
Delft University of Technology
Delft Center for Systems and Control

Technical report 23-002

A traffic responsive control framework for
signalized junctions based on hybrid traffic

flow representation∗

F. Storani, R. Di Pace, and B. De Schutter

If you want to cite this report, please use the following reference instead:
F. Storani, R. Di Pace, and B. De Schutter, “A traffic responsive control framework for
signalized junctions based on hybrid traffic flow representation,” Journal of Intelligent
Transportation Systems, vol. 27, no. 5, pp. 606–625, 2023. doi:10.1080/15472450.
2022.2074790

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/23_002.html

https://doi.org/10.1080/15472450.2022.2074790
https://doi.org/10.1080/15472450.2022.2074790
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/23_002.html


1

A traffic responsive control framework for
signalized junctions based on hybrid traffic flow

representation
Facundo Storania, Roberta Di Pacea,* , and Bart De Schutterb

aDepartment of Civil Engineering, University of Salerno (Italy)
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Abstract—The paper proposes a traffic responsive control
framework based on a Model Predictive Control (MPC) ap-
proach. The framework focuses on a centralised method, which
can simultaneously compute the network decision variables (i.e.,
the green timings at each junction and the offset of the traffic
light plans of the network). Furthermore, the framework is
based on a hybrid traffic flow model operating as a prediction
model and plant model in the control procedure. The hybrid
traffic flow model combines two sub-models: an aggregate model
(i.e., the Cell Transmission Model; CTM) and a disaggregate
model (i.e., the Cellular Automata model; CA), using a transition
cell to connect them. The whole framework is tested on a
signalised arterial, performing several analyses to calibrate the
MPC strategy and evaluate the traffic control approach using
fixed and adaptive control strategies. All analyses are made in
terms of total time spent, network total delay, queue lengths and
degree of saturation.

Keywords: traffic lights; model predictive control; network;
interacting junctions; traffic flow model.

I. BACKGROUND AND MOTIVATION

Sustainable urban mobility is one of the main challenges
facing cities in the EU and a matter of concern for many
citizens. Road transport is one of the main causes of air
pollution and greenhouse gas emissions in urban areas. With
this in mind, diverse strategies can be adopted to mitigate
traffic congestion.

The most effective approaches recognised in the literature
consist in Advanced Traffic Control Strategies (Dresner &
Stone, 2008; Ma et al., 2018; Yuan et al., 2019). Relevant
methods are based on dynamic control through the appli-
cation of traffic-responsive strategies activated by real-time
flows/arrival detection; they include SCOOT, SCATS, PRO-
DYN, RHODES, OPAC, TUC and GLADI (Dinopoulou et al.,
2000; Farges et al., 1994; Gartner et al., 2001; Mirchandani
& Wang, 2005; Robertson & Bretherton, 1991; Sims &
Dobinson, 1980). Such adaptive strategies can follow three
different approaches:

• centralised (or synchronisation): which simultaneously
achieves the optimal values of all decision variables (e.g.,
by optimising the green timings and the offset of all
junctions in the case of network optimisation);

• distributed (or coordination): which has a sequential
procedure to obtain the optimal values of the decision

* Corresponding author: rdipace@unisa.it

variables (e.g., by first optimising the green timings at
each junction within a network, and then the offsets for
the whole network);

• decentralised: which requires only local information to
optimise the decision variables of each junction indepen-
dently of others on the same network.

Many centralised approaches have been proposed in the
literature, most of them based on control theory. The traffic
control problem considering interacting junctions (arterial and
sub-networks/networks) is an integrated problem that couples
the traffic signal setting with traffic flow models (Cai et al.,
2009). The main applications refer to mixed-integer linear
programming (Gartner et al., 1975; Jeong & Kim, 2014;
Memoli et al., 2016; Xu et al., 2019), game theory (Villalobos
et al.,2008), multicriteria optimisation (Li & Sun, 2019; Zhang
et al., 2019; Di Pace, 2020), the reinforcement learning model
(Genders & Razavi, 2019; Xu et al., 2020) and Model Pre-
dictive Control (MPC) (Aboudolas et al., 2009; Geroliminis et
al., 2013; Chow et al., 2019).

Some studies on traffic control refer to decentralised meth-
ods for the low computational effort, especially back-pressure
strategy (Varaiya 2013; Wongpiromsarn et al. 2012; Kulcsár
et al., 2015; Lammer et al., 2006; Tassiulas & Bhattacharya,
2000) in which the algorithm time complexity is very low. The
literature also proposes contributions in decentralised control
(Zaidi et al., 2016; Le et al., 2015). However, to the best of the
authors’ knowledge, few studies have dealt with distributed
control, making it worthy of investigation (Chow and Sha,
2016). Finally, some studies focus on the comparison between
centralised and decentralised control approaches (Chow et al.,
2019) to i) quantify the gap between them and ii) identify
the specific conditions (e.g., network layout, path choice be-
haviour, etc.) to reduce this gap. Moreover, considering the gap
between performances (in terms of total delay, capacity etc.)
and computational effort, the centralised strategy is still more
effective than the decentralised method. This paper focuses
on an application of a centralised Model Predictive Control
strategy.

With reference to traffic light optimisation, one of the
main issues to be investigated in the literature concerns the
traffic flow model usually adopted in traffic control. Indeed,
whatever the traffic control strategy, a traffic flow model is
necessary when considering interacting junctions in a network
(Cantarella et al., 2015; Di Gangi et al., 2016; Memoli et
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al., 2017). The model reproduces the impacts of the con-
trol strategies from upstream to downstream and computes
the values of the objective functions (e.g., total delay, total
time spent, queues, etc.) to consider during the control pro-
cedure. Traffic flow representation models have historically
been classified according to their level of aggregation of the
variables of demand and supply. Thus, it is possible to identify
three main groups: macroscopic, mesoscopic and microscopic
models (Treiber and Kesting, 2013). These models may be
combined, producing hybrid traffic flow models that have
also been extensively studied. In this case, the traffic flows
are represented by coupling different models, even with a
variable aggregation level, switching between a macroscopic,
mesoscopic or microscopic approach. Such models have been
generally explored for multi-scale applications (Joueiai et al.,
2014; 2013) to provide traffic analysis at local and network
levels.

Furthermore, recent advances in vehicle-to-X communica-
tion make it possible to develop more effective and reliable
traffic management strategies using the information provided
by connected vehicles and ever-faster communication proto-
cols (e.g., Fajardo et al., 2011). To date, several applications
have been developed in urban contexts, mainly focusing on
signalised junctions and, in general, on the control of vehicles
approaching junctions (Yu et al., 2018; Guler et al., 2014;
Yang et al., 2016). The literature contains a plethora of studies
that specifically concern the optimisation of traffic lights
(Stevanovic et al., 2009; Priemer and Friedrich, 2009; He et
al., 2012; He et al., 2014; Goodall et al., 2013, 2014; Lee et
al., 2013; Feng et al., 2015, 2016; Islam and Hajbabaie, 2017;
Beak et al., 2017; Ban et al., 2018; Wang et al., 2021) whilst
other studies focus on combining a fixed-time control and
an adaptive speed/acceleration (Green Light Optimized Speed
Advisory - GLOSA) or trajectory optimisation of vehicles
(see Tajalli and Hajbabaie, 2021; Niroumand et al., 2020).
Recently, increasing attention has been paid to combining
different strategies that may improve traffic operations (Yu et
al., 2018; Yang et al., 2016; Guo et al., 2019; Li and Zhou,
2017; Tajalli et al., 2020) and traffic performance in terms of
total delay and number of stops (see Ma et al., 2017) while
directly reducing fuel consumption (see Katsaros et al., 2011)
and emissions.

Nevertheless, proper representation of vehicle (driver) be-
haviour using the information provided by connected vehicles
requires specific traffic flow models to support them. Thus, it is
necessary to collect and process information and, at the same
time, provide vehicles or drivers with consistent information1.
This problem is usually addressed with microscopic models,
as they can deal with each vehicle separately. However, they
are highly detailed, require several parameters to be set,
and are computationally demanding, a drawback that grows
exponentially as the network size increases. The hybrid model
can be considered an alternative approach to overcome such
issues.

Summing up, the use of the hybrid traffic flow model

1That is, the traffic state that the driver will experience (Cascetta, 2006;
Bifulco et al., 2009; de Luca and Di Pace, 2015).

enables: i) multiscale applications in the presence of human-
driven vehicles and connected vehicles (at different penetration
rates) and ii) applications of enhanced traffic management
strategies in the presence of connected vehicles by collecting
and processing real-time information provided by vehicles
approaching junctions.

In this paper, the adopted hybrid traffic flow model (i.e., H-
CTM&CA, Storani et al., 2021; 2022) combines a microscopic
model for node representation and a macroscopic model for
link representation to support the optimisation of junctions. In
detail, the Cellular Automata model (CA; Nagel and Schreck-
enberg, 1992) was adopted as a disaggregated microscopic
model, and the Cell Transmission Model (CTM; Daganzo,
1994) was adopted as an aggregated macroscopic model. In
more detail, the proposed H-CA&CTM aims to deal with three
main issues:

• First of all, following the literature, the meso-micro
model is preferred. However, in terms of network scala-
bility and within-day dynamic network applications, the
macro approach is more suitable than the mesoscopic one;

• Secondly, to overcome the difficulties in the combination
of the continuous macroscopic model with the discrete
microscopic model, discrete macroscopic modelling must
be preferred;

• Finally, to facilitate the transition from macroscopic to
microscopic model and reduce the whole computational
effort, the Cellular Automata model (a simplified micro-
scopic model) is considered.

The contribution of this paper is to develop a centralised
MPC based traffic control framework integrated with a hybrid
traffic flow model (H-CA&CTM), considered as a prediction
and plant model. The whole framework makes it possible:
i) the multiscale applications in presence of human-driven
vehicles and connected vehicles (at different penetration rates)
and ii) the application of the strategy in presence of connected
vehicles by collecting and processing real-time information
provided by vehicles approaching the junctions. The integra-
tion of the hybrid traffic flow model with a centralised traffic
control strategy provides a framework that is suitable for the
V2I applications regarding the urban network context.

The paper is organised as follows: Section II describes
the adopted modelling framework based on Model Predictive
Control (MPC; Hegyi, 2004; Hegyi et al., 2005; Papageorgiou
et al., 2008; Carlson et al., 2010) with some details about the
centralised approach; Section III presents numerical results
and the discussion; finally, Section IV comments on future
work to be undertaken.

II. MODELLING FRAMEWORK

This section focuses on the characteristics and parameters
of the MPC and provides the main details of applying the
hybrid traffic flow model within the MPC. The hybrid traffic
flow model in question was recently proposed elsewhere and
further details about model specification and calibration, as
well as comparison with respect to some benchmark models,
can be found in Storani et al. (2021; 2022).
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A. Model predictive control

MPC can optimise traffic signal settings, adapting them to
the system prediction, starting from its current state. To this
end, the controller receives information (measurements) from
the system, and via a control loop applies an optimisation
procedure on a prediction model over a prediction horizon.
During this prediction horizon, several control inputs may be
obtained (solutions of the optimisation procedure) for a control
horizon. Only the first sample is implemented, and the horizon
is thus shifted by one sample, restarting the optimisation with
new measurements.

The main MPC settings are:
• the prediction horizon Np: is the time over which the

controller would predict future states of the system on
a prediction model if the set of control inputs of the
optimisation procedure were applied to the system. This
value should be long enough to consider all the dynamics
of the system, but at the same time not so long as
to increase computational complexity. It is expressed in
controller time steps;

• the control horizon Nc: it is the number of controller
time steps for which the control inputs are optimised.
The setting of this parameter is a trade-off between low
computational complexity (a shorter control horizon) and
better controller performance (a longer control horizon).
After the control horizon has passed, the control signal is
assumed constant over the rest of the prediction horizon;

• parameters of the objective function: as stated above, the
single objective function to be minimised is the total
time that all vehicles spend on the network, as a unique
value. However, it is possible to consider a more complex
objective function – using a weighted sum approach – or
several functions that could be in conflict. In this case, it
is necessary to appropriately choose a set of weights to
consider the trade-off between different objectives.

Other important parameters are:
• T simulation time interval for the prediction model: this

is the time interval in which the prediction model (i.e.,
the hybrid model) yields an estimate of the system state.
In this case, it is equal to 1 s. Its step counter is denoted
as k;

• Tc control time interval: this is the time interval in
which junctions within the subnetwork can communicate
with each other and be synchronous. The first sample
of the optimisation procedure is implemented during this
interval. Its step counter is denoted as kc.

The relation between T and Tc is given by:

Tc = M · T (1)

where M is a constant integer. Since there is a difference
between the simulation time interval T and the control time
interval Tc, the traffic states are estimated M times more than
the variation in the control inputs.

The optimisation strategy uses a metaheuristic procedure as
a solution algorithm that must be selected based on the trade-
off between the effectiveness of the algorithm related to the
space solution exploration, the parameters to be set, and the

computational effort depending on the algorithm complexity
(see Cantarella et al., 2015). Some detailed considerations
are provided below about Simulated Annealing (SA), Genetic
Algorithms (GAs), and Differential Evolution (DE). In SA
the number of the parameters to be set is lower than in
GAs, and in terms of computational effort, the performance is
generally better. Furthermore, SA can easily handle changes
in the objective function, while, with GAs, utilising a fitness
function to select the solution may complicate the search for
the optimum. On the other hand, for a space of solution of
higher dimension GAs are generally more effective than SA,
resulting from their flexibility due to the two genetic operators,
crossover and mutation at the cost of a higher number of pa-
rameters to be set. Because of this, GAs ensure exploration of a
wider range of the solution space, allowing computation of an
approximation of the entire Pareto front. This provides higher
resilience in multi-criteria optimisation problems. Finally, DE
has the advantage of being a stochastic and population-based
optimisation algorithm like GAs, comparing each individual
with another obtained by a mutation and recombination of a
successful solution from the previous generation, and selecting
the one with the best function value to keep to the next
generation. The selected individual may thus be conserved
across several generations, therefore improving or remaining
with the same best function value until a stopping criterion
is reached. The mutation and recombination procedures of
other randomly selected individuals from the population avoid
stopping at a maximum/minimum local while the algorithm
keeps exploring the search space.

In this paper, the Differential Evolution (DE) method is
applied as the metaheuristic optimisation strategy (DE; Price,
2013; Brabazon et al., 2006). In a comparison by Storn and
Price (1997) DE outperforms simulated annealing and genetic
algorithms in terms of the number of function evaluations
required to locate a global minimum of the test functions. Ali
and Torn (2004) found that, given the feature that all points
in the set are possibly updated for each generation, the DE-
type algorithms were more robust than the Controlled Random
Search (CRS; Price, 1997; 1978) and GA-type algorithms.
Lampinen and Storn (2004) demonstrated that the DE is easy
to implement and use, effective, efficient and robust, which
makes it an attractive and widely applicable approach for
solving practical engineering design problems.

In this research, DE was applied with the following param-
eter settings:

• Population size: variable depending on each scenario
• Combination probability: 0.90
• Scale factor F : 0.50 · (1 + rand)
• Maximum iterations: 1000

The population size is set at 5 times the number of variables,
multiplied by the control horizon (Storn and Price, 1997). The
control variables are the duration of the green light at each
approach and the absolute offset of the traffic light plans of
each junction (minus one used as reference). rand is a random
value generated with a uniform distribution between 0 and 1,
resulting in a DE with a random scale factor to reduce the risk
of stagnating at a local optimum (Das et al., 2005).



4

III. NUMERICAL RESULTS AND DISCUSSION

This section uses a layout comprising a two-way arterial
with three successive signalised junctions to test different
applications. First, the strategy based on Model Predictive
Control (MPC; Lin, 2011; Zegeye, 2011) was specified and
calibrated (see Section III-A).

To properly analyse the MPC approach, the latter was also
compared with a fixed time strategy, and an adaptive control
approach called SCOOT (Hunt et al., 1981), while using a
CTM as a traffic flow model (see Section III-B). Additional
analyses were carried out in terms of computational effort and
throughput (vehicle in-out) by comparing the results obtained
using a CTM and the H-CTM&CA, considering the MPC
strategy (see Section III-C).

Furthermore, the centralised traffic control framework based
on the hybrid traffic flow model in question may be further
developed, for instance, for multi-objective traffic light opti-
misation (including minimisation of the energy consumption
of EVs) and combined signal settings design with a speed
optimisation procedure (Green Light Optimized Speed Advi-
sory, GLOSA; Katsaros, 2011). To highlight the traffic flow
model suitability in the presence of connected and automated
vehicles, an additional application to integrate traffic light and
vehicle speed optimisation (advisory), still referring to the
same layout, was introduced (see Section III-D).

The results of the various tests were analysed with respect
to different indicators:

• Maximum and mean queue (MMQ): obtaining the queue
length at each time step for each link, counting the
number of vehicles stopped in the CA and the stopped-
flow in the CTM, to then calculate the maximum and
mean value on the whole simulation interval for each
road.

• Saturation degree (SD): considering the ratio between
the number of incoming vehicles on each road, and the
maximum number of vehicles that could exit each link
during the green time of the traffic signal.

• Total time spent (TTS): the sum of the number of vehicles
on each link for each time step, for the whole simulation
interval. It is equivalent to adding the total time spent
by each vehicle on each link. By adding the TTS of
each link, a single value for the whole network may be
obtained.

• Total delay (TD): the extra time spent by each vehicle on
a link, due to congestion or the presence of traffic lights,
obtained as the total time spent by each vehicle on each
link minus the time it would have taken to cross the link
on a free-flow condition without traffic lights.

Finally, the computer used to run these tests had an Intel(R)
Core(TM) i7-4510U CPU @ 2.00GHz (4 CPUs), ˜2.6GHz
with 8192MB RAM, and an OS Windows 10 Home 64-bit.
The code was written on MATLAB R2019b.

The test layout is a two-way arterial with three successive
signalised junctions (A, B and C), as can be observed in Figure
1. It has five entry/exit links 90 metres long; the distance
between junctions A and B is around 810 metres, as is the
distance between junctions B and C.

TABLE I
BASE ENTRY - EXIT FLOWS OF THE ARTERIAL APPLICATION.

Exit [PCU/h]
2 7 10 12 14 TOTAL

Entry 1 200 100 100 400
[PCU/h] 8 400 100 100 600

9 100 100 200
11 100 100 200
13 100 100 200
TOTAL 700 500 100 200 100 1600

TABLE II
TRAFFIC FLOW MODEL PARAMETER VALUES.

Parameter CTM CA
∆t time step 1 s
kjam jam density 200 veh/km
Cell length 15.00 m 2.50 m
Vehicle length - 2 cells
vf free flow speed 15 m/s 6 cells/s
w shock wave speed 5 m/s -
qi maximum flow rate variable -
p dawdling probability - variable
Min speed to apply dawdling - variable

The entry/exit flows considered between entry and exit links
are displayed in detail in Table I. These values were considered
constant over time as uniform traffic flows (see Figure 2), and
were then increased to a peak value as a variable traffic flow
(see Figure 3).

A. MPC overview: Specification and calibration

This section comprises the following three subsections:
i) objective function testing considering deterministic and
stochastic vehicle behaviour, ii) analysis of the objective
functions with respect to the dawdling rule, iii) application
of MPC considering different flow trajectories.

A more detailed description is provided below.
1) Test of the objective function dynamic considering a de-

terministic and a stochastic vehicle behaviour: The objective
function considered by the controller, in accordance with the
literature (Lin, 2011; Zegeye, 2011), is the total time spent
(TTS). Since the aim of this application is to test the suitability
of the hybrid traffic flow model, it was used as a system model
and as a prediction model on the MPC controller. In both cases,
the hybrid model has the same set of parameters, but due to
the stochastic behaviour of the CA sub-model caused by the
dawdling rule on each vehicle, which depends on a randomly
activated probability, the trend of the system and the plant
model may slightly differ. As anticipated in Section III, the
model was tested on a two-way arterial with three successive
signalised junctions.

Regarding the hybrid traffic flow model, three types of flow
were considered depending on the combination between the
outflow capacity of the Cell Transmission Model (equal to
2700 or 2000 PCU/h) and the dawdling probability of the
Cellular Automata (CA deterministic or stochastic). The model
settings are displayed in Table II below.
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Fig. 1. Layout of the two-way arterial.

Fig. 2. Uniform flow values over time.

Fig. 3. Variable flow values over time.
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TABLE III
OBJECTIVE FUNCTION MEAN VALUES.

Control time interval [s] Type 1 Type 2 Type 3
90 5236.5 5471.6 5279.5
180 10473.0 10895.1 10559.0

The maximum flow rate for the CTM model, and the
dawdling probability and minimum speed to apply the
dawdling rule on the CA model were varied to consider three
types of flows, producing a different flow-density relationship.
Such types of flows are summarised in Figure 4 which displays
the flow-density relationships and the value set for these
parameters.

A first implementation of MPC was considered, with a
uniform entry flow for each of the three flow types. The results
are displayed for two combinations of MPC settings (control
time interval, control horizon and prediction horizon) in the
figures below (see Figure 5) in which the landscape of the
objective function (Total Time Spent) against the control step
is displayed. In both cases, the cycle length of the junctions
is equal to 90 s, and the total simulation period of the system
is set at 90 minutes (i.e., 5400 s equal to 60 cycles). For
this implementation, as optimisation variables, three green
times (the same for the three junctions) and two independent
absolute offset values were selected.

Furthermore, the mean values of the objective function
after a warm-up period of 360 seconds are displayed in the
following table (see Table III).

Since the considered entry flow is constant over time, a
constant trajectory of the objective function (i.e., the TTS) is
expected. However, it is possible to see a difference between
the flow types:

• Flow types 1 and 3 have the same behaviour, since the
dawdling rule in the CA sub-model is not applied (set
to 0). Therefore, the value of the objective function is
constant or periodic across several control steps. When
the control time interval is set to 90 seconds, the value
of the objective function (Total Time Spent) oscillates
around 5250, while it is constant for a control time
interval of 180 seconds close to 10500. The oscillation
in the first case is caused by a difference in the number
of vehicles being inserted into the artery at each control
step, varying the objective function.

• Flow type 2 behaves differently since in this case the
dawdling rule is applied, giving, as a result, a stochastic
behaviour. Each vehicle can therefore reduce its speed
due to the dawdling rule even if the gap is sufficient
to maintain its speed or accelerate. Such stochasticity
between vehicles thus produces higher values of the
objective function compared to the deterministic sce-
narios (around 5400 for a control time interval of 90
seconds, and 10900 for a control time interval of 180
seconds, vs 5250 and 10500 for flows 1 and 3), varying
across different control steps, even under the same traffic
demand.

2) Analysis of the objective function dynamic: generating
the dawdling rule: Since at every control step, different control

inputs must be tested to find the most suitable one, it is
necessary to consider the stochasticity of the traffic flow
models to compare different results. Therefore, to study the
stochastic nature of the traffic flow models and how it may
affect the objective function of the MPC, a further analysis
was made. The results with the Krauß traffic flow model
(see Krauß, 1998) were compared with the deterministic and
stochastic CA. Finally, regarding the stochastic CA, three
further applications were considered: i) without setting the
seed at each control step to generate the random number
to apply the dawdling rule (random – no seed scenario),
ii) by setting the seed at each control step (random – seed
fixed scenario, so that different control inputs start with the
same seed) and iii) by applying the rule every 1/(dawdling
probability) vehicle (for instance if p = 0.266 the rule
is applied every 3.759 = 1/0.266 vehicles) considering a
fixed formula to apply dawdling. The results are displayed
in Figure 6 in which two different clustered behaviours may
be observed: the first of a highly stochastic nature consists of
the Krauß traffic flow model and the 1/(dawdling probability)
implementation, while the second consists of the deterministic
scenario and the two “seed/no seed” scenarios.

In the same Figure 6 the values of the mean and standard
deviation (St. Dev.) are also displayed for each of the simula-
tions. It is evident that the random – seed fixed scenario must
be considered.

In particular, the random – seed fixed scenario is the most
appropriate approach to deal with the stochasticity of the
model, since it allows the same result to be obtained within
a control step, given the same conditions (same initial state
and equal set of control inputs) when the controller is testing
several control inputs to find the optimum set.

3) Applying the MPC with different flow trajectories:
After choosing the fixed seed strategy considering flow type 2
(stochastic behaviour of the CA), four scenarios (S1, S2, S3
and S4) were specified, as displayed in Figure 7 below. The
first two scenarios have as decision variables nine green times
and two absolute offsets on one control horizon, considering
the uniform and variable flow values, as seen in Figure 2 and
Figure 3. The third scenario considers two control horizons,
therefore improving the objective function for the variable
flow value. Finally, the fourth scenario evaluates the objective
function considering a fixed timing strategy with a variable
flow.

As expected, the objective function (Total Time Spent)
grows as the flow increases for scenario S3, but the controller
adjusts the green timings and the offsets, reacting to this
variation. If the green timings and offsets are fixed (scenario
S4), the total time spent would increase since some initially
uncongested links would become congested.

Figure 8 shows the results obtained for the green timings of
junction J12 , while Figure 9 shows the results for the absolute
offsets, both considering the four scenarios described. The
first observation to be made is that the traffic light decision
variables are more stable in the case of uniform flows than
of variable flows, as expected. However, since a metaheuristic

2For sake of brevity only the results for J1 and J2 are shown.
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Type of flow 1
CTM:
qi maximum flow rate = 2700 [veh/h]

CA
p dawdling probability = 0
Min speed to apply dawdling = 0

Deterministic behaviour of the CA-
(no dawdling)

Type of flow 2
CTM:
qi maximum flow rate = 2000 [veh/h]

CA
p dawdling probability = 0.266
Min speed to apply dawdling = 2

Stochastic behaviour of the CA-
(dawdling applied)

Type of flow 3
CTM:
qi maximum flow rate = 2000 [veh/h]

CA
p dawdling probability = 0
Min speed to apply dawdling = 0

Deterministic behaviour of the CA-
(No dawdling)

Fig. 4. Flow classification.

procedure is used, a variation in green times may also be seen
for uniform entry flow (uniform flow of Figure 2, scenario S1
of Figure 8 and Figure 9).

B. MPC vs fixed /adaptive strategy #CTM

This section provides further analysis, using the artery
layout modelled with a CTM to compare several indicators
obtained with the green times and offsets from the MPC
traffic control strategy, a fixed3 time strategy and the adaptive
SCOOT strategy.

The analyses regard internal and external links, identified as
in the following figure (see Figure 10), considering uniform
flows (Unif. Flows) and variable flows (Var. Flows).

The following Table IV provides the values of the mean
maximum queue (MMQ) and mean standard deviation (SD)

3The fixed time strategy is based on a synchronisation method (Cantarella
et al., 2015) aiming to minimise network total delay.

of the different strategies for the internal links, as well as the
total time spent (TTS) of the whole artery considering the
simulation horizon of 5400s.

As in the previous case, the value of the indicators varies
across several control steps for uniform flows under the MPC
strategy. The other indicators not considered in the optimisa-
tion procedure of the MPC strategy (that is MMQ and SD) are
higher in the scenario with variable entry flow than in uniform
entry flow. The TTS indicator (objective function for the MPC
optimisation procedure) is 76% lower when applying the green
times and offsets obtained with the MPC than to the case of
fixed strategy and 65% lower than obtained with the SCOOT
approach, confirming the effectiveness of the MPC.

Figure 11 displays the results of the indicators considering
uniform and variable flows, differentiating between internal
and external links, across each control step (of 360 s, i.e.,
four cycles) for the simulation horizon.
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MPC settings
Simulation horizon: 5400 s
Control time interval: 90 s
Prediction horizon: 6 (i.e.
540 s)
Control horizon: 1

Solution algorithm settings
Variables: 5
Population size: 25

MPC settings
Simulation horizon: 5400 s
Control time interval: 180 s
Prediction horizon: 4 (i.e.
720 s)
Control horizon: 1

Solution algorithm settings
Variables: 5
Pop size: 25

Fig. 5. Values of the objective function (Total Time Spent) with respect to two different MPC settings.

C. CTM vs H-CTM&CA #MPC strategy

This section details an evaluation based on the computa-
tional effort between using CTM and the proposed hybrid
traffic flow model H-CTM&CA, applying an MPC approach.
The first analysis compares the traffic flow models considering
a deterministic and stochastic behaviour of the hybrid model
(changing the value of the dawdling probability, deterministic
if it is set to 0, or stochastic if it is greater than 0) and the
variation of the outflow capacity. Our results point out that a
comparable and lower value of the elapsed time is observed.
In particular, the results (see tables below) for the running time
over 50 control steps show that the time for 1000 executions
is still comparable, irrespective of the values of the dawdling
probability.

With reference to Table VI, concerning the evaluation of
the H-CTM&CA in terms of execution times considering
dawdling deterministic/stochastic and a different population
size on the Differential Evolution method, the results show a
lower total elapsed time compared to the other tests.

Finally, the network throughput (vehicle in-out) was also
analysed for the different demand profiles and signal setting

design strategies, as well as the number of vehicles waiting to
enter at the end of the simulation. The results are summarised
in Table VII which confirm that in the case of uniform flow,
fixed time and MPC provide similar results, whereas in the
case of variable flows the MPC is able to guarantee a higher
value of vehicle throughput and then a lower number of
vehicles waiting to enter at the end of the simulation.

D. Green light optimized speed advisory (GLOSA)
Several issues may be found in the field of connected

and automated vehicles. One of them is investigation of
cooperative junction management, with speed optimisation
as the main purpose to ensure vehicle arrivals at the green
light while satisfying some constraints. This procedure is
consistent with the European research programme GLOSA
(Green Light Optimized Speed Advisory), where the speed
of an approaching vehicle to the junction contributes to fuel
consumption reduction based on signal timing (Katsaros et al.,
2011).

This section discusses the results of GLOSA application to
the same layout in mixed traffic flow conditions (especially in
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SUMO stochastic deterministic
Stefan Krauß
traffic flow

rand – no seed rand – seed
fixed

1/(dawdling
probability)

no dawdling

Mean 9214.82 7762.79 7768.28 8902.30 7530.58
St. Dev. 354.40 100.73 91.62 424.56 24.21

Fig. 6. Values of the objective function (Total Time Spent) considering different settings of the H-CTM&CA model, and considering the Krauß traffic flow
model for the comparison.

TABLE IV
INDICATORS FOR A FIXED GREEN TIMES AND OFFSETS STRATEGY ON A CTM MODEL.

Uniform entry flow
Fixed strategy MPC strategy SCOOT strategy
MMQ [PCU] SD [%] TTS [PCU h] MMQ [PCU] SD [%] TTS [PCU h] MMQ [PCU] SD [%] TTS [PCU h]
4.5 77.58 85.72 3.17 77.57 60.56 7.87 92 91.75
Variable entry flow
Fixed strategy MPC strategy SCOOT strategy
MMQ [PCU] SD [%] TTS [PCU h] MMQ [PCU] SD [%] TTS [PCU h] MMQ [PCU] SD [%] TTS [PCU h]
4.88 82.17 484.97 13.38 90.28 118.29 10.24 98 332.24

TABLE V
CTM VS H-CTM&CA#EXECUTION TIMES CONSIDERING DAWDLING DETERMINISTIC/STOCHASTIC, AND PARAMETER SETTINGS.

CTM H-CTM&CA CTM H-CTM&CA
Flow model Det. Det. Det. Det.
Scenario A1 B1 A2 B2
Simulation horizon [s] 4.500 4.500 4.500 4.500
Control time interval [s] 90 90 90 90
Prediction horizon 6 6 6 6
Control horizon 1 1 1 1
Outflow capacity [PCU/h] 3.600 3.600 1.800 1.800
N variables 4 4 4 4
Population size 22 22 22 22
Total number of iterations 4847 4429 3802 4389
Total number of executions 106634 97438 83644 96558
Total elapsed time [s] 11363.8 8759.6 9824.8 9733.5
Time for 1000 executions [s] 106.568 89.899 117.459 100.804
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Scenario S1 S2 S3 S4
Flow entry Uniform Variable Variable Variable

Simulation horizon 5400 s

Control time interval 360 s

Prediction horizon 2 (i.e. 720 s)

Fixed
Control horizon 1 1 2
Variables 11 11 22
Pop size 110 110 220

Fig. 7. Values of the objective function (Total Time Spent) considering different scenarios (varying the flow, the parameters of the MPC controller, and
considering a fixed value of the green times and offsets).

TABLE VI
H-CTM&CA#EXECUTION TIMES CONSIDERING DAWDLING DETERMINISTIC/STOCHASTIC AND DIFFERENT POPULATION SIZE.

H-CTM&CA
Flow model Det. Stoch. Det. Stoch.
Scenario B2 C1 B3 C2
Simulation horizon [s] 4.500 4.500 4.500 4.500
Control time interval [s] 90 90 90 90
Prediction horizon 6 6 6 6
Control horizon 1 1 1 1
Outflow capacity [PCU/h] 1.800 1.800 1.800 1.800
N variables 4 4 4 4
Population size 22 22 11 11
Total number of iterations 4389 6703 2869 3622
Total number of executions 96558 147466 31559 39842
Total elapsed time [s] 9733.5 13872 3890.1 4739.3
Time for 1000 executions [s] 100.804 94.070 123.264 118.951

TABLE VII
THROUGHPUT ANALYSIS FOR THE ARTERIAL CASE STUDY MODELLED WITH THE H-CTM&CA MODEL.

ARTERIAL With a H-CTM&CA model Total vehicles
trying to enter

Total vehicles that
have entered

Total vehicles that
have exited

Number of
vehicles waiting to
enter at the end of

the simulation

Number of
vehicles in the

network at the end
of the simulation

Uniform flows fixed time 2400 2385 2343 15 42
Uniform flows with MPC 2400 2385 2339 15 46
Variable flow fixed time 2874 2523 2480 351 43
Variable flow with MPC 2874 2859 2816 15 43
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Fig. 8. Green timings for junction J1 for each scenario considered.

the case of fully connected and automated vehicle penetration
rates). The application focuses on the junction’s optimisation;
to this end and to provide an overview of the model suitability
for the application, the traffic lights decision variables (i.e.,
green lights and offsets) are optimised considering the fixed
time and MPC control, whereas the speed of each vehicle
approaching a junction is considered as a decision variable
applying the procedure4 displayed in Table VIII.

To carry out the application, the following settings were
considered:

• 100% CAV penetration rate
• optimisationdistance: 210 metres - distance to optimise

speed
• basespeed: 6 cells/s – base desired speed near the junction
• maxspeed: 9 cells/s - maximum desired speed near the

junction

4To carry out the application, a simplified procedure was considered.
Indeed, optimisation is not the focus of the paper, and the application aims
to highlight model suitability in the presence of connected and automated
vehicles and human-driven vehicles. Therefore, it was not necessary, regarding
the context, to investigate other more sophisticated approaches.

• minspeed: 1 cells/s - minimum desired speed near the
junction

Table IX provides the results highlighting the suitability
of the proposed approach and its effectiveness in terms of
performance indicators. In particular, very similar results may
be observed for uniform flows, whereas a lower value of
the TTS indicator is still shown for the MPC variable flows
scenario.

Furthermore, bearing in mind that the number of CAVs on
the streets will increase in the years to come, in the short term,
traffic flow conditions are expected to remain mixed given the
major role played by human-driven vehicles (Levin and Boyles
2016a, 2016b). Therefore, several studies have investigated
the application of control strategies to non-connected vehicles
since their interactions with connected vehicles are worth
analysing. In this paper, different CAV penetration rates are
considered, and the results are in general slightly better with
respect to overall indicators (see Table X and Table XI).
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TABLE VIII
PROCEDURE OF THE SPEED ADVISORY AT THE NETWORK JUNCTIONS.

celllength %cell length equal to 2.5 m
basespeed %desired speed equal to 15 m/s
optimisationdistance %distance to the junction equal to 200 metres
if roadXY CA(1,cell,1) == 2 and cell >= last cell - optimisationdistance / celllength % the condition occurs that the vehicle is type 2 (connected) and the
cell where it is positioned is on the last 210 metres (cell >= last cell of the road – 210[m]/2.5[m/cell] )

distanceto traffic light = last cell - (cell)
timewith desired speed = distanceto traffic light/ basespeed
stagewhen arriving = active stage(time + timewith desired speed)
%speed optimisation procedure
if stage road <> stage when arriving % the defined stage of the road is not equal to the stage of the traffic light when the vehicle arrives at the
junction with the desired base speed.

% faster/slowerspeed definition
for k = 1 : cyclelength

timestep = time + timewith desired speed + k;
if activestage(time step) == stage road

slowerdelta time = timewith desired speed + k;
fasterdelta time = slowerdelta time - cyclelength + green time - 1
break

end
end
fasterspeed = distanceto traffic light / fasterdelta time
slowerspeed = distanceto traffic light / slowerdelta time
if fasterspeed<= maxspeed and fasterspeed > 1 % an upper limit of the desired base speed is imposed, and negative values are avoided when
subtracting the cycle length

vmax = fasterspeed
elseif slowerspeed >= minspeed % a lower limit is imposed on the slower speed

vmax = slowerspeed
else

vmax = basespeed %desired speed of 15 m/s
end

end
else

vmax = basespeed %desired speed of 15 m/s if it is not a connected vehicle
end

TABLE IX
SCENARIO WITH CAV - H-CTM&CA MODEL - INDICATORS FOR A FIXED GREEN TIMES/MPC AND OFFSETS STRATEGY + SPEED ADVISORY.

Fixed strategy MPC strategy
Uniform entry flow Uniform entry flow
MMQ [PCU] SD [%] TTS [PCU h] MMQ [PCU] SD [%] TTS [PCU h]
2.10 77.28 90.37 1.93 77.21 91.69
Variable entry flow Variable entry flow
MMQ [PCU] SD [%] TTS [PCU h] MMQ [PCU] SD [%] TTS [PCU h]
2.38 79.96 493.09 3.05 88.35 220.31

TABLE X
RESULTS OF THE NUMERICAL APPLICATIONS CONSIDERING DIFFERENT CAV PENETRATION RATES [H-CTM&CA MODEL – FIXED STRATEGY].

Uniform entry flow Variable entry flow
CAV MMQ Mean queue SD TD TTS MMQ Mean queue SD TD TTS
penetration % [PCU] [PCU] [%] [PCU h/h] [PCU h] [PCU] [PCU] [%] [PCU h/h] [PCU h]
0% 3.65 1.31 78.27% 20.72 90.27 3.65 1.89 89.70% 694.68 490.58
25% 3.51 1.26 78.24% 21.84 91.78 3.54 1.80 89.66% 698.79 493.05
50% 3.27 1.09 78.26% 20.64 90.22 3.47 1.74 89.82% 678.65 485.01
75% 3.09 1.06 78.24% 20.75 90.32 3.24 1.69 89.88% 673.42 483.76
100% 2.96 1.00 78.26% 20.84 90.37 3.08 1.68 89.70% 697.51 493.09
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Fig. 9. Absolute offsets for the three junctions, for each scenario considered.

Fig. 10. Internal/external link identification wrt the whole layout.

TABLE XI
RESULTS OF THE NUMERICAL APPLICATIONS CONSIDERING DIFFERENT CAV PENETRATION RATES [H-CTM&CA MODEL – MPC STRATEGY].

Uniform entry flow Variable entry flow
CAV MMQ Mean queue SD TD TTS MMQ Mean queue SD TD TTS
penetration % [PCU] [PCU] [%] [PCU h/h] [PCU h] [PCU] [PCU] [%] [PCU h/h] [PCU h]
0% 3.66 1.38 78.68% 21.92 91.63 3.65 1.72 85.52% 123.84 210.41
25% 3.56 1.20 78.70% 20.95 90.38 3.54 1.68 85.52% 119.38 205.46
50% 3.28 1.10 78.69% 20.68 90.06 3.45 1.64 85.52% 125.12 212.80
75% 3.18 1.09 78.70% 21.67 91.36 3.35 1.63 85.52% 132.70 220.31
100% 2.89 1.08 78.67% 21.97 91.69 3.65 1.72 85.52% 123.84 210.41
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Fig. 11. Fixed vs MPC strategy, using CTM - Performance indicators vs control steps.

IV. CONCLUSIONS

The purpose of this paper was to develop guidelines for
Model Predictive Control based on a hybrid traffic flow model
which operates as a prediction and plant model. The hybrid
traffic flow model (H-CTM&CA)5 in question was based on
the combination between the microscopic-disaggregated Cel-
lular Automata model (CA; Nagel and Schreckenberg, 1992)
and the macroscopic-aggregated Cell Transmission Model
(CTM; Daganzo, 1994). The main contribution of our study
concerned the integration of the traffic flow model with the
Model Predictive Control approach. We sought to develop a
centralised traffic control framework based on the adoption of
MPC, and, in particular, specify its integration with a hybrid
traffic flow model (H-CTM&CA; Storani et al., 2022), which
is considered as a prediction and plant model unlike previous
approaches described elsewhere.

5The model is discussed in terms of specification, calibration and validation
and comparison with other benchmark models in Storani et al. (2021, 2022).

For this purpose, the numerical results of application to a
two-way arterial with three junctions were displayed and anal-
ysed. The above layout was used to test different applications.

First of all, the model was appropriately calibrated, and
then the green times and offsets were optimised: the first
application was a fixed time strategy, and the second an
enhanced strategy based on Model Predictive Control (MPC;
Lin, 2011; Zegeye, 2011) considering the proposed traffic flow
model H-CTM&CA. Our results show that in the case of
uniform flows the indicators are slightly different, whilst in
the case of variable flows, the MPC indicators, which are not
considered in the optimisation procedure, namely MMQ and
SD, are slightly higher in the variable entry flow scenario
than in uniform entry flow. By contrast, the TTS indicator
considered for the MPC optimisation procedure is lower than
57%, confirming the effectiveness of the adopted strategy.
Furthermore, the suitability of the traffic flow model in the
case of more complex traffic signal optimisation and the
effectiveness of the adopted MPC also clearly emerged.
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A further analysis was carried out considering the same
arterial layout modelled with a CTM to compare several
indicators obtained with the green times and offsets from the
MPC traffic control strategy, a fixed6 time strategy and the
adaptive SCOOT strategy. As in the previous case, the results
confirm that the value of the indicators varies across several
control steps for uniform flows under the MPC strategy. The
TTS indicator (objective function for the MPC optimisation
procedure) is 76% lower when applying the green times and
offsets obtained with the MPC than to the case of fixed strategy
and 65% lower than obtained with the SCOOT approach,
confirming the effectiveness of the MPC.

Other analyses were performed in terms of computational
effort and throughput (vehicle in-out) by comparing the CTM
and the H-CTM&CA, considering an MPC strategy. It was
shown that a comparable and lower value of the elapsed
time is observed. In particular, results for the running time
over 50 control steps show that the time for 1000 executions
is still comparable, irrespective of the dawdling probability.
Furthermore, the network throughput (vehicle in-out) was also
analysed for different demand profiles and signal setting design
strategies. The results confirm the model’s effectiveness for the
throughput analysis in both cases: an increase in demand and
the impact of a more complex traffic control strategy.

Finally, to highlight the suitability of the traffic flow model
in the presence of connected and automated vehicles, an addi-
tional application aimed at integrating traffic lights and vehicle
speed optimisation was introduced. The results highlight the
suitability of the proposed approach and its effectiveness in
terms of performance indicators.

In terms of future research, two main perspectives will be
considered:

i) The proposed framework will be tested in greater detail
on the application in the presence of connected and
automated vehicles by including the impact of different
penetration rates and the impact of different powertrains
(e.g., electric vehicles; Fiori et al., 2021), taking advan-
tage of the information they provide for the optimisation
procedure of the network;

ii) The proposed centralised framework will be tested at
a larger scale; the simplified hybrid model is expected
to support the suitability of the framework in the case
of more complex networks, such as the microscopic
modelling usually adopted.
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