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Abstract—The majority of computer vision architectures are
developed based on the assumption of the availability of good
quality data. However, this is a particularly hard requirement
to achieve in underwater conditions. To address this limitation,
plenty of underwater image enhancement methods have received
considerable attention during the last decades, but due to the lack
of a commonly accepted framework to systematically evaluate
them and to determine the likely optimal one for a given
image, their adoption in practice is hindered, since it is not
clear which one can achieve the best results. In this paper,
we propose a standardized selection framework to evaluate the
quality of an underwater image and to estimate the most suitable
image enhancement technique based on its impact on the image
classification performance.

Index Terms—computer vision, underwater image enhance-
ment, image processing

I. INTRODUCTION

State-of-the-art image processing methods are gaining trac-

tion rapidly for underwater applications. Advanced tech-

niques are emerging from the latest achievements in the

field of computer vision. Enabled by the latest computer

vision advancements, novel, sophisticated, underwater image

processing methods have been developed, allowing underwater

robotic vehicles to perceive their surrounding environment

in order to achieve particularly complex tasks, such as litter

detection, equipment inspection, fish monitoring, and tracking

of ecosystems. Yet, an interesting paradox hovers over the

development of underwater image processing techniques: the

more approaches emerge, the less straightforward it is to
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determine which one is the most suitable to be implemented

in each case.

More specifically, the fast pace of computer vision break-

throughs has accelerated the spread of image processing

techniques in underwater applications in order to compensate

for the degraded visibility conditions in the water. In general,

the quality of underwater images is particularly low, due to

various distortions caused by absorption, scattering, and other

characteristics that effect the vision under the water. Due to

the water, which is a particularly complex and inhomogeneous

medium and also due to absorption and scattering of light,

less light can enter a camera during image captioning, in

comparison with an environment without water. An example

to illustrate the degraded underwater visibility conditions is to

consider that knowing the true color of an object underwater is

almost not possible even for humans, since in these conditions,

human vision is distorted as well.

Underwater image enhancement is a key technology in

compensating for the poor visibility conditions and enabling

underwater robots to perform complex tasks autonomously.

However, the degradation variations among different water

environments hinder the process of selecting the enhancement

technique that is most suitable to be implemented in each

case [9]. Furthermore, the currently existing underwater Image

Quality Assessment (IQA) metrics, especially the ones that

do not take into account a reference image (no-reference),

have not yet been validated with respect to their relation to

the performance of computer vision tasks. In other words,

IQA metrics do not evaluate an enhancement method on

the basis of the performance increase they yield for image

classification, which is a fundamental objective of employing

image enhancement approaches.

The aim of this work is to present a standardized analysis of

the impact of image enhancement techniques on underwater



images as well as to propose an automated framework that

evaluates the quality of an underwater image and estimates

the best image enhancement technique based on the impact of

each technique on the image classification performance. The

potential advantages of this framework are also discussed. Our

analysis is complementary to the existing works in the field

of underwater image enhancement. The key differences are

that (1) our focus is different and is primarily on integrating

the impact on the image classification performance, (2) we

introduce an automated selection approach for categorizing

image enhancement techniques based on the image classi-

fication performance, and (3) we provide valuable insights

about the image enhancement effect during pre-processing and

post-processing of the training data. Specifically, this work

includes five main steps:

• We implement three image enhancement techniques to

raw underwater image data namely Fusion [2], as well as

the neural networks WaterNET [5], and Cast-GAN [8],

and we generate an image dataset for each implemented

technique.

• We evaluate a convolutional neural network (CNN) that

performs image classification on each one of the above-

mentioned generated datasets [15].

• We propose an image quality assessment method based

on the image classification performance of the trained

CNN.

• We analyze the quality of an underwater image in terms

of comparing the performance of human-based image

classification, algorithmic-based image classification, as

well as, in terms of the respective quality rated by

underwater image quality metrics.

• We train an additional supervised classification model

that relates images, their IQA metrics, and the CNN’s

performance with image enhancement techniques.

The paper is organized as follows: Section II presents an

overview of necessary preliminary knowledge. In Section III

the proposed scheme is presented and analyzed. In Section IV

the implementation of the proposed architecture is presented.

Section V demonstrates the results and Section VI gives

concluding remarks and an outlook to future work.

II. PRELIMINARIES

This section presents some background and material with

regards to evaluation metrics and methods that are analyzed

within this study.

A. IQA Metrics

Performance validation and comparison among underwater

image enhancement methods remains a largely unexplored

research area. As an alternative to commonly used subjective

tests, IQA metrics are implemented as objective measures

to quantify perceptual quality [9]. Underwater IQA metrics

measure color and contrast degradation. Then they quantify

the perceived image quality via image attributes related to

the degradation in water and they combine image attributes

to mimic human preferences in the enhanced images. IQA

metrics that are commonly used to assess the quality of

enhanced underwater images are Underwater Image Qual-

ity Measure (UIQM) [11], Underwater Color Image Quality

Evaluation (UCIQE) [16], and Colorfulness, Contrast, and

Fog density index (CCF) [14]. However, it has been reported

that underwater-specific IQA measures do not satisfactorily

rate the quality of enhanced underwater images as it is not

clear whether a high IQA metric value can guarantee high

performance in the achievement of computer vision tasks [9].

B. Underwater Image Enhancement Methods

A number of image enhancement methods for underwater

applications has been applied in this work, including both

physics-based and neural-network-based ones. Fusion [2] is

an effective technique that derives two images from a white-

balanced version of the original, degraded input image and

then it merges them based on a multi scale fusion algorithm.

Cast-GAN [8] develops an underwater image enhancement

method based on a generative adversarial network. Cast-GAN

uses the trained generator to remove the color cast from un-

derwater images, without distorting the color of water regions.

Finally, WaterNET [5] proposes an enhancement framework

based on a convolutional neural network. More specifically,

in this technique, three versions of an underwater degraded

image are generated by applying white balance [1], histogram

equalization [17] and gamma correction [7] algorithms to it.

Three confidence maps are extracted accordingly to these three

versions of the original image by using a convolutional neural

network. In this way, the neural network architecture learns

three confidence maps that are subsequently used to combine

the three versions into an enhanced result.

III. PROPOSED SELECTION SCHEME

The selection pipeline is a classification model that relates

an image with the best image enhancement technique to be

implemented (Fig. 1). The approach is based on the Support

Vector Machines (SVM) algorithm [3], which is a machine

learning technique that maps the data to a higher dimensional

space by using a so-called kernel function and searches for

a hyperplane to distinctly separate the data points. The data

points that are nearest to the hyperplane and are used to make

the decision are called support vectors. Some examples of

kernel functions for two data points (xi, xj) are the linear

kernel:

K(xi, xj) = x
⊺

i xj + c, (1)

the polynomial kernel:

k(xi, xj) = (γx⊺

i xj + c)d, γ > 0, (2)

and the radial basis function (RBF)

k(xi, xj) = e−γ‖xi−xj‖
2

, γ > 0, (3)

where γ, c are kernel parameters and d is the degree of the

polynomial.
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Fig. 1. Selection pipeline concept.

IV. METHODOLOGY

In this section, the implementation of the proposed frame-

work is discussed. The dataset generation process, as well

as the procedure followed for the CNN training and the

implementation of the selection pipeline are explained.

A. Dataset Synthesis

In order to generate our dataset, two main aspects are taken

into account:

• A broad range of underwater scenes, diverse characteris-

tics of quality degradation, as well as a great variety of

image content should be considered.

• The ultimate objective of this study is to assist in the

task of underwater litter detection. Hence, the image

data contain observations of 4 categories, namely animal,

plant, Remotely Operated Vehicle (ROV), and trash.

The dataset is synthesized by real-world underwater images

that were collected from different sea areas and by different

cameras. More specifically, 300 images come from Trash-

Can public dataset [4]. TrashCan is sourced from the J-EDI

(JAMSTEC E-Library of Deep-sea Images) dataset [12], by

the Japan Agency of Marine Earth Science and Technology

(JAMSTEC) and it contains videos from ROVs, largely in the

sea of Japan. The visibility conditions of TrashCan images are

considered as good. Furthermore, 300 additional images are

generated from measurements in the sea area by Marseille,

France. The visibility conditions in this area are worse com-

pared to TrashCan.

Moreover, 600 images are taken from Dubrovnik, Croatia.

The sea areas there have in general very clear visibility

conditions. Two experiments were conducted with different

hardware and camera equipment, leading to the collection

of 300 images from each experiment. The two experiments

were different in terms of various conditions such as, water

conditions and equipment involved. As a result, the first 300

images showcase different characteristics in comparison to the

remaining 300 images. We have thus constructed a diverse

dataset of in total 1200 real-world underwater images, which is

used in order to conduct our comprehensive study with regards

to analyzing the image enhancement techniques.

We then implement the image enhancement techniques to

the raw underwater images and we generate an image dataset

for each implemented technique (Fig. 2). In total, we generate

four datasets, i.e. raw, Fusion, Cast-GAN, and WaterNET

datasets.

B. CNN Training

Considering our purpose to analyze underwater image en-

hancement methods with respect to their impact on the perfor-

mance of computer vision tasks, we consider a deep-learning-

based image classification approach, where the images are fed

to a CNN, which in turn predicts their category. Our aim is

to train a neural network capable of classifying each sample

among the 4 available categories. It is a common practice to

initialize the network’s parameters using the weights as derived

from training on another relatively similar task. In our case, we

use the weights that are pretrained on the COCO (Microsoft

Common Objects in Context) dataset [10] . COCO is a large-

scale image dataset containing 328,000 images of everyday

objects and humans. The dataset contains annotations that are

widely used to train machine learning models to recognize,

label, and describe objects.

Regarding the CNN architecture, YOLOv6 [6] is se-

lected, which is one of the state-of-the-art CNN architectures.

YOLOv6 is chosen since it is a real-time architecture with

not only large accuracy but also fast inference speed. It is

a single-stage object detection framework mostly focusing

on industrial applications, with hardware efficient design and

better performance than its predecessors [13].

In order to evaluate the image enhancement methods, the

following two experiments are performed:

1) Training a CNN for each processed dataset: As a first

step, we train YOLOv6 on each one of the four processed

image datasets (Fig. 2). Having the four CNN networks, we

aim to evaluate the impact of each enhancement technique on

the feature space representation and its resulting effect on the

learning process.

Training

Evaluation

Method 1

Method 2

Method 3

Method 4

Data preparation

Fig. 2. Training a CNN architecture for each processed dataset.

2) Training a CNN on raw data: In the second experiment,

we train YOLOv6 on raw TrashCan data and then we evaluate

it on each of the four datasets. With this experiment, we

aim to investigate whether a technique can operate as a post

processing technique, allowing to employ pre-trained neural

networks from other applications. This experiment aligns with

enhancing human-based perception on image classification.

However, neural-network-based perception vastly depends on

the data that it has been trained on, and hence, we want



to investigate whether shifting the data distribution might

deteriorate the performance.

Data preparation Training Evaluation
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Fig. 3. Training a CNN architecture on raw image data and evaluating it on
enhanced image data

C. Selection Framework

Before training the classification model, we implement data

augmentation to the image samples, in order to enlarge our

dataset. The original dataset contains around 230 images

coming from the validation set of the previously described

dataset. The augmentation that is performed includes the

implementation of image transformations such as rotation,

horizontal flip and transpose operations.

Based on the trained CNN architectures and the classifi-

cation achieved per image, the multi-class SVM is applied

to relate images with the best enhancement technique. The

implementation is based on the scikit-learn library from

Python programming language. We explore two variations

of this architecture by adjusting the input features provided

to the algorithm in order to learn the mapping between

an image and the best enhancement approach: (i) In the

first variation, the input features used are the pixel values

corresponding to the hue (Hue), saturation (Saturation), and

brightness (Value/Brightness) channels. (ii) In the second case,

we perform a training of the SVM architecture by adopting

the IQA metrics (UCIQE, UIQM, and CCF) as features for

the classification task. In this way we perform a faster training

than in the first architecture, since the three IQA values require

much less computational effort to be processed than the pixel

values of the HSV image channels. The dataset is divided

using the ratio of 80:20, where 80 % is for training and 20 %
is for testing.

V. EXPERIMENTAL RESULTS

Our aim is to construct a mapping between a given image

and the respective most suitable image enhancement method,

considering the classification performance. For this reason,

the predicted classification score and the respective difference

with the ground truth per image is extracted. In other words,

the predicted labels for each image are compared with the

ground truth. The result is also compared with the predicted

labels of the image processed by the other methods. For

the images whose labels correspond to the correct ground

truth values, the confidence score is compared with the other

enhancement methods in order to validate which one ensures

the highest confidence. An image enhancement technique is

regarded as the best performing one per each image if it

yields the highest confidence, provided that this confidence

is greater than the confidence of the second best performing

technique with a threshold of 2%. If this threshold difference

is not met, then both of the highest scoring techniques are

considered as best performing ones. The results are depicted in

Fig. 4 and Fig. 5. More specifically, Fig. 4 depicts the number

of images on which each enhancement method reaches the

highest classification score while considering the 2% differ-

ence threshold. This figure corresponds to the first experiment

presented in Section III. We can conclude that the method

Fusion outperforms the rest methods, while WaterNet is the

second best performing method respectively. Finally, Cast-

GAN performs the worst among the four methods.

In addition, Fig. 4 depicts the results obtained from the

second experiment in Section III. From this figure, it can be

observed that the implementation of no enhancement (i.e. just

raw image data) appears to perform the best, compared to any

other image enhancement method. This can be explained by

the fact that the training of the CNN is done on solely raw

data. As a result, the network has learned to best distinguish

the features belonging to each category, when the data are in

raw form. WaterNet is the second best performing approach,

followed by Cast-GAN. It is also noticeable that Fusion

achieves a low performance at this experiment, contrary to

the previous one where it outperformed the other methods.

Furthermore, it should be noted that the score using IQA

metrics is not necessarily proportional to the classification

score. As shown in Fig. 7, the Cast-GAN appears to out-

perform the other methods regarding the UCIQE metric.

Nevertheless, this technique is not one of the top performing

ones with regards to the classification performance. At the

same time, Fig. 6 depicts the performance score per image

among the examined methods in a descending order. As can

be seen, some methods might reach quite a high classification

score for only a few images, while achieving quite a low

performance for the majority of the images.

The classification results are presented in Table I where the

F1-score metric for the two SVM architectures is presented.

Note that in this case, the dataset size limits the possibility

to achieve higher performance in this four-class classification

problem. Hence, in our future work we will consider larger

size datasets.
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Fig. 4. Image enhancement methods evaluation based on four CNN architec-
ture trained on each processed image dataset.
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Fig. 5. Image enhancement methods evaluation based on a CNN architecture
trained on raw image data.
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Fig. 7. UCIQE metric per image for each method.

TABLE I
PERFORMANCE OF CLASSIFICATION

f1-score

SVM Classifier - HSV channels as features 41 %

SVM Classifier - IQA metrics as features 46 %

VI. CONCLUSIONS AND FUTURE WORK

In this paper a framework is introduced towards automating

the selection process of the most appropriate underwater image

enhancement method to be implemented on an image and the

impact of these methods on the performance of classification

task is explored. The results show that there is a distinction

between how the human eye perceives the image enhancement

to more easily classify underwater objects and how a trained

neural network increases its classification performance by the

implementation of various techniques. A selection pipeline is

also introduced based on a supervised classification model that

performs a mapping between images, their IQA metrics, and

their likely optimal enhancement technique.

Future work could contain the expansion of the dataset

to further validate the proposed scheme. An additional im-

portant step should concern the implementation and analysis

of more image enhancement methods. Finally, an interesting

future research direction should concern the implementation of

enhancement methods on parts of an image instead of the total

image. This could be achieved if, for example, an image is split

into a number of areas, and for each area the most appropriate

image enhancement technique is implemented accordingly,

instead of applying solely one technique on the total image.

In this way, if only parts of an image are used, and in each

of these parts a different technique is applied, even higher

performance could be achieved, since the texture of an image

usually differs along it and hence, a technique can have a

varying performance among the different image areas.
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