce a f ,i,n and d f ,i,n to denote the arrival

and departure times of train f at node (i,n) between stations

i and i′. We then have

a f ,i,0 = d f ,i,∀ f ∈ F, i ∈ I f , (25)

d f ,i,Ni,i′ = a f ,i′ ,∀ f ∈ F, i, i′ ∈ I f , (26)

which means that when train f departs from station i, it

immediately arrives at node 0 between stations i and i′ and

train f arrives at station i immediately when it departs from
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from the last node Ni,i′ between station i and i′. When the

arrival time a f ,i is not equal to d f ,i, this means that train f

dwells at station i. In addition, we have

d f ,i,n = a f ,i,n,∀ f ∈ F, i ∈ I,n ∈ Ni,i′/{Ni,i′}, (27)

which means that train f is not allowed to dwell at the

intermediate intervals between stations i and i′. By solving

the differential equations (19) and (20), we obtain

E f ,i,n = α f ,i,nE f ,i,n−1 +β f ,i,nu f ,i,n + γ f ,i,n, (28)

a f ,i,n = d f ,i,n−1 +
1

2
(

1
√

2E f ,i,n−1

+
1

√

2E f ,i,n
)∆si,n, (29)

for all f ∈ F, i ∈ I,n ∈Ni,i′ , where α f ,i,n = e
−2∆si,n(Rb,2+R̃t

i,n)/mρ
,

β f ,i,n =− 1
2(Rb,2+R̃t

i,n)

(

e
−2∆si,n(Rb,2+R̃t

i,n)/mρ −1
)

, and

γ f ,i,n =
Rb,1+R̃l

i,n

2(Rb,2+R̃t
i,n)

(

e
−2∆si,n(Rb,2+R̃t

i,n)/mρ −1
)

. See [28] for more

details of these calculations.

The operation of trains should satisfy the constraints intro-

duced by the train dynamics, line characteristics, etc. Specif-

ically, the traction and braking forces u f ,i,n should be larger

than the maximum braking force (a negative value) and smaller

than the maximum traction force, i.e.,

umin ≤ u f ,i,n ≤ umax(
√

2E f ,i,n),∀ f ∈F, i, i′ ∈ I f ,n∈Ni,i′ , (30)

where the maximum braking force is considered as a constant

and the maximum traction force is a nonlinear function of

the train’s speed2 as in [28]. It is worth to note that the

traction/braking force u f ,i,n is a constant for small interval

[si,n−1,si,n]. So the operation regime of trains (e.g., acceler-

ation, deceleration, coasting or cruising) in a small interval

does not change in this small interval. Therefore, if the speed

limits are respected at the nodes of this interval then all

the intermediate points inside the interval also satisfy the

constraints caused by speed limits, i.e.,

0 ≤ E f ,i,n ≤ Emax
i,n ,∀ f ∈ F, i, i′ ∈ I f ,n ∈ Ni,i′ . (31)

Note that if train f dwells at station i, then the speed of trains

should be zero when it stops. However, since we have E f ,i,n in

the denominator in (29), we introduce a small positive number

Emin, such that E f ,i,n ≥ Emin > 0. This means that the speed of

trains is always strictly larger than zero, which is not restrictive

in practice as stated in [26], [28]. Therefore, if train f dwells

at station i, we have the following constraints

E f ,i,0 = Emin, (32)

E f ,i,Ni,i′ = Emin. (33)

Furthermore, during the operation process, there could be

temporary speed constraints caused by extreme weather or

equipment failures, under which a TSR generally appears and

affects a certain area (defined by block sections) for a certain

time period. In addition, it is possible that there are several

2The maximum traction force that could be taken depends on the train
speed, which may vary in the interval [si,n−1,si,n]. Since here we discretize the
problem, only the speeds at the nodes are actually taken into account. So the
value of the maximum allowable traction force could also be umax(

√

2E f ,i,n+1)
or umax(

√

E f ,i,n +E f ,i,n+1).

TSRs that need to be respected simultaneously in a high-speed

railway line. A TSR is denoted by a tuple

(

ETSR
ℓ ,T start

ℓ ,T end
ℓ ,siℓ,nℓ ,sīℓ,n̄ℓ

)

(34)

where ETSR
ℓ indicates the maximum speed that can be operated

by trains, T start
ℓ and T end

ℓ are the start and end time of this

TSR, siℓ,nℓ and sīℓ,n̄ℓ
indicate the start and end positions of the

TSR. Note that these two positions correspond to the start and

end of block sections, i.e., nℓ ∈ N
B
iℓ,i

′
ℓ

and n̄ℓ ∈ N
B
iℓ,i

′
ℓ
. Here we

introduce N
TSR
ℓ to denote all the nodes that are affected by

TSR ℓ. In addition, N f is introduced to denote all the nodes

passed by train f . Therefore, we need to determine whether

train f is affected by TSR ℓ or not, i.e.,

T start
ℓ ≤ d f ,iℓ,nℓ ≤ T end

ℓ . (35)

So if (35) is satisfied, then train f is affected by TSR ℓ and

is required to respect the following constraints

E f ,i,n ≤ ETSR
ℓ ,∀(i,n) ∈ N

TSR
ℓ ∩N f . (36)

Moreover, the safe operation of train f is guaranteed by

the advanced signaling systems as mentioned in Section II-A.

When TSRs are triggered, the operation of trains may be

highly affected by the signaling system. Therefore, it is impor-

tant to consider the interaction between neighboring trains to

save energy by avoiding unnecessary acceleration and decel-

eration. In the lower layer of our hierarchical framework, the

optimal control problem of each train considers the behavior,

i.e., the speed profile, of its preceding train. Let train f ′

be the predecessor of train f . Here, we adopt the approach

proposed by [16] to describe the speed limits introduced by

the preceding train f ′, where the speed of train f is dependent

on the number of free block sections nb
f ,i,n between train f and

train f ′ when train f is at position si,n, i.e.,


























√

2E f ,i,n ≤ 300 km/h, if nb
f ,i,n = 5,

√

2E f ,i,n ≤ 250 km/h, if nb
f ,i,n = 4,

√

2E f ,i,n ≤ 200 km/h, if nb
f ,i,n = 3,

√

2E f ,i,n ≤ 160 km/h, if nb
f ,i,n = 2,

√

2E f ,i,n ≤ 120 km/h, if nb
f ,i,n = 1.

(37)

The value of nb
f ,i,n is determined by the arrival and departure

times of train f and its preceding train f ′. Particularly, the

arrival and departure times of train f ′ are based on its speed

profile obtained in the previous time step because the train

control problem are solved for each train independently in the

lower level. We introduce pred(k,nb) to denote the index of

the block section that is nb block sections preceding the block

section that involves position si,n. If a f ,i,n ≥ d f ′,i,pred(n,5), i.e.,

there are more than five free block sections between trains

f and f ′, the operation of train f ′ does not affect train f .

However, if d f ′,i,pred(n,4) ≤ a f ,i,n ≤ d f ′,i,pred(n,5), then we have

nb
f ,i,n = 5, which means that the speed of train f at si,n should

be less than 300 km/h. The other speed restriction constraints

caused by the preceding train can be introduced in a similar

way.

In order to ensure the feasibility of the train operation

problem in the lower layer, the running time of train f
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between two dwelling stations, denoted by i and i′, cannot

be formulated as hard constraint, but should be included as

a soft constraint in the objective function. Additionally, the

total energy consumption of the trains is also considered in the

objective function. Thus, the objective function can be given

as follows

min Zlow, f ,i,i′ = ∑
(ĩ,k)∈N f ,i,i′

θ1 max(u f ,ĩ,k,0)∆sĩ,k +θ2

∣

∣r f ,i,i′ − r̄ f ,i,i′
∣

∣,

(38)

where the set of all the nodes between station i and i′ that are

passed by train f is denoted as N f ,i,i′ , r f ,i,i′ , i.e.,a f ,i′ −d f ,i, is

the actual running time of train f between station i and i′, r̄ f ,i,i′

is the recommended running time between those two stations,

θ1 and θ2 are weights introduced to indicate the relative

importance of the two components of the objective function.

The term max(u f ,ĩ,n,0) indicates that regenerative braking is

not considered here. The second term in the objective function

of the lower level is the deviation with respect to the train

schedule specified in the upper level. It is noted that the

running time of train f between stations i and i′ could be

shorter or longer than the predefined running time in the upper

level. So even if there are TSRs appearing in the high speed

railway line, the train optimal control problem is still feasible

in the lower layer.

IV. HIERARCHICAL MPC FORMULATION AND SOLUTION

APPROACH

For the formulated train rescheduling and speed control

problem, the train rescheduling problem is executed at a slow

time scale in the upper layer, while the speed control problem

is implemented in a fast time scale in the lower layer. The

hierarchical framework is illustrated in Figure 6, which shows

that the original integrated train rescheduling and speed control

problem is effectively reduced and decomposed into a two-

layer small-scale optimization problem. The reduced upper

layer problem is only related to the train rescheduling problem,

which can be solved fast when compared to the original

integrated problem. The decision variables of the upper layer

involve the running/dwell times (i.e., r f ,i and w f ,i) and the

arriving/departing order between trains (i.e., ξ f , f ′,i, η f , f ′,i, and

ε f , f ′,i), while the departure and arrival times (i.e., d f ,i and a f ,i)

of train services are the state variables. In the lower layer,

a distributed optimal control structure is formulated for the

train speed control problem, where the speed control problem

of each train can be solved independently with consideration

of the influence of only the preceding train. The decision

variables of the lower layer involves the traction/braking forces

(i.e., u f ,i,n), while the unit kinetic energy (i.e., E f ,i,n) and

arrival time (i.e., a f ,i,n) are the state variables.

A. The MPC problem in the upper layer

The upper layer MPC controller is based on event-triggered

scheme instead of time-triggered scheme and it is on a

continuous time grid, which is different from the classic MPC

scheme based on discrete time models. Hence, we denote the

rolling horizon framework via stage k instead of sampling time

step k for clarity. The prediction and control horizon T of the

"slow" regulator

"fast" regulator

Trains

Upper layer:

Lower layer:

System output
Disturbance

input

Realized
,

,
Realized

(train rescheduling problem)

(speed control problem)

w,

,

Fig. 6: Hierarchical control structure for train rescheduling and

speed control

MPC controller in the upper layer can be chosen as a fixed

time interval, e.g., 30 or 45 minutes, according to the practical

applications. The number of departure and arrival events in the

control horizon T is related to the number and characteristics

of train services specified in the planned timetable. We note

that the upper layer MPC controller is triggered at a slow time

scale when compared with the lower level MPC controller.

Specifically, the events that can trigger the MPC controller of

the upper level involve the delay events (i.e., the arrivals and

departures of trains at stations that are delayed more than a pre-

defined threshold) and the TSR events (i.e., the information

of TSRs is updated). Hence, the triggered time of stage k

is dependent on the arrival/departures events and the TSR

events. Once the arrival/departure events or the TSR events

occur, the sampling time step k is updated at once. At each

sampling time step k, based on the newly available feedback

information from the lower level, a real-time optimization

problem is formulated to determine the train rescheduling

strategy (a f ,i,d f ,i,r f ,i,ξ f , f ′,i,η f , f ′,i) for f ∈ F, f ′ ∈ F, i ∈ I f ,

i ∈ I f ′ , i.e., the train arrival times, dwell times, running times

and the arriving and departing orders over the prediction time

horizon T . Since the train rescheduling strategy is based on

the indices of train services and stations, we denote the index

sets of the relevant train services and stations in predictive

time horizon T by Fk and Ik for time step k. The control

horizon of the MPC problem in the upper level is the same

as the prediction time horizon. Moreover, the control strategy

calculated at time step k will be applied to the trains until next

event occur, i.e., sampling time step k+1.

According to economic criteria for reducing train delays,

the optimization problem at the higher layer for time step k

over the prediction time horizon T is formulated as follows:

min
(ak

f ,i,d
k
f ,i,r

k
f ,i,ξ

k
f , f ′,i,η

k
f , f ′,i)

∑
f∈Fk

∑
i∈Ik

|ak
f ,i − ā f ,i|
I

stop
Fk

+
|dk

f ,i − d̄ f ,i|
I

stop
Fk

s.t. (2)− (17),

(39)

for f ∈ Fk, f ′ ∈ Fk, i ∈ I f , i ∈ I f ′ , where I
stop
Fk

is the number

of scheduled stops for train services in Fk, ak
f ,i and dk

f ,i are

the rescheduled arrival and departure times in the optimization

problem at stage k. The optimization problem at the upper level

can be transformed into a mixed integer linear programming
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(MILP) model. By solving the above optimization problem

(39), the controller at the upper layer computes its desired

control inputs for the running times of each train between

the consecutive stations, which are the reference signals of

the train control problem at the lower layer. In the MPC

framework, the optimization problem for the train rescheduling

is solved online in an event-triggered way with the updated

departure/arrival times (i.e., the measurements that feedback

from the lower layer) and the updated TSRs information. At

the triggered time instant of stage k+ 1, a new optimization

problem is formulated again whenever the delay threshold is

reached or the TSRs information is updated, which in practice

makes the solutions more robust to uncertainty, disturbances,

and even model mismatch.

To prove the recursive feasibility of the train rescheduling

problem in (39), we first separate the constraints into two sets

as follows:

(1) C1(a
k,dk,rk,wk,Yk) : This is the set of constraints

that are related to the running/dwell times, the depar-

ture/arrival times, and the binary indicators for the TSR

influence, i.e., (2)-(8), at stage k. In particular, we have

ak = {ak
f ,i| f ∈Fk, i∈ Ik} and dk = {dk

f ,i| f ∈Fk, i∈ Ik}. The

other sets can be defined in a similar way.’

(2) C2(ξ
k,ηk,εk) : This is the set of constraints that are

related to the binary variables for describing the depar-

ture/arrival orders among trains, i.e., (9)-(17), at sampling

time step k.

We suppose that a feasible solution

S (ak−1,dk−1,rk−1,wk−1,Yk−1,ξ k−1,ηk−1,εk−1) is available

for the train rescheduling problem at time step k− 1. Many

candidate solutions, e.g., S (ak,dk,rk,wk,Yk), are recursively

feasible to the train rescheduling problem with constraint set

C1(a
k,dk,rk,wk,Yk) at time step k, because there are no upper

limits for the running/dwell times and departure/arrival times.

Even though the TSRs would prolong the running times of

trains, the problem with constraint set C1(a
k,dk,rk,wk,Yk) is

always feasible. Moreover, there exists at least one feasible

solution that satisfy C1(a
k,dk,rk,wk,Yk) and C2(ξ

k,ηk,εk),
i.e., the specified departure/arrival orders in the planned

timetable. Hence, the feasibility of the upper layer can be

ensured.

B. The MPC problem in the lower layer

In the lower layer, based on the reference of the running

times calculated in the higher layer, a speed control problem is

implemented in a fast time scale by using the MPC algorithm.

With the reference running times of each train obtained from

the upper layer, the MPC controllers in the lower level are

implemented in a distributed way, where the speed control

problem of each train is calculated independently and the

influence of the neighboring trains is simplified by only

considering the preceding train to reduce the computational

complexity significantly. Hence, the communication between

the preceding train and the following train is required and the

speed profile of the leading train needs to be sent immedi-

ately to the following train when the profile is updated. The

distributed MPC problems in the lower level are also event-

triggered, where the events are defined as the deviations from

the optimized speed profiles are larger than the pre-defined

thresholds.

To develop the MPC algorithm for the train control problem

at a fast time scale, for each train f , we consider the sampling

time step as k f and the prediction horizon as S f . The sampling

time step k f is dependent on the departure/arrival events at

block section level and the events caused by TSRs. It is worth

to note that the prediction horizon of the MPC controller in

the lower layer is based on position instead of time. The

prediction horizon S f should cover the distance between the

current position of train f and the planned stopping platform.

Moreover, the movement authority related information, i.e., the

operational status (e.g., position and speed) of the preceding

train, is considered in the lower layer problem. During the

prediction horizon S f , the set of the block sections that could

be traversed by train f is denoted by Nk f ,S f
. The reference

running time during the prediction horizon is denoted as r f ,k f
,

which is calculated by the higher layer. At sampling time step

k f , based on the newly available feedback information, e.g.,

the movement authority information, a real-time optimization

problem is formulated for each train to determine the train

operation control strategy u f ,i,n as follows:

min
u f ,i,n

∑(ĩ,n)∈Nk f ,S f
θ1 max(u f ,ĩ,n,0)∆sĩ,n +θ2

∣

∣r f ,k f
− r̄ f ,k f

∣

∣(40)

s.t. (20)− (36),

where the first term is to minimize the energy consumption and

the second term is to track the reference running time given

by the upper layer. In the lower layer, a set of distributed MPC

controllers (one controller for each train) are implemented in

the fast time scale. These MPC controllers are implemented

as a special case of the shrinking horizon strategy since the

prediction horizon in the lower layer is the distance to the

next stopping station and it is reduced with the increasing

of the sampling time step. The optimization problem given

in (40) can be transformed into a MILP problem by ap-

proximating the nonlinear terms by piecewise affine functions

and applying the transformation properties given by [29] by

introducing auxiliary binary-valued and real-valued variables.

The resulting MILP problem can then be effectively solved

by existing solvers similar as the optimization problem in the

upper level. We refer to [28] for more details about the MILP

transformation.

The proof of the recursive feasibility of the lower layer is

similar as the one for the upper layer. Hence, we explain the

reasons for the feasibility briefly for the sake of simplicity.

The reference running time specified by the upper layer is

considered as a soft constraint in the objective function instead

of a hard constraint for the lower level problem. Hence,

the updates of the running times in the higher level do not

influence the recursive feasibility. The newly triggered TSRs

may cause the speed train control problem infeasible because

the speed of trains may not be reduced to satisfy the TSRs

in some extreme scenarios; however, the dispatchers and the

centralized train control system need to check the influence

of the TSRs on the operation of trains before setting the TSR
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command to avoid in-feasibilities. So the recursive feasibility

of the lower layer can also be ensured.

C. The whole hierarchical model predictive control algorithm

The whole hierarchical model predictive control algorithm

for the on-line railway delay management and train control

is summarized as given in Algorithm 1. In addition, the flow

chart of the algorithm proposed in this paper is illustrated in

Figure 7.

Algorithm 1 Hierarchical MPC algorithm for on-line railway

delay management and train control

Step 1. In the upper layer, at each sample step k, obtain the measured
feedback information, i.e., departure and arrival times of trains at
stations, and the TSR data.
Step 2. Formulate the train rescheduling problem (39) under con-
strains (2)-(17) for sample step k with given prediction horizon T
(i.e., sets of relevant train services and train stations are denoted as
Fk and Ik) in a slow time scale.
Step 3. Solve train rescheduling problem (39) for sample step k
using existing solvers, e.g., CPLEX, and obtain the updated train
departure/arrival times, stop patterns, and running times.
Step 4. Taking running times obtained from the upper layer as
references, formulate the lower layer train control problems in a fast
time scale and solve them in a distributed way:

Step 4.1 For each train f ∈ Fk at the sample step k f , formulate the
train speed control problem (40) under constraints (20)-(36) over the
predictive horizon S f .

Step 4.2 Solve speed control problem (40) for each train using
existing solvers, e.g., CPLEX, and obtain the optimal speed profile
and apply the corresponding control input to each train during sample
step k f .

Step 4.3 In the next step k f + 1, for each train, based on the
new measured feedback information of itself and its preceding train,
repeat Steps 4.1-4.2 without communications with other trains, until
the solution process of the upper layer is triggered, i.e., a train departs
from or arrives at a station.
Step 5. Based on the measured feedback information for the train
departure times, arrival times, and the TSR data in the next step
k+1, repeat Steps 1-4 until the end of the decision horizon.

According to the above hierarchical MPC algorithm, the

original complex high speed railway delay management and

speed control problem is assigned to different layers, in

which different optimal control problems with specific tasks

are solved. The hierarchical algorithm effectively reduces the

computation burden for the original optimization problem.

Specifically, in the higher layer train rescheduling model (that

is simpler and more abstract) is presented to predict the

long-term behavior of the railway system and to minimize

the specified objective function over a long time horizon.

In the lower layer, train speed control model (that is more

accurate) is adopted to optimize the current control strategies

by concentrating on a shorter time horizon. We note that the

MPC controller in the upper and lower layers are both event-

triggered. Several events would occur during the prediction

horizon in general. However, if no events occur during the

prediction horizon, the solution process in the upper layer will

be triggered at the end of the prediction horizon. For the lower

layer, if the prediction horizon is reached, which basically

means that a train arrives at the planned station. This would

trigger the MPC controllers in the upper and lower layers.

Need rescheduling?

MPC lower level:

Calculating train speed 

profile based on the

 rescheduled timetable

MPC higher level:

Rescheduling the 

timetable based on the

 feedback information

Train arrival or 
train depart or TSR 

ending event occurs?

Actual train operation

Hierarchical MPC

scheme

Yes

No

Yes

No

TSR ending

event occurs?

Updating
 minimum

 running time

Yes

Start

Timetable and

speed profile

Real-time

feedback

Load timetable
and TSR data

No

Fig. 7: The flow chart of the hierarchical MPC algorithm

It should be noted that, in the proposed hierarchical model

predictive control framework, the train dynamic model is a

hybrid discrete event system, and the formulated problems

in the upper layer and in the lower layer are both mixed

integer linear programming problems, which are non-convex.

It becomes more cumbersome to give the rigorous proof of sta-

bility for the nonlinear system with the non-convex constraints,

which needs to be investigated in our future work. Specifically,

the speed control problem for each train is calculated in

a distributed manner that only needs the information of its

preceding train, not other trains, which greatly improves the

computational efficiency compared to the centralized control

of all the trains. The modularity of distributed manner benefits

that if a new train is added to the system, the algorithm at

the group involving the new train is only modified. Moreover,

with the hierarchical MPC algorithm, both the upper layer

problem and the lower layer problem are formulated as small-

scale mixed integer linear programming problems, which can

be efficiently solved by the existing solvers, such as CPLEX

and GUROBI.

V. CASE STUDY

To illustrate the effectiveness and feasibility of the proposed

hierarchical model predictive control scheme, numerical ex-

periments are performed based on the actual data of Beijing-

Shanghai high-speed railway. All of these experiments are

conducted by using MATLAB 2016b and CPLEX 12.8 on
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TABLE III: The position of stations in the Beijing-Shanghai

high-speed railway

Station index Station name Position (km)

S1 Beijing South 0

S2 Langfang 59

S3 Tianjin South 131

S4 Cangzhou West 219

S5 Dezhou East 327

S6 Jinan West 419

S7 Tai’an 462

S8 Qufu East 533

S9 Tengzhou East 589

S10 Zaozhuang 625

S11 Xuzhou East 688

S12 Suzhou East 767

S13 Bengbu South 844

S14 Dingyuan 897

S15 Chuzhou 959

S16 Nanjing 1018

S17 Zhenjiang South 1087

S18 Danyang North 1112

S19 Changzhou North 1144

S20 Wuxi East 1201

S21 Suzhou North 1227

S22 Kunshan South 1259

S23 Shanghai Hongqiao 1302

a personal computer (Windows 10 operating system, Intel(R)

Core i7-7700HQ CPU @2.80GHz, 8.0 GB RAM).

A. The set-up of the case study

The Beijing-Shanghai high-speed railway is one of the

busiest high-speed railway lines in China; its the total length

is 1318 kilometers. There are 23 stations on this high-speed

railway line and the exact locations of these stations are listed

in Table III. For our case study, the planned (or original)

timetable is based on the actual timetable of the Beijing-

Shanghai high-speed railway on a day of 2019. The time

period considered in this paper is from 10:00 am to 12:00 am

and the number of involved train services is 33 for this time

period. For the train services that have started running before

10:00 am, we assume that they are operated according to the

planned timetable before 10:00, i.e., no delays at the beginning

of the considered time period. However, the disturbances is

considered for the operation of trains during the time period.

It is noted that the planned timetable of the Beijing-Shanghai

high-speed railway is a non-cyclic timetable. The temporary

speed restrictions (TSRs) that are considered in this case study

are given in Table IV, where four TSRs are considered at four

different locations of the line. The activation periods of these

four TSRs are between 10:00 am and 11:30 am, while different

TSRs appear at different time periods.

The maximum running speed of the considered trains is

300 km/h. The minimum arrival and departure headway of

two consecutive trains are chosen as 3 minutes at stations.

Moreover, the minimum running times of trains between

stations is set as 90% of the planned running times as specified

in the planned timetable. The values of θ1 and θ2 in objective

function (40) are taken as 1 · 10−9 and 30, respectively. The

disturbances of running times and dwell times, i.e., σ r
f ,i and

σw
f ,i, in the higher level obey uniform distribution in our case

study. More specifically, the disturbances of running times

range from 30 s to 60 s and the disturbances of dwelling times

TABLE IV: The TSR information

Index Time period Location
Speed restriction

(km/h)

1 [10:00, 10:30] [S8, S9] 160

2 [10:30, 11:00] [S4+1km, S4+81km] 200

3 [10:30, 11:20] [S2, S2+41km] 150

4 [11:00, 11:30] [S21+8km, S21+23km] 160

at a stations range from 0 s to 30 s. In addition, disturbances

that also obey uniform distributions are introduced for the

lower level to indicate the tracking errors of the optimized

speed profiles, which range from 0 s to 90 s.

B. Comparison of the proposed HMPC strategy with other

policies

To evaluate the effectiveness of the hierarchical control

scheme, we compare it with two widely accepted train regula-

tion policies, i.e., the FSFS (first-scheduled-first-served) policy

and the FCFS (first-come-first-served) policy. The detailed

settings for those three strategies are given as follows:

• Hierarchical model predictive control (HMPC) strategy:

The control horizon and prediction horizon in the upper

layer of the HMPC framework are both set as 30 minutes.

The control horizon and prediction horizon in the lower

layer are usually taken as the left running times to the next

stop, which are much shorter when compared to those of

the upper layer. The calculations in the framework are

event-triggered. Particularly, the events that trigger the

computations in the upper layer are train delay events,

TRS events, etc. Specifically, when a train has a delay

of more than 1.5 minutes at stations, the train schedule

in the upper layer and speed profiles in the lower layer

need to be updated. Moreover, when the error between the

operation speed of trains and the planned speed profile is

bigger than a predefined threshold, i.e., 2 km/h, the speed

profile of a particular train needs to be optimized again.

The state-of-the-art model predictive control solutions are

calculated for the upper hierarchical layer and the lower

hierarchical layer, respectively.

• FSFS strategy: The order of trains that depart from

stations in practice will follow the order specified in

the planned timetable. If possible, the dwell times and

running times of trains should stay the same as the ones

in the planned timetable; however, they will be affected by

the running and dwell time disturbances. Moreover, if the

operation of trains is affected by the TSRs, the minimum

running time between stations should change accordingly.

For this study, the minimum running times under the

TSRs are calculated via the detailed train characteristics

model. Furthermore, when the train schedule is updated

according to the FSFS policy, the speed curves of the

trains and the corresponding energy consumption are

recalculated.

• FCFS strategy: The order of trains follows the actual

arrival order at stations. The running times and dwell
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TABLE V: The performance comparison of the proposed

HMPC strategy, FSFS policy, and FCFS policy

Performance index HMPC FSFS FCFS

Delay (min) 278.66 929.16 1005.16

Average energy consumption

(kW·h/km)
14.31 12.12 12.14

times of trains in the FCFS strategy are obtained similarly

as what we have for the FSFS strategy.

In the lower level, extra speed limitation constraints may be

added to the train control model according to the number of

free block sections between the current train and the preceding

train via (37).

In this experiment, the higher level of the HMPC framework

is triggered 13 times during the considered time period and

the computation time of these calculations ranges from 20 s to

26 s for the optimization problem in the higher level. The MPC

controllers in the lower level are triggered 415 times during the

considered time period and the average computation time is

around 16 s. We note that the triggered frequency of different

trains are different, which depends on the operation status of

trains and the TSRs. For example, the controllers of train 16

and 17 are triggered 12 and 22 times, respectively. Specifically,

the numbers of the constraints, the real-valued variables, and

the integer-valued variables are about 10000, 5000, and 45000,

respectively, in the upper layer problem. In the lower layer

problems, the number of the constraints ranges from 10000 to

15000; the number of the real-valued variables ranges from

2000 to 3000; and the numbers of the integer-valued variables

ranges from 18000 to 27000. Based on the computation times,

the higher layer of the HMPC framework can satisfy the real-

time requirement in general, while more efficient algorithms

need to be investigated for the lower layer . In addition, the

computation times of the FSFS and FCFS are much smaller

than that of the higher level of the HMPC framework, and

they are equal to 0.42 s and 0.39 s, respectively.

The performance comparison of these three strategies is

given in Table V, where the departure/arrival time deviations

(mostly delays) and the average energy consumption per

kilometer are reported. As can be observed from Table V,

the proposed HMPC strategy reduces the delay by 70.01%

and 72.28% when compared with the FSFS and FCFS poli-

cies. However, the delay reduction of the HMPC strategy

is achieved at the cost of a higher energy consumption.

Particularly, the average energy consumption per kilometer of

the HMPC strategy increases by 18.07% and 17.87% when

compared with the FSFS and FCFS policies. In addition, the

rescheduled timetable obtained by the HMPC is illustrated

in Figure 8. The detailed comparison among the rescheduled

solutions computed by the HMPC, FSFS, and FCFS strategies

are given in Figures 9 and 10. In Figure 8, the running times of

trains prolonged if their operations are affected by the TSRs.

Moreover, it can be observed from Figure 8 that the operations

of some trains that are not affected by TSRs may slightly

deviate from the planned timetable, e.g., trains 5 and 30. This

is because the upper layer of the HMPC approach involves

the estimations of the running and dwell time disturbances,

which affect the actual arrival and departure times of trains at

stations.

In Figure 9, the arrival times of trains 8, 13, 16, and 19

obtained by the HMPC strategy are earlier than those obtained

by FSFS and FCFS strategies, which means less delays. In

addition, we note that trains 16 and 19 runs faster before the

TSRs, i.e., between stations S1 and S2, to reduce delays for

the HMPC approach. Moreover, the speed profiles of train

16 obtain by these three strategies are given in Figure 11,

where the speed profiles of the HMPC strategy is much higher

than the FSFS and FCFS strategies. Train 16 plans to depart

from station S2 at 10:58 and arrive at station S3 at 11:16,

so it is influenced by TSR 3 of Table IV. The running times

between stations, the delays, and the energy consumption of

the three strategies are reported in Table VI for train 16. Due

to the TSR between station S2 and station S3 (as can be seen

from Figure 11), the running time of train 16 between S1 and

S3 is longer than the planned running time, i.e., 36 minutes,

in the original timetable. As can be seen from Table VI, the

running times obtained by the HMPC strategy are shorter than

those of the FSFS and FCFS strategies. However, the energy

consumption of the HMPC strategy is much higher than that

of the FSFS and FCFS strategies. The faster running of trains

results higher energy consumption. In Figure 10, the departure

order of train 12 and 22 obtained by different strategies are

different. Specifically, train 12 departs from station S5 earlier

than train 22 in the HMPC and FSFS strategies, while the

departure order is different in the FCFS strategy.
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Fig. 8: The train rescheduled solutions obtained by the HMPC

strategy

It is worth to note that the delay recovery is much more

important than the energy consumption in general during

disruptions. So the higher energy consumption of the HMPC

approach is acceptable in practical applications. Moreover, the

trade-off between the total delay and the energy consumption

is investigated by adjusting the weights in the lower layer

problem, as shown in Figure 12. We note that with the

increase of the relative importance of the energy consumption,

the energy consumption of the HMPC approach decreases.
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Fig. 9: Train rescheduling solutions of trains 8, 13, 16, and 19

obtained by the HMPC, FSFS, and FCFS strategies
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Fig. 10: Train rescheduling solutions of trains 8, 13, 16, and

19 obtained by the HMPC, FSFS, and FCFS strategies
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Fig. 11: Speed profiles of train 16 obtained by the HMPC,

FSFS, and FCFS strategies

TABLE VI: Running times and energy consumption of train

16 obtained by the HMPC, FSFS, and FCFS strategies

Strategy HMPC FSFS FCFS

Station

sections
S1-S3 S3-S4 S1-S3 S3-S4 S1-S3 S3-S4

Running

time

(min)
43.15 21.20 46.29 22.34 46.29 22.34

Delay

(min)
7.15 6.35 10.30 12.51 10.30 12.51

Energy

consumption

(kW·h)
1174.55 1561.67 843.99 1251.68 844.40 1251.66

Specifically, when the delays obtained by the HMPC approach

is larger than 600 minutes, the resulting energy consumption

is smaller than the FCFS and FSFS approaches. It can be

concluded that the HMPC approach could reduce the delay

and energy consumption at the same time.
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Fig. 12: The trade-off between the delay management and the

energy consumption

C. Robustness performance of the proposed HMPC approach

TABLE VII: Robustness comparison of the tested 100 scenar-

ios for the proposed HMPC approach (SD and CV stand for

the standard deviation and the coefficient of variation)

Indicators Mean SD CV

Total disturbance (min) 114.06 8.09 7.10%

Total delay (min) 286.58 6.59 2.30%

Average energy consumption (kW·h/km) 14.30 0.068 0.47%

In the actual operation of high-speed railways, disturbances

occur due to various reasons, which makes the disturbances

uncertain and unpredictable. So there is a high robustness

requirement for a rescheduling method. The results of a

good train rescheduling approach should not change largely

when the disturbances vary. To analyze the robustness of the

proposed HMPC approach, a series of numerical experiments

is performed. We generate different disturbances in the higher
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level randomly according to the uniform distributions for dif-

ferent scenarios, where the disturbance at each station ranges

from 0.5 minute to 1 minute. The considered time period,

original timetable, and the TSRs information are the same

as those of the previous experiment. The robustness analysis

results of the 100 disturbed scenarios are illustrated in Table

VII, where the average values of the total disturbance, the total

delay, the energy consumption per kilometer, the mean value,

the standard deviation, and the coefficient of variation are

listed. Specifically, the coefficient of variation is defined as the

percentage between the standard deviation and the mean value.

The total disturbance ranges from 81.68 minutes to 122.73

minutes, while the total delay ranges from 273.47 minutes

to 301.15 minutes and the average energy consumption per

kilometer ranges from 14.11 kW·h to 14.49 kW ·h. We note

that the coefficient of variation of the total disturbance, i.e.,

7.10%, is much larger when compared with those of the

total delay and average energy consumption. Hence, the the

proposed HMPC approach has good robustness to disturbance

in general.
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Fig. 14: Delays of several stations in 30 scenarios

More specifically, the total delay of several trains and

the total delay at several stations are shown in Figure 13

and Figure 14 for 30 disturbed scenarios , where the z-axis

represents the total delay. It can be observed that there is no

obvious change for different scenarios. In Figure 13, trains 1

and 5 have much less delay when compared with the other

trains, because they are not influenced by TSRs. For train 13,

the average total delay for the tested 100 scenarios is 31.28

minutes and the standard deviation is 0.83 minutes, which

means that the fluctuation is relatively small. In Figure 14,

stations 2, 9, and 22 have much smaller delays when compared

with other stations. The reasons are given as follows: (1) there

is no TSR between stations 1 and 2; (2) a few trains are

influenced by the TSR between stations 8 and 9 and the TSR

between stations 21 to 22. For station 3, the average delay of

the tested 100 scenarios is 43.49 minutes and the standard

deviation is 1.13 minutes. Therefore, it can be concluded

that the proposed HMPC approach is relatively robust to the

fluctuations of disturbances.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have tackled the on-line high-speed railway

delay management and train control problem under a dynamic

operation environment. A practical and effective hierarchical

model predictive control (MPC) framework has been proposed,

where train schedules and speed profiles are updated based

on the real-time updated information. Moreover, different

updating frequencies are adopted for the train rescheduling in

the upper control level and the speed profile optimization in the

lower control level. The optimization problems in the upper

layer and lower layer are both formulated as mixed integer

linear programming problems, which can be solved efficiently

with existing solvers. The effectiveness and robustness of

the proposed two-level hierarchical control framework has

been analyzed through several numerical experiments based

on the data from the Beijing-Shanghai high-speed railway.

When compared with the widely used strategies, the presented

hierarchical MPC framework can yield smaller train delays at

the cost of an acceptable increase in the energy consumption.

Moreover, the hierarchical MPC framework has good robust-

ness performance for different disturbances.

To investigate the trade-off between delay management and

energy consumption better, an interesting research direction

is to integrate a simple dynamical train model in the current

model of the upper layer. Hence, the energy consumption is

also included in the performance index of the upper layer,

which would improve the performance and consistency of

the proposed hierarchical MPC framework. We note that the

computation efficiency of the lower level controllers is not

sufficient for the real-time application. In our future work,

more efficient algorithms should be designed to update the

train speed profiles. In addition, the robustness of the proposed

hierarchical MPC approach is important for practical applica-

tions. We would like to investigate on a robust MPC scheme

and evaluate its performance in our future work. Another

promising future work direction is to extend the hierarchical

optimization problem for on-line delay management and train

control in a large-scale high-speed railway network, where a

distributed optimization framework could be introduced for

the train rescheduling and control problem to reduce the

computational complexity.
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TABLE VIII: Numbers of variables and constraints in the train

rescheduling problem

Variables or Total number
constraints at most

Variable a f ,i ∑ f∈F |I f |
Variable d f ,i ∑ f∈F |I f |
Variable r f ,i ∑ f∈F(|I f |−1)
Variable w f ,i ∑ f∈F |I f |
Binary variable Y f ,i,ℓ ∑ℓ∈L ∑i,i+1∈Iℓ |Fi,i+1|
Binary variable ξ f , f ′,i ∑i∈I |Fi|(|Fi|−1)
Binary variable η f , f ′,i ∑i∈I |Fi|(|Fi|−1)
Binary variable ε f , f ′,i ∑i∈I |Fi|(|Fi|−1)
Auxiliary variables 2∑ℓ∈L ∑i,i+1∈Iℓ |Fi,i+1|
Departure/arrival 2∑ f∈F(|I f |−1)
constraints +3∑ f∈F |I f |

+8∑ℓ∈L ∑i,i+1∈Iℓ |Fi,i+1|
Headway and ordering 7∑i∈I |Fi|(|Fi|−1)
constraints +∑i,i+1∈I |Fi,i+1|(|Fi,i+1|−1)
Station capacity 2∑i∈I |Fi|(|Fi|−1)
constraints +∑ f∈F |I f |

APPENDIX

A. NUMBER OF VARIABLES AND CONSTRAINTS IN THE

HIERARCHICAL MPC APPROACH

The numbers of variables and constraints of the train

rescheduling problem in the upper layer are given in Table

VIII, where |F|, |I|, |I f |, |Fi| and |Fi,i+1|are the numbers of

elements in F,I,I f ,Fi and Fi,i+1, respectively. Similar analysis

can be done for the lower optimization problem.
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