
Delft University of Technology
Delft Center for Systems and Control

Technical report 23-001

Adaptive prescribed performance
asymptotic tracking for high-order

odd-rational-power nonlinear systems∗

M. Lv, B. De Schutter, J. Cao, and S. Baldi

If you want to cite this report, please use the following reference instead:
M. Lv, B. De Schutter, J. Cao, and S. Baldi, “Adaptive prescribed performance
asymptotic tracking for high-order odd-rational-power nonlinear systems,” IEEE
Transactions on Automatic Control, vol. 68, no. 2, pp. 1047–1053, Feb. 2023.
doi:10.1109/TAC.2022.3147271

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/23_001.html

https://doi.org/10.1109/TAC.2022.3147271
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/23_001.html


1

Adaptive Prescribed Performance Asymptotic Tracking for
High-Order Odd-Rational-Power Nonlinear Systems

Maolong Lv, Bart De Schutter, Fellow, IEEE, Jinde Cao, Fellow, IEEE, Simone Baldi, Senior
Member, IEEE

Abstract— Practical tracking results have been reported in the
literature for high-order odd-rational-power nonlinear dynamics (a
chain of integrators whose power is the ratio of odd integers).
Asymptotic tracking remains an open problem for such dynamics.
This note gives a positive answer to this problem in the framework
of prescribed performance control (PPC), without approximation
structures (neural networks, fuzzy logic, etc.) being involved in the
control design. The unknown system uncertainties are first trans-
formed to unknown but bounded terms using barrier Lyapunov
functions, and then these terms are compensated by appropriate
adaptation laws. A method is also proposed to extract the control
terms in a linear-like fashion during the control design which over-
comes the difficulty that virtual or actual control signals appear in
a non-affine manner. A practical poppet valve system is used to
validate the effectiveness of the theoretical findings.

Index Terms— High-order odd-rational-power non-
linear systems, Asymptotic tracking, Prescribed per-

formance control.

I. INTRODUCTION

Over the last decade, high-order nonlinear dynamics have

been attracting great attention. The reason is twofold: first,

high-order nonlinear dynamics generalize strict-feedback and

pure-feedback dynamics by including more general integrators

(with odd integer powers [1]-[3] or ratios of odd integer

powers [4]-[11]) in the dynamics; second, high-order nonlin-

ear dynamics appear in some practical systems such as in

dynamical boiler-turbine units [12], in classes of hydraulic

dynamics [13], or in classes of under-actuated, weakly coupled

mechanical systems [1]-[2]. It is well documented in the liter-

ature that high-order nonlinear systems are intrinsically more

challenging than strict-feedback and pure-feedback systems,

as feedback linearization and backstepping methods fail to

work [1]-[2]. A parametric nonlinear adaptive control method-

ology called adding-one-power-integrator technique, originally

proposed in [2], has been successfully applied in stabilizing
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high-order nonlinear systems [3]-[11]. In the following, let us

distinguish and refer to such high-order nonlinear dynamics

as high-order odd-integer-power and high-order odd-rational-

power nonlinear systems (with high-order odd-integer power

being a special case of high-order odd-rational-power).

For high-order odd-rational-power nonlinear systems, both

stabilization to zero [5]-[12] and output tracking [3]-[4] have

been studied. It is worth remarking that, while stabilization

(regulation to zero) can be obtained at the price of impos-

ing growth conditions on the system nonlinearities [5]-[12],

no asymptotic tracking results have been reported for these

dynamics. All reported results achieve practical tracking in a

residual set, either by imposing the aforementioned growth

conditions [3]-[4] (see also recent works considering ratio-

nal or irrationals powers [14]-[15]), or by removing growth

conditions via the use of universal approximators (e.g. neural

networks) [16]. Therefore, two open problems appear for

high-order odd-rational-power nonlinear systems: asymptotic

tracking is the first one, and avoiding the use of universal

approximators is the second one.

The main contribution of this note is to give positive

answers to these problems. To this purpose, the unknown

system uncertainties are first transformed to some unknown but

bounded terms via barrier Lyapunov functions and then these

terms are compensated by designing appropriate adaptation

laws. To overcome the difficulty that virtual and actual control

signals of odd-rational-power dynamics appear in a non-affine

manner and cannot be designed directly, the proposed design

is achieved in combination with a newly proposed lemma that

allows to deal with the control terms in a “linear-like” fashion.

Because the proposed solution is given in the prescribed

performance control (PPC) framework, as a further evidence

of effectiveness, we show that the proposed result is in line

with the-state-of-the-art on PPC, since it can also handle the

recently studied problem of input quantization [17].

This paper is organized as follows: the problem formulation

and some useful lemmas are given in Section 2. Sections 3

and 4 present the proposed prescribed performance quantized

control scheme and asymptotic tracking analysis, respectively.

Simulation results are provided in Section 5 and Section 6

draws the conclusions.

Notations: The notations adopted throughout this paper are

standard: R≥0 denotes the set of non-negative real numbers,

R
i represents the Euclidean space with dimension i, and

Rodd ,
{
p
q

∣∣p and q are positive odd integers
}

. The symbol

“ , ” means “equal by definition”. Similarly to [10], we define

the notation ⌈σ⌉τ , |σ|τ sign(σ), ∀σ ∈ R. For compact-
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ness and whenever unambiguous, some variable dependencies

might be dropped, e.g. ε, µi, and ϑi can be used to denote

ε(x1, x2), ϑi(x1, x2), and µi(x1, x2), respectively.

II. PRELIMINARIES

Let us consider the following uncertain odd-rational-power

nonlinear system with input quantization:




ẋi = φi(x̄i, t) + ψi(x̄i, t)x
pi
qi

i+1, i = 1, · · · , n− 1,

ẋn = φn(x̄n, t) + ψn(x̄n, t)
(
Q(u)

) pn
qn ,

y = x1,

(1)

where y ∈ R is the system output; u ∈ R and Q(u) ∈ R are

the control input (to be designed) and the quantized control

input; x̄i = [x1, . . . , xi]
T ∈ R

i is an intermediate state,

with the full state being x̄n. We assume that pi
qi

∈ Rodd,

i = 1, . . . , n, are known odd-rational-powers. The system

nonlinearities φi(·, ·) : R
i ×R≥0 → R are locally Lipschitz

in x̄i. The control-gain functions ψi(·, ·) : R
i×R≥0 → R are

locally Lipschitz in x̄i and are either strictly positive or strictly

negative, and their signs are assumed to be known. Without

loss of generality, in the following we assume sign(ψi) = 1,

i = 1, . . . , n. In line with [18]-[20], we assume that there exist

continuous and non-negative functions φ̄i(·) : R
i → R≥0, i =

1, . . . , n, such that |φ(x̄i, t)| ≤ φ̄i(x̄i), ∀ (x̄i, t) ∈ R
i×R≥0.

Assumption 1 [19]: The desired trajectory yr(·) is known

and bounded, and ẏr(·) is bounded but its bound is not

necessarily known.

Remark 1: Assumption 1 implies that only the desired

trajectory (none of its derivatives) can be used for control

design.

Remark 2: System (1) generalizes the classes of systems

considered in literature for PPC: more specifically, (1) reduces

to the strict-feedback classes of [17]-[20] when ri = 1,

i = 1, . . . , n, while it reduces to the high-order integer-power

classes of [1]-[3] when qi = 1 and pi 6= 1, i = 1, . . . , n.

Let us consider the asymmetric hysteresis quantizer (2)

originally proposed in [21] (see Remark 3 for the details of

this choice). As typical in literature (cf. [22]), we denote such

quantizer simply as Q(u), even though the quantizer formally

depends on both u and its derivative. In (2), νk+ = ~
1−k
+ ν+min

and νk− = ~
1−k
− ν−min, k = 1, 2, . . ., with ~+ = 1−̺+

1+̺+
and

~− = 1−̺
−

1+̺
−

; Q(u(t−)) is the latest status prior to Q(u(t)), and

ν+min and ν−min denote the size of the dead-zone for Q(u). The

constants ̺+, ̺− ∈ (0, 1) determine the quantization density,

i.e., the larger ̺+ and ̺−, the coarser the quantizer.

Remark 3: The interest in considering an asymmetric hys-

teresis quantizer is that it generalizes the uniform quantizer

[21], logarithmic quantizer [21], and symmetric hysteresis

quantizer [22], while its hysteresis property is of paramount

importance in guaranteeing the absence of chattering and Zeno

behavior. These issues have been thoroughly discussed in [17,

Remark 8 and Lemma A.1] and are not further discussed here

due to space limitations.

In line with [21], let us decompose (2) as

Q(u) = ς(u)u+ d(u), (3)

where ς(u) = Q(u)
u

and d(u) = 0 when Q(u) 6= 0, and ς(u) =
1 and d(u) = −u when Q(u) = 0.

Before presenting the proposed prescribed performance

quantized control design, the following lemmas are useful for

deriving the main results.

Lemma 1 [21]: The control coefficient ς(u) and input

quantization error d(u) in (3) are such that

ςmin ≤ ς(u) ≤ ς̄max, and |d(u)| ≤ d̄, (4)

where ςmin = 1 − max{̺+, ̺−}, ς̄max = 1 + max{̺+, ̺−}
and d̄ = max{ν+min, |ν

−
min|}.

Lemma 2 [10]: Suppose p
q
∈ Rodd, then for any x1 ∈ R

and x2 ∈ R, it holds that

∣∣∣x
p

q

1 − x
p

q

2

∣∣∣ ≤ 21−
1
q

∣∣∣⌈x1⌉p − ⌈x2⌉
p
∣∣∣
1
q

. (5)

Lemma 3 [23]-[27]: The following inequality holds for any

η > 0 and for any ~ ∈ R:

0 ≤ |~| −
~
2

√
~2 + η2

< η. (6)

Lemma 4 [1]: For any x1, x2 ∈ R, any positive integers

b1, b2 and any real-valued function δ(·, ·) with ε(x1, x2) > 0,

it holds that

|x1|
b1 |x2|

b2 ≤
b1ε|x1|

b1+b2

b1 + b2
+
b2ε

−
b1
b2 |x2|

b1+b2

b1 + b2
. (7)

Lemma 5: For any x1, x2 ∈ R and positive odd integers p
and q, there exist real-valued functions µ(·, ·) and ϑ(·, ·), such

that

(x1 + x2)
p

q =
(
ϑ(x1, x2)x

p
1 + µ(x1, x2)x

p
2

) 1
q

, (8)

Q (u) =





νk+ , if





νk
+

1+̺+
< u < νk+, u̇ < 0, or,

νk+ < u <
νk
+

1−̺+
, u̇ > 0,

νk+ (1 + ̺+) , if





νk+ < u ≤
νk
+

1−̺+
, u̇ < 0, or,

νk
+

1−̺+
< u ≤

(1+̺+)νk
+

1−̺+
, u̇ > 0,

0, if





0 ≤ u <
ν
+

min

1+νk
+

, u̇ > 0, or,

ν
+

min

1+̺+
≤ u ≤ ν+min, u̇ > 0,

and





νk−, if





νk− ≤ u <
νk
−

1+̺
−

, u̇ > 0, or,
νk
−

1−̺
−

≤ u < νk−, u̇ < 0,

νk− (1 + ̺−) , if





νk
−

1−̺
−

≤ u < νk−, u̇ > 0, or,
(1+̺

−
)νk

−

1−̺
−

≤ u <
νk
−

1−̺
−

, u̇ < 0,

0, if





ν
−

min

1+̺
−

< u ≤ 0, or,

ν−min ≤ u ≤
ν
−

min

1+̺
−

, u̇ < 0,

Q (u (t−)) , u̇ = 0
(2)
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where ϑ(x1, x2) ⊆
[
1 − ǭ,max{1 + ǭ, 2p−1}

]
with ǭ =∑p−1

k=1
k
p
ε

p

k a constant that can be made to take value in

(0, 1) by selecting some appropriately small positive constant

ε, and where µ(x1, x2) satisfies |µ(x1, x2)| ≤ ῡ with ῡ =

max{1 + ω, 2p−1} and ω =
∑p−1
k=1

p−k
p

(
p
k

)
ε

−p

p−k positive

constants that are independent of x1 and x2.

Proof. See appendix. �

III. ADAPTIVE PRESCRIBED PERFORMANCE

CONTROL DESIGN

Let us begin the control design by defining the state errors

[17]:

e1(t) = x1(t)− yr(t), (9)

ei(t) = xi(t)− αi−1(t), i = 2, . . . , n, (10)

where αi−1 denotes a virtual control law whose design will

be explained later. Define the normalized error variables

ζi(t) =
ei(t)

κi(t)
, (11)

where κi(t) = (κi,0 − κi,∞)exp(−ιit) + κi,∞, i = 1, . . . , n,

is the so-called prescribed performance function [28], where

κi,0 > 0, κi,∞ > 0, and ιi > 0 are design constants, and

|ei(0)| < κi,0.

The goal is to design a control u for (1) such that the system

output y asymptotically tracks the reference signal yr, while

having ei satisfying the prescribed performance. Since existing

literature [21] and [23] has shown that asymptotic tracking

can be realized for some classes of dynamics in the presence

of input quantization, we set an asymptotic tracking goal for

dynamics (1) in our paper.

Hereafter is the proposed design for the virtual control

laws and for the actual control law. The motivation behind

this design is explained via the stability analysis in Sect. IV.

Specifically, we devise the virtual and actual control laws as

follows:

αi = −ϑ̄
− 1

pi

i

(
ki̟i +

ci̟iΞ̂i√
̟2
i + σ2(t)

) qi
pi

, i = 1, . . . , n− 1,

(12)

, α⋆i (ζi, Ξ̂i, t), (13)

u = −ς̄−1
maxϑ̄

− 1
pn

n

(
kn̟n +

cn̟nΞ̂n√
̟2
n + σ2(t)

) qn
pn

(14)

, α⋆n(ζn, Ξ̂n, t), (15)

where ̟i =
ζi+ζ

3
i

(1−ζ2
i
)3

, ϑ̄i = max
{
1+ ǭi, 2

pi−1
}

with ǭi being

an arbitrary constant taking value in (0, 1), ki > 0, and ci > 0
are design constants. The terms Ξ̂i in (12) and (14) are updated

by adaptation laws given by

˙̂
Ξi =

γi̟
2
i√

̟2
i + σ2(t)

, βn+i(ζi, t) ≥ 0, i = 1, . . . , n. (16)

with initial conditions Ξ̂0
i = Ξ̂i(0) ≥ 0, where γi > 0 is

a design constant, and σ(·) is a positive integrable function

satisfying
∫ t
0
σ(τ)dτ ≤ σ̄ < ∞ and |σ̇(t)| ≤ σ∗ for ∀t ≥ 0

with constants σ̄ > 0 and σ∗ > 0.

Remark 4: Common forms adopted in the literature for the

positive integrable function σ(·) include ̟ exp(−λt) as in

[23]-[26], and 1
̟+t2ιt as in [20], [27], with design constants

̟ > 0, λ > 0, and ι > 0. The numerical simulations in these

works typically select small values for λ and ι, yielding a slow

decay rate of σ(·). This helps avoiding numerical integration

problems that might arise when σ(·) becomes smaller and

smaller.

IV. ASYMPTOTIC TRACKING ANALYSIS

We summarize the main results of this paper in the following

Theorem 1.

Theorem 1: Let Assumption 1 hold. Consider the closed-

loop odd-rational-power nonlinear system (1) with hysteresis

quantizer (2), control laws (12)-(15), and adaptation law (16).

Then, it holds that:

• The state errors ei(t), i = 1, . . . , n, are such that |ei(t)| <
κi(t) for all t ≥ 0;

• The output tracking error e1(t) = y(t) − yr(t) satisfies

e1(t) → 0 as t→ +∞;

• All closed-loop signals remain bounded.

PROOF: (Time dependence will be kept only for the func-

tions κi and yr, and will be otherwise omitted whenever un-

ambiguous). It follows from (9)-(11) that the states x1, . . . , xn
can be rewritten as

x1 = ζ1κ1(t) + yr(t) , χ1(ζ1, t), (17)

xi = ζiκi(t) + αi−1 , χi(ζi−1, ζi, t), i = 2, . . . , n. (18)

Differentiating the normalized errors ζi in (11) with respect

to time and using (12)-(16) and the dynamics in (1) gives

ζ̇1 =
1

κ1(t)

[
φ1
(
χ1, t

)
+ ψ1(χ1, t)χ

p1
q1

2 − ẏr(t)− κ̇1(t)ζ1

]

,β1
(
ζ1, ζ2, Ξ̂1, t

)
, (19)

ζ̇i =
1

κi(t)

[
φi
(
χ̄i, t

)
+ ψi(χ̄i, t)χ

pi
qi

i+1 −
∂α⋆i−1

∂t
−
∂α⋆i−1

∂ζi−1
βi−1

−
∂α⋆i−1

∂Ξ̂i

˙̂
Ξi − κ̇i(t)ζi

]

,βi
(
ζ1, . . . , ζi+1, Ξ̂1, . . . , Ξ̂i, t

)
, i = 2, . . . , n− 1, (20)

ζ̇n =
1

κn(t)

[
φn
(
χ̄n, t

)
+ ψn(χ̄n, t)

(
Q(u)

) pn
qn −

∂α⋆n−1

∂t

−
∂α⋆n−1

∂ζn−1
βn−1 −

∂α⋆n−1

∂Ξ̂n

˙̂
Ξn − κ̇n(t)ζn

]

,βn
(
ζ1, . . . , ζn, Ξ̂1, . . . , Ξ̂n, t

)
, (21)

where χ̄i , [χ1, . . . , χi]
T , i = 1, . . . , n. For compactness,

let us define ξ =
[
ζ1, . . . , ζn, Ξ̂1, . . . , Ξ̂n

]T
and let us rewrite

(16) and (19)-(21) in the form of

ξ̇ =β (ξ, t) =
[
β1
(
ζ̄2, Ξ̂1, t

)
, . . . , βi

(
ζ̄i, . . . ,

¯̂
Ξi

)
, . . . ,

βn
(
ζ̄n, . . . ,

¯̂
Ξn

)
, βn+1 (ζ1, t) , . . . , β2n (ζn, t)

]T
, (22)
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where ζ̄i =
[
ζ1, . . . , ζi

]T
,
¯̂
Ξi =

[
Ξ̂1, . . . , Ξ̂i

]T
, i = 2, . . . , n.

Define the open set Θξ = Θξ,1×· · ·×Θξ,i×· · ·×Θξ,n×R
n×1

with Θξ,i = (−1, 1), i = 1, . . . , n. It is straightforward to

verify that ξ(0) =
[
ζ1(0), . . . , ζn(0), Ξ̂

0
1, . . . , Ξ̂

0
n

]T
⊆ Θξ due

to |ei(0)| < κi,0. Note that β(·, ·) : Θξ × R+ → R
2n×1 is

piecewise continuous in t and locally Lipschitz in Θξ; φi and

ψi are piecewise continuous in t and locally Lipschitz in x̄i,

and yr(·), and κi(·) are bounded and differentiable. Then, it

follows from Theorem 54 of [29] that there exists a unique

maximal solution ξ(·) of (22) on the time interval [0, τmax),
where τmax < +∞ is chosen such that ξ(t) ∈ Θξ for all

t ∈ [0, τmax). In what follows, we first suppose τmax < +∞,

and eventually we prove by a contradiction that τmax must be

extended to +∞.

Let us consider the barrier Lyapunov function candidates

Li =
ζ2i

2
(
1− ζ2i

)2 +
1

2γi
ci̺iΞ̃

2
i , i = 1, . . . , n (23)

which are positive definite and continuously differentiable over

Θξ, where Ξ̃i = Ξi − Ξ̂i, ̺i > 0, Ξi are unknown constants

whose specific expressions are given after (30), and Ξ̂i is the

estimate of Ξi. Consider the following induction steps on the

time interval [0, τmax).
Step 0: Note from (17) that α0 , yr(t), α̇0, and x1 are

bounded on [0, τmax) as a result of ζ1, κ1(t), yr(t), and ẏr(t)
being bounded on [0, τmax).

Step i (i ∈ {1, . . . , n− 1}): Consider that at step i− 1 we

have shown x1(·), . . . , xi−1, αi−1, and α̇i−1(·) to be bounded

on [0, τmax). From (18) we further have that xi(·) is bounded

on [0, τmax). Then, it follows from (1), (10), (18), and (20)

that the time derivative of Li is

L̇i =
̟i

κi(t)

[
φi(x̄i, t) + ψi(x̄i, t)

(
ei+1 + αi

) pi
qi − κ̇i(t)ζi

− α̇i−1

]
−

1

γi
ci̺iΞ̃i

˙̂
Ξi, t ∈ [0, τmax), (24)

Applying Lemma 5 to x
pi
qi

i+1 gives

x
pi
qi

i+1 =
[
ϑi(ei+1, αi)α

pi
i + µi(ei+1, αi)e

pi
i+1

] 1
qi , (25)

where ϑi(·, ·) and µi(·, ·) are some real-valued functions

satisfying 1−ǭi ≤ ϑi(·, ·) ≤ max
{
1+ǭi, 2

pi−1
}

with ǭi being

an arbitrary constant taking value in (0, 1), and |µi(·, ·)| ≤ ῡi,
with ῡi > 0 being a constant which is independent of ei+1

and αi.
The following inequality results from applying Lemma 2 to

(25):
∣∣∣∣x

pi
qi

i+1 − (ϑi(ei+1, αi)α
pi
i )

1
qi

∣∣∣∣ ≤ 2
1− 1

qi

∣∣∣µi(ei+1, αi)e
pi
i+1

∣∣∣
1
qi

≤ Ēi, t ∈ [0, τmax) (26)

where Ēi > 0 is an upper bound of Ei(ei+1, αi) , 2
1− 1

qi ·∣∣∣µi(ei+1, αi)e
pi
i+1

∣∣∣
1
qi

which is bounded due to the boundedness

of µi(ei+1, αi), and ei+1(t) on [0, τmax). Hence, it follows that

x
pi
qi

i+1 = (ϑi(ei+1, αi)α
pi
i )

1
qi + ℓiĒi, t ∈ [0, τmax) (27)

for some function ℓi ⊆ (−1, 1). Substituting the virtual control

law αi (12) and (27) into (24) yields

L̇i ≤ |Fi(t)| |̟i| − kiHi(t)̟
2
i −

ciψi(x̄i, t)̟
2
i Ξ̂i

κi(t)
√
̟2
i + σ2(t)

−
1

γi
ci̺iΞ̃i

˙̂
Ξi, t ∈ [0, τmax), (28)

where |Fi(t)| ,
1

κi(t)

[∣∣φi(x̄i, t)
∣∣+
∣∣α̇i−1

∣∣+
∣∣ℓiψi(x̄i, t)

∣∣Ēi+
∣∣κ̇i(t)ζi

∣∣
]

and Hi(t) =
ψi(x̄i,t)
κi(t)

, i = 1, . . . , n−1. Furthermore,

using the fact that |ζi(t)| < 1 for all t ∈ [0, τmax), i =
1, . . . , n, and that yr(·), κi(·), κ̇i(·), x1(·), . . . , xi, and α̇i−1(·)
are bounded on [0, τmax), we have from the Extreme Value

Theorem that there exist unknown constants ψ̄i > 0, ψ
i
> 0,

F i > 0, F̄i > 0, Hi > 0, and H̄i > 0 such that

ψ
i
≤ |ψi(·, ·)| ≤ ψ̄i, F i ≤ Fi(·) ≤ F̄i, Hi ≤ Hi(·) ≤ H̄i

(29)

on [0, τmax). Substituting (29) and adaptation law (16) into

(28) results in

L̇i ≤− kiHi̟
2
i + F̄i |̟i| −

ciψi(x̄i, t)̟
2
i Ξ̂i

κi(t)
√
̟2
i + σ2(t)

+
ci̺i̟

2
i Ξ̂i√

̟2
i + σ2(t)

−
ci̺i̟

2
iΞi√

̟2
i + σ2(t)

, t ∈ [0, τmax)

(30)

Note from (16) that Ξ̂i(t) ≥ 0, ∀t ≥ 0. After defining ̺i =
ψ

i

κi,0
and Ξi =

F̄i

ci̺i
, and applying Lemma 3 to (30) results in

L̇i ≤ −kiHi̟
2
i + F̄iσ(t), t ∈ [0, τmax). (31)

Integrating (31) over [0, t) leads to

Li(t)+

∫ t

0

kiHi̟
2
i (s)ds ≤ Li(0)+ F̄iσ̄ , δ̄i, t ∈ [0, τmax),

(32)

which, combined with (23), implies that

ζ2i

2
(
1− ζ2i

)2 ≤ Li(t) ≤ δ̄i, and
ci̺iΞ̃

2
i

2γi
≤ Li(t) ≤ δ̄i (33)

∀t ∈ [0, τmax). Solving (33) results in

|ζi| ≤ ζ̄i ,

√

1−

√
8δ̄i + 1− 1

4δ̄i
< 1, t ∈ [0, τmax) (34)

∣∣Ξ̂i
∣∣ ≤ Ξ̂∗

i , Ξi +

√
2γiδ̄i
ci̺i

, t ∈ [0, τmax). (35)

Note that (34) implies the boundedness of ̟i, which together

with (35) ensures the boundedness of αi and xi+1 on [0, τmax)
according to (12) and (10), respectively. Then, it can be derived

that the time derivative of ̟i can be bounded by

| ˙̟ i| ≤
4ζ2i + 1

ki(t) [1− ζ2i ]
2

[
|φi(x̄i, t)|+ ψ̄iϑ

1
qi

i

∣∣∣α
pi
qi

i

∣∣∣+ ψ̄i|ℓi|Ēi

+ |α̇i−1|+ |κ̇i(t)ζi|

]
, t ∈ [0, τmax). (36)
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Fig. 1: Numerical Example: (a) Evolution of y, yr, and e1; (b) Evolution of the actual control signal u and the quantized

control signal Q(u); (c) Evolution of Ξ̂1 and Ξ̂2.

Invoking (12), (36), and the boundedness of ̟i, the time

derivative of virtual control law αi can be bounded by

|α̇i| ≤
qi
pi
ϑ

−1

pi

i

(
ki|̟i|+

ciΞ̂i|̟i|√
̟2
i + σ2(t)

)ri [
ciΞ̂i| ˙̟ i|

(̟2
i + σ2)

1
2

+ki| ˙̟ i|+
ciγi|̟

3
i |

̟2
i + σ2

+
ciΞ̂i̟

2
i | ˙̟ i|

(̟2
i + σ2)

3
2

+
ciΞ̂i̟iσ|σ̇|

(̟2
i + σ2)

3
2

]

for t ∈ [0, τmax), (37)

where ri =
qi−pi
pi

.

Step n: Following the same vein as Step i, we can obtain

the derivative of Ln as

L̇n =
̟n

κn(t)

[
φn(x̄n, t) + ψn(x̄n, t)

(
ϑ

1
qn
n ς

pn
qn (u)u

pn
qn + ℓnĒn

)

− κ̇n(t)ζn − α̇n−1

]
−
cn̺nΞ̃n

˙̂
Ξn

γn
, t ∈ [0, τmax),

(38)

where the function ℓn ⊆ (−1, 1), and Ēn = 21−
1
qn

∣∣µnd̄pn
∣∣ 1
qn .

Substituting actual control u as in (14) into (38) yields

L̇n ≤ |Fn(t)| |̟n| − knHn(t)̟
2
n −

cnψn(x̄n, t)̟
2
nΞ̂n

κn(t)
√
̟2
n + σ2(t)

−
1

γn
cn̺nΞ̃n

˙̂
Ξn, t ∈ [0, τmax), (39)

where |Fn(t)| , 1
κn(t)

[∣∣φn(x̄n, t)
∣∣ +

∣∣α̇n−1

∣∣ +
∣∣ℓnψn(x̄n, t)

∣∣Ēn +
∣∣κ̇n(t)ζn

∣∣
]

and Hn(t) = ψn(x̄n,t)
κn(t)

.

Similarly to the analysis after (28), there exist unknown

constants ψ̄n > 0, ψ
n
> 0, Fn > 0, F̄n > 0, Hn > 0, and

H̄n > 0 such that

ψ
n
≤ |ψn(·, ·)| ≤ ψ̄n, Fn ≤ Fn(·) ≤ F̄n, Hn ≤ Hn(·) ≤ H̄n

(40)

on [0, τmax). Substituting (40) and adaptation law (16) into

(39) and conducting the same steps as (31)-(35), it is possible

to obtain the following results:

|ζn| ≤ ζ̄n ,

√

1−

√
8δ̄n + 1− 1

4δ̄n
< 1, t ∈ [0, τmax)

(41)

∣∣Ξ̂n
∣∣ ≤ Ξ̂∗

n , Ξn +

√
2γnδ̄n
cn̺n

, t ∈ [0, τmax) (42)

where δ̄n = Ln(0) + F̄nσ̄ and Ξn = F̄n

cn̺n
with ̺n =

ψ
n

κn,0
.

Consequently, one can obtain that ζn ∈
[
− ζ̄n, ζ̄n

]
⊆

(−1, 1). Following reasonings similar to (36)-(37), the bound-

edness of u, and u̇ can be achieved on the time interval

[0, τmax). Therefore, all closed-loop signals, including states

xi in (18), i = 1, . . . , n, intermediate control laws αi and

their derivatives α̇i, i = 1, . . . , n − 1, and actual control u
have been proved bounded for all t ∈ [0, τmax). Moreover,

from the above analysis, one can conclude that there exists a

compact set Θ+
ξ =

[
− ζ̄1, ζ̄1

]
×· · ·×

[
− ζ̄n, ζ̄n

]
×R

n×1 ⊂ Θξ

such that the maximal solution of (22) satisfies ξ(t) ∈ Θ+
ζ

for all t ∈ [0, τmax). This contradicts the argument of [29,

pp. 481 Proposition C. 3.6] (i.e. there exists a time instant

t⋆ ∈ [0, τmax) such that ξ(t⋆) /∈ Θ+
ξ

)
, which implies that

τmax = +∞. Therefore, all closed-loop signals are bounded

and ξ(t) ∈ Θ+
ξ ∪ Θξ for all t ≥ 0, and |ei(t)| < κi(t),

i = 1, . . . , n, holds for all t ≥ 0. In addition, it can be

concluded from (32) and (37) that
∫ t
0
k1H1̟

2
1(s)ds ≤ δ̄1

holds and | ˙̟ 1| is bounded, respectively. This implies that

limt→+∞̟1(t) = 0 according to Barbalat lemma [24], which

eventually implies limt→+∞e1(t) = 0. This completes the

proof. �

Remark 5: Barrier Lyapunov functions have been exten-

sively used in existing literature [30]-[34] for the constraints

satisfaction, whereas the barrier Lyapunov function (23) in our

design serves to transform the unknown system nonlinearities

in (1) to some unknown but bounded terms (cf. (29) and (40)).

Then, these terms are compensated by appropriate adaptation

laws (cf. (30)-(31)) without imposing growth conditions on

system nonlinearities (such as [4, Assumption 2], [5, Assump-

tion 2], [6, Assumption 2], [7, Assumption 2], [8, Assumption

1], [9, Assumption 1], [10, Assumption 1], [11, Assumption

1], [14, Assumption 3], and [15, Assumptions 1 and 3]) and

without universal approximators.
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TABLE I: MACA for three different sets of initial conditions

x(0)
Signal

uM Q(u)M uM −Q(u)M

[1.25, 0.25] 2.8631 2.4767 ↓ 0.3864
[2.75,−1.75] 2.9743 2.5132 ↓ 0.4611
[−2.25, 3.25] 3.0124 2.6659 ↓ 0.3465

Remark 6: The main innovation of Lemma 5 is to allow

handling the control terms in a linear-like manner (cf. (27)

and (38)). With this tool, Theorem 1 shows that prescribed

performance asymptotic tracking can be achieved for the

challenging class of dynamics (1).

V. SIMULATIONS

A. Numerical Example: To illustrate the validity of the

proposed control method, consider the following dynamics:




ẋ1 = 2.5x21 cos(x1) + (1.5 + sin(x1))x
5
3

2 ,

ẋ2 = 1.25 sin(x1x2) + (2.5− cos(x1x2))Q(u),

y = x1,

(43)

with desired trajectory yr(t) = sin(t) + sin(0.5t) and initial

conditions [x1(0), x2(0)]
T = [1.25, 0.25]T . We select the pre-

scribed performance functions κi(t) = (4 − 0.35) exp(−t) +
0.35, i = 1, 2, the quantizer parameters v+min = 0.025,

v−min = −0.035, ̺+ = 0.2 and ̺− = 0.25, and the design

parameters k1 = 1.5, k2 = 2.5, c1 = 3, c2 = 3.5, γ1 = 1.75,

γ2 = 1.5, ǭ1 = 0.275, and ǭ2 = 0.75. The initial conditions

of adaptive parameters are set as Ξ̂1(0) = Ξ̂2(0) = 0. The

positive function σ(·) is chosen as σ(t) = 1
0.15+2t4 . The

simulation results are shown in Fig. 1. Fig. 1-(a) reveals

that the system output y can track the desired trajectory yr
asymptotically, while ensuring that output tracking error e1
strictly evolves within the prescribed performance interval

(−κ1(t), κ1(t)) all the time. Fig. 1-(b) depicts the evolution

of the actual control signal u and of the quantized control

Q(u). Notably, asymptotic tracking is achieved in spite of

quantized information. Compared with bounded tracking sim-

ulations for similar dynamics, e.g. [35], the output of the

quantizer of Fig. 1-(b) seems to require higher bandwidth.

This is expected since asymptotic tracking results for other

input-quantized dynamics, e.g. strict-feedback dynamics [21]

and [23] have shown that asymptotic tracking may require

faster inputs. Fig. 1-(c) shows the evolution of adaptation

parameters Ξ̂1 and Ξ̂2. To further investigate the influence

of the adopted hysteresis quantizer, the mean absolute control

actions (MACA) 1
T

∫ T
0
|u| and 1

T

∫ T
0
|Q(u)| for three different

sets of initial conditions have been given in Table I where uM
and Q(u)M respectively represent the MACA of u and Q(u)
(the latter resulting slightly smaller than the former).

B. Practical Example: A poppet valve is one of the most

commonly used components in hydraulic systems [13]. A

poppet valve is typically used to control the timing and

quantity of gas or vapor flow into an engine, and its behavior

can be modeled by the annular leakage equation. According

to [13, page 54], the input force F drives the poppet to move

for regulating the volumetric flow rate Qvol = λc3 of oil

from the high-pressure to the low-pressure chamber, where

TABLE II: MACA for four different sets of initial conditions

x(0)
Signal

uM Q(u)M uM −Q(u)M

[5.45, 0, 0.1] 2.3653 2.0125 ↓ 0.3528
[4.15, 1.25, 0.25] 2.1134 1.9269 ↓ 0.1867
[2.55, 2, 0.2] 2.0863 1.7267 ↓ 0.3596

[1.09, 3.75, 0.35] 1.9867 1.6235 ↓ 0.3632

λ = πr
6µL∆P is a lumped coefficient, c = αy is the effective

clearance of the annular passage with α a constant and y the

displacement of poppet, and where r, µ, and L are constants

independent of the axial motion of poppet, and ∆P is the

pressure drop between two chambers. The dynamics of oil

volume V in upper chamber is given by

V̇ (t) = Qvol −R(t), (44)

where R is the lumped reduction rate of oil attributed to

consumption and other leakages. Likewise, the equation of

motion of the poppet is

mÿ(t) = −kẏ(t) + T (t) + F (t), (45)

where m is the mass of the poppet, k is the viscous friction co-

efficient, T denotes the lumped elastic force, and F represents

the input force. At this point, let us introduce the following

notation substitutions:

x1 = V, x2 = y, x3 = ẏ, u = F. (46)

Then, the dynamics of systems (46) becomes

ẋ1 = φ1 + ψ1x
3
2, ẋ2 = x3, ẋ3 = φ3 + ψ3Q(u), (47)

where ψ1 = λα3, φ1 = −R, ψ3 = 1
m

, and φ3 = 1
m
(T −kx3).

We take the desired trajectory yr(t) = sin(t) + sin(0.5t) and

initial conditions [x1(0), x2(0), x3(0)]
T = [2.5, 1.5,−0.75]T .

We take m = 7.5kg, k = 2.5N/m, R = 5L/min, ∆P =
10N/m2, T = 5N, µ = 2.5, L = 5, r = 1.25, α = 4.5,

and the prescribed performance function defined by κi(t) =
(6−0.25) exp(−t)+0.25, i = 1, 2, 3, the quantizer parameters

v+min = 0.25, v−min = −0.05, ̺+ = 0.2 and ̺− = 0.25, and

the design parameters k1 = 5, k2 = 3.5, k3 = 15, c1 = 2.5,

c2 = 5, c3 = 10, γ1 = 1.25, γ2 = 0.75, γ3 = 1.5, ǭ1 = 0.5,

ǭ2 = 0.25, and ǭ3 = 0.75. The initial conditions of adaptive

parameters are set as Ξ̂1(0) = Ξ̂2(0) = Ξ̂3(0) = 0. The inte-

gral function σ(·) is chosen as σ(t) = 1
0.25+t4 . The simulation

results are shown in Fig. 3, where the standard PPC approach

as in [36] is taken as a means of comparison. Fig. 3-(a)

shows that the proposed approach exhibits asymptotic tracking

differently from the standard PPC approach [36]. Fig. 3-(b)

and (c) depict the profiles of the actual control signal u and

the quantized control signal Q(u), and adaptation parameters

Ξ̂1, Ξ̂2, and Ξ̂3, respectively. Fig. 3-(d) shows that asymptotic

tracking can be achieved for different initial conditions under

the proposed method, despite quantized information and even

with reduced control effort in terms of MACA (cf. Table II).
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Fig. 2: Practical Example: (a) Evolution of tracking error e1 under two schemes; (b) Evolution of the actual control signal u
and the quantized control signal Q(u); (c) Evolution of adaptation parameters Ξ̂1, Ξ̂2, and Ξ̂3; (d) Evolution of tracking error

e1 under four different sets of initial conditions.

VI. CONCLUSIONS

This paper has addressed asymptotic tracking for uncertain

high-order odd-rational-power nonlinear systems without im-

posing growth restrictions on the nonlinearities. The proposed

result extends the class of dynamics for which asymptotic

tracking is possible with minimum knowledge of the system

dynamics. Similarly to [37], an interesting open problem de-

serving future investigation is to further reduce the knowledge

of the system dynamics by considering completely unknown

control directions.

APPENDIX

Proof of Lemma 5. The aim is to first find an upper and lower

bound in the form
(
ϑ(x1, x2)x

p
1 + µ(x1, x2)x

p
2

) 1
q

≤ (x1 + x2)
p

q ≤
(
ϑ̄(x1, x2)x

p
1 + µ̄(x1, x2)x

p
2

) 1
q

, (48)

for some appropriately bounded functions µ(·, ·), ϑ(·, ·),
µ̄(·, ·), and ϑ̄(·, ·). Using the binomial theorem [38, Sect. 3.1,

page 10], the following inequalities can be derived for ∀x1,

x2 ∈ R:

(x1 + x2)
p

q ≤

(
xp1 + xp2 +

p−1∑

k=1

(
p
k

)
|x1|

k|xp−k2 |

) 1
q

≤

(
xp1 + xp2 +

p−1∑

k=1

(
k

p
ε

p

k |x1|
p +

p− k

p

(
p
k

)
ε

−p

p−k |x2|
p

)) 1
q

≤

(
xp1 + xp2 +

p−1∑

k=1

εk|x1|
p +

p−1∑

k=1

ωk|x2|
p

) 1
q

≤
([

1 + ǭ · sign(x1)
]
xp1 +

[
1 + ω · sign(x2)

]
xp2

) 1
q

, (49)

where the second inequality relies on Lemma 4, and where

εk = k
p
ε

p

k , ωk = p−k
p

(
p
k

)
ε

−p

p−k , ω =
∑p−1
k=1 ωk, and ǭ =

∑p−1
k=1 εk can be made to satisfy 0 < ǭ < 1 by appropriately

selecting the small positive constant ε.
A lower bound will be sought along the following three

situations.

Situation 1: When x1 < 0 and x1 + x2 ≥ 0, we immediately

have (x1 + x2)
p

q ≥ 0 ≥ x
p

q

1 as p is a positive odd integer.

Situation 2: When x1 < 0 and x1 + x2 < 0, it follows that

(xp1 + xp2)
1
q =

2
1
q




p−1

2∑

m=1

(
p

2m− 1

)
<0︷ ︸︸ ︷(x1 + x2

2

)2m−1

>0︷ ︸︸ ︷(x1 − x2
2

)p−2m+1

︸ ︷︷ ︸
<0

+
(x1 + x2

2

)p] 1
q

≤ 2
1−p

q (x1 + x2)
p

q , (50)

which indicates that (x1 + x2)
p

q ≥
(
2p−1xp1 + 2p−1xp2

) 1
q

.

Situation 3: When x1 ≥ 0 and x2 ∈ R, then following

similar derivations to (48), it holds that (x1 − x2)
p

q =
[
x1 +

(−x2)
] p

q ≤
([

1 + ǭ · sign(x1)
]
xp1 −

[
1− ω · sign(x2)

]
xp2]
) 1

q

.

Besides, note that (x1 + x2)
p + (x1 − x2)

p = 2
[
xp1 +

∑ p−1

2

k=1

(
p

2k − 1

) ≥0︷ ︸︸ ︷
x2k−1
1

≥0︷ ︸︸ ︷
xp−2k+1
2

]
≥ 2x21. Thus, we have

(x1 + x2)
p

q ≥
(
[1− ǭ · sign(x1)]x

p
1 + [1 + ω · sign(x2)]x

p
2

) 1
q

.

Having derived all the necessary upper and lower bounds in

the form of (48), we conclude that the equality
[
xp1ϑ(x1, x2)+

xp2µ(x1, x2)
] 1

q = (x1 + x2)
p

q holds for any x1, x2, for some

function ϑ(·, ·) ⊆
[
1 − ǭ,max{1 + ǭ, 2p−1}

]
with ǭ being a

constant that can be made to take value in (0, 1) by selecting
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an appropriately small constant ε, and |µ(·, ·)| ≤ ῡ with ῡ =
max{1 + ω, 2p−1} a positive constant that is independent of

x1 and x2. This completes the proof. �
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